Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance
Corresponding Author: Changhui Ye
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 19
Abstract
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors (MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide (GO, 98.0 vol.%) ink and commercial pen ink (2.0 vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of the GO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink, combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780% enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application. This work demonstrates a promising future of the carbon-based hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.
Highlights:
1 Flexible and all-solid-state micro-supercapacitors (MSCs) were fabricated by inkjet printing using carbon-based hybrid ink composed of graphene oxide (GO) and commercial pen ink.
2 The as-obtained MSCs based on hybrid ink exhibit great enhancement in areal capacitance, flexibility and cycling stability compared with that of pure GO ink.
3 This work provides a promising strategy for large-scale preparation of low-cost, lightweight, and flexible/wearable energy storage devices with carbon-based hybrid ink.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51(47), 11700–11721 (2012). doi:10.1002/anie.201201656
- Z. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). doi:10.1002/adma.201102958
- Z. Wang, Toward self-powered sensor networks. Nano Today 5(6), 512–514 (2010). doi:10.1016/j.nantod.2010.09.001
- Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free one pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano–Micro Lett. 8(2), 165–173 (2016). doi:10.1007/s40820-015-0074-0
- H. Hu, Z. Pei, C. Ye, Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 1, 82–102 (2015). doi:10.1016/j.ensm.2015.08.005
- J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977), 480–483 (2010). doi:10.1126/science.1184126
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). doi:10.1038/nnano.2010.162
- K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1(6), 1068–1072 (2011). doi:10.1002/aenm.201100488
- J. Tao, W. Ma, N. Liu, X. Ren, Y. Shi, J. Su, Y. Gao, High performance solid-state supercapacitors fabricated by pencil drawing and polypyrrole depositing on paper substrate. Nano–Micro Lett. 7(3), 276–281 (2015). doi:10.1007/s40820-015-0039-3
- W. Si, C. Yan, Y. Chen, S. Oswald, L. Han, O. Schmidt, On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ. Sci. 6(11), 3218–3223 (2013). doi:10.1039/c3ee41286e
- H. Hu, K. Zhang, S. Li, S. Ji, C. Ye, Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2(48), 20916–20922 (2014). doi:10.1039/C4TA05345A
- Y. Sun, Y. Cheng, K. He, A. Zhou, H. Duan, One-step synthesis of three-dimensional porous ionic liquid-carbon nanotube–graphene gel and MnO2–graphene gel as freestanding electrodes for asymmetric supercapacitors. RSC Adv. 5, 10178–10186 (2015). doi:10.1039/C4RA16071A
- Y. Sun, Z. Fang, C. Wang, K. Ariyawansha, A. Zhou, H. Duan, Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale 7, 7790–7801 (2015). doi:10.1039/C5NR00946D
- F. Xiao, S. Yang, Z. Zhang, H. Liu, J. Xiao, L. Wan, J. Luo, S. Wang, Y. Liu, Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci. Rep. 5, 9359 (2015). doi:10.1038/srep09359
- K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 6, 16312–16319 (2014). doi:10.1021/am504539k
- Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 4, 1400064 (2014). doi:10.1002/aenm.201400064
- X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232–236 (2011). doi:10.1038/nnano.2011.13
- L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6(2), 470–476 (2013). doi:10.1039/c2ee23977a
- Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultra light and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013). doi:10.1021/nn304833s
- L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z. Wang, Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51(20), 4934–4938 (2012). doi:10.1002/anie.201109142
- F. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 23(35), 4098–4102 (2011). doi:10.1002/adma.201101678
- Z. Weng, Y. Su, D. Wang, F. Li, J. Du, H. Cheng, Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 1(5), 917–922 (2011). doi:10.1002/aenm.201100312
- K. Zhang, H. Hu, W. Yao, C. Ye, Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J. Mater. Chem. A 3(2), 617–623 (2015). doi:10.1039/C4TA05605A
- M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22(21), 4501–4510 (2012). doi:10.1002/adfm.201201292
- Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 25(29), 4035–4042 (2013). doi:10.1002/adma.201301332
- M. El-Kady, R. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475–1482 (2013). doi:10.1038/ncomms2446
- T. Dinh, K. Armstrong, D. Guay, D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability. J. Mater. Chem. A 2(20), 7170–7174 (2014). doi:10.1039/c4ta00640b
- M. Laurenti, D. Perrone, A. Verna, C.F. Pirri, A. Chiolerio, Development of a flexible lead-free piezoelectric transducer for health monitoring in the space environment. Micromachines 6, 1729–1744 (2015). doi:10.3390/mi6111453
- J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. Hauge, D. Natelson, J. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2013). doi:10.1021/nl3034976
- Z. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, K. Müllen, Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv. Mater. 26(26), 4552–4558 (2014). doi:10.1002/adma.201401228
- Z. Wu, K. Parvez, S. Li, S. Yang, Z. Liu, S. Liu, X. Feng, K. Müllen, Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27(27), 4054–4061 (2015). doi:10.1002/adma.201501643
- Y. Wang, Y. Shi, C. Zhao, J. Wong, X. Sun, H. Yang, Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology 25(9), 094010 (2014). doi:10.1088/0957-4484/25/9/094010
- S. Kim, H. Koo, A. Lee, P. Braun, Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 26(30), 5108–5112 (2014). doi:10.1002/adma.201401525
- M. Xue, Z. Xie, L. Zhang, X. Ma, X. Wu, Y. Guo, W. Song, Z. Li, T. Cao, Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale 3(7), 2703–2708 (2011). doi:10.1039/c0nr00990c
- W. Gao, N. Singh, L. Song, Z. Liu, A. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6(8), 496–500 (2011). doi:10.1038/nnano.2011.110
- B. Hsia, J. Marschewski, S. Wang, J. In, C. Carraro, D. Poulikakos, C. Grigoropoulos, R. Maboudian, Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25(5), 055401 (2014). doi:10.1088/0957-4484/25/5/055401
- D. Pech, M. Brunet, P. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195(4), 1266–1269 (2010). doi:10.1016/j.jpowsour.2009.08.085
- J. Li, F. Ye, S. Vaziri, M. Muhammed, M. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013). doi:10.1002/adma.201300361
- A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014). doi:10.1002/smll.201303000
- M. Singh, H. Haverinen, P. Dhagat, G. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010). doi:10.1002/adma.200901141
- B. de Gans, P. Duineveld, U. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004). doi:10.1002/adma.200300385
- T. van Osch, J. Perelaer, A. de Laat, U. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008). doi:10.1002/adma.200701876
- T. Wei, J. Ruan, Z. Fan, G. Luo, F. Wei, Preparation of a carbon nanotube film by ink-jet printing. Carbon 45(13), 2712–2716 (2007). doi:10.1016/j.carbon.2007.08.009
- W. Small, M. Panhuis, Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3(9), 1500–1503 (2007). doi:10.1002/smll.200700110
- V. Dua, S. Surwade, S. Ammu, S. Agnihotra, S. Jain et al., All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010). doi:10.1002/anie.200905089
- F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012). doi:10.1021/nn2044609
- Y. Xu, I. Hennig, D. Freyberg, A. Strudwick, M. Schwab, T. Weitz, K. Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 248, 483–488 (2014). doi:10.1016/j.jpowsour.2013.09.096
- L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011). doi:10.1007/s12274-011-0123-z
- L. Le, M. Ervin, H. Qiu, B. Fuchs, W. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011). doi:10.1016/j.elecom.2011.01.023
- X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012). doi:10.1039/C1CS15078B
- Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. Potts, R. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
- R. Giardi, S. Porro, A. Chiolerio, E. Celasco, M. Sangermano, Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. J. Mater. Sci. 48, 1249–1255 (2013). doi:10.1007/s10853-012-6866-4
- W. Hummers, R. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
- S. Magdassi, M. Ben Moshe, Patterning of organic nanoparticles by ink-jet printing of microemulsions. Langmuir 19(3), 939–942 (2003). doi:10.1021/la026439h
- D. Li, M. Muller, S. Gilje, R. Kaner, G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). doi:10.1038/nnano.2007.451
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
- H. Jung, M. Karimi, M. Hahm, P. Ajayan, Y. Jung, Transparent, flexible supercapacitors from nano-engineered carbon films. Sci. Rep. 2, 773–778 (2012). doi:10.1038/srep00773
- T. Qian, J. Zhou, N. Xu, T. Yang, X. Shen, X. Liu, S. Wu, C. Yan, On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology 26, 425402 (2015). doi:10.1088/0957-4484/26/42/425402
- W. Yang, Z. Gao, J. Ma, X. Zhang, J. Wang, J.Y. Liu, Hierarchical NiCo2O4@NiO core–shell heterostructured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J. Mater. Chem. A 2, 1448–1457 (2014). doi:10.1039/C3TA14488G
- T. Qian, N. Xu, J. Zhou, T. Yang, X. Liu, X. Shen, J. Liang, C. Yan, Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J. Mater. Chem. A 3, 488–493 (2015). doi:10.1039/C4TA05769D
References
Z. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51(47), 11700–11721 (2012). doi:10.1002/anie.201201656
Z. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). doi:10.1002/adma.201102958
Z. Wang, Toward self-powered sensor networks. Nano Today 5(6), 512–514 (2010). doi:10.1016/j.nantod.2010.09.001
Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free one pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano–Micro Lett. 8(2), 165–173 (2016). doi:10.1007/s40820-015-0074-0
H. Hu, Z. Pei, C. Ye, Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 1, 82–102 (2015). doi:10.1016/j.ensm.2015.08.005
J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977), 480–483 (2010). doi:10.1126/science.1184126
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). doi:10.1038/nnano.2010.162
K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1(6), 1068–1072 (2011). doi:10.1002/aenm.201100488
J. Tao, W. Ma, N. Liu, X. Ren, Y. Shi, J. Su, Y. Gao, High performance solid-state supercapacitors fabricated by pencil drawing and polypyrrole depositing on paper substrate. Nano–Micro Lett. 7(3), 276–281 (2015). doi:10.1007/s40820-015-0039-3
W. Si, C. Yan, Y. Chen, S. Oswald, L. Han, O. Schmidt, On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ. Sci. 6(11), 3218–3223 (2013). doi:10.1039/c3ee41286e
H. Hu, K. Zhang, S. Li, S. Ji, C. Ye, Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2(48), 20916–20922 (2014). doi:10.1039/C4TA05345A
Y. Sun, Y. Cheng, K. He, A. Zhou, H. Duan, One-step synthesis of three-dimensional porous ionic liquid-carbon nanotube–graphene gel and MnO2–graphene gel as freestanding electrodes for asymmetric supercapacitors. RSC Adv. 5, 10178–10186 (2015). doi:10.1039/C4RA16071A
Y. Sun, Z. Fang, C. Wang, K. Ariyawansha, A. Zhou, H. Duan, Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale 7, 7790–7801 (2015). doi:10.1039/C5NR00946D
F. Xiao, S. Yang, Z. Zhang, H. Liu, J. Xiao, L. Wan, J. Luo, S. Wang, Y. Liu, Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci. Rep. 5, 9359 (2015). doi:10.1038/srep09359
K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 6, 16312–16319 (2014). doi:10.1021/am504539k
Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 4, 1400064 (2014). doi:10.1002/aenm.201400064
X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232–236 (2011). doi:10.1038/nnano.2011.13
L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6(2), 470–476 (2013). doi:10.1039/c2ee23977a
Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultra light and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013). doi:10.1021/nn304833s
L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z. Wang, Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51(20), 4934–4938 (2012). doi:10.1002/anie.201109142
F. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 23(35), 4098–4102 (2011). doi:10.1002/adma.201101678
Z. Weng, Y. Su, D. Wang, F. Li, J. Du, H. Cheng, Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 1(5), 917–922 (2011). doi:10.1002/aenm.201100312
K. Zhang, H. Hu, W. Yao, C. Ye, Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J. Mater. Chem. A 3(2), 617–623 (2015). doi:10.1039/C4TA05605A
M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22(21), 4501–4510 (2012). doi:10.1002/adfm.201201292
Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 25(29), 4035–4042 (2013). doi:10.1002/adma.201301332
M. El-Kady, R. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475–1482 (2013). doi:10.1038/ncomms2446
T. Dinh, K. Armstrong, D. Guay, D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability. J. Mater. Chem. A 2(20), 7170–7174 (2014). doi:10.1039/c4ta00640b
M. Laurenti, D. Perrone, A. Verna, C.F. Pirri, A. Chiolerio, Development of a flexible lead-free piezoelectric transducer for health monitoring in the space environment. Micromachines 6, 1729–1744 (2015). doi:10.3390/mi6111453
J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. Hauge, D. Natelson, J. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2013). doi:10.1021/nl3034976
Z. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, K. Müllen, Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv. Mater. 26(26), 4552–4558 (2014). doi:10.1002/adma.201401228
Z. Wu, K. Parvez, S. Li, S. Yang, Z. Liu, S. Liu, X. Feng, K. Müllen, Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27(27), 4054–4061 (2015). doi:10.1002/adma.201501643
Y. Wang, Y. Shi, C. Zhao, J. Wong, X. Sun, H. Yang, Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology 25(9), 094010 (2014). doi:10.1088/0957-4484/25/9/094010
S. Kim, H. Koo, A. Lee, P. Braun, Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 26(30), 5108–5112 (2014). doi:10.1002/adma.201401525
M. Xue, Z. Xie, L. Zhang, X. Ma, X. Wu, Y. Guo, W. Song, Z. Li, T. Cao, Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale 3(7), 2703–2708 (2011). doi:10.1039/c0nr00990c
W. Gao, N. Singh, L. Song, Z. Liu, A. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6(8), 496–500 (2011). doi:10.1038/nnano.2011.110
B. Hsia, J. Marschewski, S. Wang, J. In, C. Carraro, D. Poulikakos, C. Grigoropoulos, R. Maboudian, Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25(5), 055401 (2014). doi:10.1088/0957-4484/25/5/055401
D. Pech, M. Brunet, P. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195(4), 1266–1269 (2010). doi:10.1016/j.jpowsour.2009.08.085
J. Li, F. Ye, S. Vaziri, M. Muhammed, M. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013). doi:10.1002/adma.201300361
A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014). doi:10.1002/smll.201303000
M. Singh, H. Haverinen, P. Dhagat, G. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010). doi:10.1002/adma.200901141
B. de Gans, P. Duineveld, U. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004). doi:10.1002/adma.200300385
T. van Osch, J. Perelaer, A. de Laat, U. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008). doi:10.1002/adma.200701876
T. Wei, J. Ruan, Z. Fan, G. Luo, F. Wei, Preparation of a carbon nanotube film by ink-jet printing. Carbon 45(13), 2712–2716 (2007). doi:10.1016/j.carbon.2007.08.009
W. Small, M. Panhuis, Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3(9), 1500–1503 (2007). doi:10.1002/smll.200700110
V. Dua, S. Surwade, S. Ammu, S. Agnihotra, S. Jain et al., All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010). doi:10.1002/anie.200905089
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012). doi:10.1021/nn2044609
Y. Xu, I. Hennig, D. Freyberg, A. Strudwick, M. Schwab, T. Weitz, K. Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 248, 483–488 (2014). doi:10.1016/j.jpowsour.2013.09.096
L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011). doi:10.1007/s12274-011-0123-z
L. Le, M. Ervin, H. Qiu, B. Fuchs, W. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011). doi:10.1016/j.elecom.2011.01.023
X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012). doi:10.1039/C1CS15078B
Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. Potts, R. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
R. Giardi, S. Porro, A. Chiolerio, E. Celasco, M. Sangermano, Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. J. Mater. Sci. 48, 1249–1255 (2013). doi:10.1007/s10853-012-6866-4
W. Hummers, R. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
S. Magdassi, M. Ben Moshe, Patterning of organic nanoparticles by ink-jet printing of microemulsions. Langmuir 19(3), 939–942 (2003). doi:10.1021/la026439h
D. Li, M. Muller, S. Gilje, R. Kaner, G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). doi:10.1038/nnano.2007.451
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
H. Jung, M. Karimi, M. Hahm, P. Ajayan, Y. Jung, Transparent, flexible supercapacitors from nano-engineered carbon films. Sci. Rep. 2, 773–778 (2012). doi:10.1038/srep00773
T. Qian, J. Zhou, N. Xu, T. Yang, X. Shen, X. Liu, S. Wu, C. Yan, On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology 26, 425402 (2015). doi:10.1088/0957-4484/26/42/425402
W. Yang, Z. Gao, J. Ma, X. Zhang, J. Wang, J.Y. Liu, Hierarchical NiCo2O4@NiO core–shell heterostructured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J. Mater. Chem. A 2, 1448–1457 (2014). doi:10.1039/C3TA14488G
T. Qian, N. Xu, J. Zhou, T. Yang, X. Liu, X. Shen, J. Liang, C. Yan, Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J. Mater. Chem. A 3, 488–493 (2015). doi:10.1039/C4TA05769D