In-Situ Hydrothermal Synthesis of Bi–Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity
Corresponding Author: Samir Kumar Pal
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 18
Abstract
Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi–Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi–Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi–Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.
Highlights:
1 A facile low cost hydrothermal technique was employed to synthesize of Bi-Bi2O2CO3, and Bi nanoparticles was decorated in-situ on Bi2O2CO3.
2 The heterostructure exhibits enhanced electron-hole separation and improves visible-light photocatalytic activity effectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010). doi:10.1016/j.watres.2010.02.039
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
- S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5(19), 14610–14630 (2015). doi:10.1039/C4RA13734E
- Sunil P. Lonkar, Vishnu V. Pillai, Samuel Stephen, Ahmed Abdala, Vikas Mittal, Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity. Nano-Micro Lett. 8(4), 312–319 (2016). doi:10.1007/s40820-016-0090-8
- P. Kar, S. Sardar, S. Ghosh, M.R. Parida, B. Liu, O.F. Mohammed, P. Lemmens, S.K. Pal, Nano surface engineering of Mn2O3 for potential light-harvesting application. J. Mater. Chem. C 3(31), 8200–8211 (2015). doi:10.1039/C5TC01475A
- T.K. Maji, D. Bagchi, P. Kar, D. Karmakar, S.K. Pal, Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: Ultrafast spectroscopy and computational studies. J. Photochem. Photobiol. A 332, 391–398 (2017). doi:10.1016/j.jphotochem.2016.09.017
- Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5(18), 8326–8339 (2013). doi:10.1039/c3nr01577g
- J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 79(2), 133–151 (2003). doi:10.1016/S0927-0248(02)00393-8
- H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal. 5(7), 4094–4103 (2015). doi:10.1021/acscatal.5b00444
- H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7(1), 482–492 (2015). doi:10.1021/am5065409
- H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B 199, 75–86 (2016). doi:10.1016/j.apcatb.2016.06.020
- H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118(26), 14379–14387 (2014). doi:10.1021/jp503025b
- Q. He, S. Huang, C. Wang, Q. Qiao, N. Liang, M. Xu, W. Chen, J. Zai, X. Qian, The role of Mott-Schottky heterojunctions in Ag–Ag8SnS6 as counter electrodes in dye-sensitized solar cells. Chem. Sus. Chem. 8(5), 817–820 (2015). doi:10.1002/cssc.201403343
- S. Huang, Q. He, J. Zai, M. Wang, X. Li, B. Li, X. Qian, The role of Mott-Schottky heterojunctions in PtCo-Cu2ZnGeS4 as counter electrodes in dye-sensitized solar cells. Chem. Commun. 51(43), 8950–8953 (2015). doi:10.1039/C5CC02584B
- L. Jin, G. Zhu, M. Hojamberdiev, X. Luo, C. Tan, J. Peng, X. Wei, J. Li, P. Liu, A plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 53(35), 13718–13727 (2014). doi:10.1021/ie502133x
- G. Zhu, M. Hojamberdiev, K.-I. Katsumata, X. Cai, N. Matsushita, K. Okada, P. Liu, J. Zhou, Heterostructured Fe3O4/Bi2O2CO3 photocatalyst: synthesis, characterization and application in recyclable photodegradation of organic dyes under visible light irradiation. Mater. Chem. Phys. 142(1), 95–105 (2013). doi:10.1016/j.matchemphys.2013.06.046
- A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 130(30), 9658–9659 (2008). doi:10.1021/ja803603y
- S. Xiao, Y. Li, J. Hu, H. Li, X. Zhang, L. Liu, J. Lian, One-step synthesis of nanostructured Bi-Bi2O2CO3-ZnO composites with enhanced photocatalytic performance. Cryst. Eng. Comm. 17(20), 3809–3819 (2015). doi:10.1039/C5CE00338E
- P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
- W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, p-n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 43(18), 6735–6743 (2014). doi:10.1039/c3dt53613k
- Y. Zhang, G. Zhu, M. Hojamberdiev, J. Gao, J. Hao, J. Zhou, P. Liu, Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {001} facets for the degradation of organic pollutants. Appl. Surf. Sci. 371, 231–241 (2016). doi:10.1016/j.apsusc.2016.02.210
- C. Greaves, S.K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater. Res. Bull. 23(7), 1001–1008 (1988). doi:10.1016/0025-5408(88)90055-4
- P. Madhusudan, J. Zhang, B. Cheng, G. Liu, Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrystEngComm 15(2), 231–240 (2013). doi:10.1039/C2CE26639C
- T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 13(12), 4010–4017 (2011). doi:10.1039/c1ce05113j
- P. Madhusudan, J. Yu, W. Wang, B. Cheng, G. Liu, Facile synthesis of novel hierarchical graphene-Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Trans. 41(47), 14345–14353 (2012). doi:10.1039/c2dt31528a
- Y.-S. Xu, W.-D. Zhang, Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 140–141, 306–316 (2013). doi:10.1016/j.apcatb.2013.04.019
- Z. Zhao, Y. Zhou, F. Wang, K. Zhang, S. Yu, K. Cao, Polyaniline-decorated {001} facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 7(1), 730–737 (2015). doi:10.1021/am507089x
- N. Liang, M. Wang, L. Jin, S. Huang, W. Chen et al., Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl. Mater. Interfaces 6(14), 11698–11705 (2014). doi:10.1021/am502481z
- S. Peng, L. Li, H. Tan, Y. Wu, R. Cai et al., Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. J. Mater. Chem. A 1(26), 7630–7638 (2013). doi:10.1039/c3ta10951h
- R. Wang, X. Li, W. Cui, Y. Zhang, F. Dong, In situ growth of Au nanoparticles on 3D Bi2O2CO3 for surface plasmon enhanced visible light photocatalysis. New J. Chem. 39(11), 8446–8453 (2015). doi:10.1039/C5NJ01882J
- F. Dong, Q. Li, Y. Sun, W.-K. Ho, Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 4(12), 4341–4350 (2014). doi:10.1021/cs501038q
- H. Safardoust-Hojaghan, M. Salavati-Niasari, M.H. Motaghedifard, S.M. Hosseinpour-Mashkani, Synthesis of micro sphere-like bismuth nanoparticles by microwave assisted polyol method; designing a novel electrochemical nanosensor for ultra-trace measurement of Pb2+ ions. New J. Chem. 39(6), 4676–4684 (2015). doi:10.1039/C5NJ00532A
- Z. Wang, C. Jiang, R. Huang, H. Peng, X. Tang, Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C 118(2), 1155–1160 (2014). doi:10.1021/jp4065505
- F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, Z. Wu, A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 50(72), 10386–10389 (2014). doi:10.1039/C4CC02724H
- D. Chen, M. Zhang, Q. Lu, J. Chen, B. Liu, Z. Wang, Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties. J. Alloys Compd. 646, 647–654 (2015). doi:10.1016/j.jallcom.2015.06.113
- Y. Huang, W. Wang, Q. Zhang, J.-J. Cao, R.-J. Huang, W. Ho, S.C. Lee, In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Sci. Rep. 6, 23435 (2016). doi:10.1038/srep23435
- C. Chang, L. Zhu, Y. Fu, X. Chu, Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 233, 305–314 (2013). doi:10.1016/j.cej.2013.08.048
- M. Gao, D. Zhang, X. Pu, H. Li, D. Lv, B. Zhang, X. Shao, Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B. Sep. Purif. Technol. 154, 211–216 (2015). doi:10.1016/j.seppur.2015.09.063
- Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, Z. Wang, Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity. J. Alloys Compd. 651, 114–120 (2015). doi:10.1016/j.jallcom.2015.08.119
- X. Liu, H. Cao, J. Yin, Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 4(5), 470–482 (2011). doi:10.1007/s12274-011-0103-3
- S. Sardar, P. Kar, S. Sarkar, P. Lemmens, S.K. Pal, Interfacial carrier dynamics in PbS-ZnO light harvesting assemblies and their potential implication in photovoltaic/photocatalysis application. Sol. Energ. Mat. Sol. Cells 134, 400–406 (2015). doi:10.1016/j.solmat.2014.12.032
- P.K. Sarkar, N. Polley, S. Chakrabarti, P. Lemmens, S.K. Pal, Nanosurface energy transfer based highly selective and ultrasensitive “Turn on” fluorescence mercury sensor. ACS Sens. 1(6), 789–797 (2016). doi:10.1021/acssensors.6b00153
- S. Sardar, P. Kar, H. Remita, B. Liu, P. Lemmens, S. Kumar Pal, S. Ghosh, Enhanced charge separation and FRET at heterojunctions between semiconductor nanoparticles and conducting polymer nanofibers for efficient solar light harvesting. Sci. Rep. 5, 17313 (2015). doi:10.1038/srep17313
- Y. Sun, Z. Zhao, F. Dong, W. Zhang, Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Phys. Chem. Chem. Phys. 17(16), 10383–10390 (2015). doi:10.1039/C4CP06045H
- J.L.T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, J.J. Vittal, Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites. New J. Chem. 38(3), 985–992 (2014). doi:10.1039/c3nj01380d
- S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Adv. 5(55), 44398–44407 (2015). doi:10.1039/C5RA06220A
- G. Cheng, H. Yang, K. Rong, Z. Lu, X. Yu, R. Chen, Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials. J. Solid State Chem. 183(8), 1878–1883 (2010). doi:10.1016/j.jssc.2010.06.004
- G. Zhu, Y. Liu, M. Hojamberdiev, J. Han, J. Rodriguez, S.A. Bilmes, P. Liu, Thermodecomposition synthesis of porous β-Bi2O3/Bi2O2CO3 heterostructured photocatalysts with improved visible light photocatalytic activity. New J. Chem. 39(12), 9557–9568 (2015). doi:10.1039/C5NJ01462J
- S. Lin, L. Liu, Y. Liang, W. Cui, Z. Zhang, Oil-in-water self-assembled synthesis of Ag@AgCl nano-particles on flower-like Bi2O2CO3 with enhanced visible-light-driven photocatalytic activity. Materials 9(6), 486 (2016). doi:10.3390/ma9060486
- J. Siegel, O. Kvítek, P. Ulbrich, Z. Kolská, P. Slepička, V. Švorčík, Progressive approach for metal nanoparticle synthesis. Mater. Lett. 89, 47–50 (2012). doi:10.1016/j.matlet.2012.08.048
- S. Weng, B. Chen, L. Xie, Z. Zheng, P. Liu, Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 1(9), 3068–3075 (2013). doi:10.1039/c2ta01004f
- J. Toudert, R. Serna, M. Jiménez de Castro, Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 116(38), 20530–20539 (2012). doi:10.1021/jp3065882
- S.K. Cushing, N. Wu, Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7(4), 666–675 (2016). doi:10.1021/acs.jpclett.5b02393
- J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9(9), 601–607 (2015). doi:10.1038/nphoton.2015.142
- R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U. Banin, Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett. 8(2), 637–641 (2008). doi:10.1021/nl0730514
- C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516(17), 5881–5884 (2008). doi:10.1016/j.tsf.2007.10.050
- A. Mills, J. Wang, Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? J. Photochem. Photobiol. A 127(1–3), 123–134 (1999). doi:10.1016/S1010-6030(99)00143-4
- A. Giri, N. Goswami, M. Pal, M.T. Zar Myint, S. Al-Harthi, A. Singha, B. Ghosh, J. Dutta, S.K. Pal, Rational surface modification of Mn3O4 nanoparticles to induce multiple photoluminescence and room temperature ferromagnetism. J. Mater. Chem. C 1(9), 1885–1895 (2013). doi:10.1039/c3tc00709j
- Y. Park, S.-H. Lee, S.O. Kang, W. Choi, Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem. Commun. 46(14), 2477–2479 (2010). doi:10.1039/b924829c
- Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ. Sci. Technol. 43(11), 4143–4150 (2009). doi:10.1021/es9004366
- F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater. 219–220, 26–34 (2012). doi:10.1016/j.jhazmat.2012.03.015
- Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012). doi:10.1039/C1CS15172J
- Q. Li, H. Liu, F. Dong, M. Fu, Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors. J. Colloid Interface Sci. 408, 33–42 (2013). doi:10.1016/j.jcis.2013.07.040
- S. Yu, H. Huang, F. Dong, M. Li, N. Tian, T. Zhang, Y. Zhang, Synchronously achieving plasmonic Bi metal deposition and I– doping by utilizing BiOIO3 as the self-sacrificing template for high-performance multifunctional applications. ACS Appl. Mater. Interfaces 7(50), 27925–27933 (2015). doi:10.1021/acsami.5b09994
- Y. Guo, Y. Zhang, N. Tian, H. Huang, Homogeneous {001}-BiOBr/Bi heterojunctions: facile controllable synthesis and morphology-dependent photocatalytic activity. ACS Sustain. Chem. Eng. 4(7), 4003–4012 (2016). doi:10.1021/acssuschemeng.6b00884
- V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004). doi:10.1021/ja0315199
- S. Trasatti, Electronegativity, work function, and heat of adsorption of hydrogen on metals. J. Chem. Soc. Faraday Trans. 1 68, 229–236 (1972). doi:10.1039/f19726800229
- Y. Yu, C. Cao, H. Liu, P. Li, F. Wei, Y. Jiang, W. Song, A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2(6), 1677–1681 (2014). doi:10.1039/C3TA14494A
References
M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010). doi:10.1016/j.watres.2010.02.039
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5(19), 14610–14630 (2015). doi:10.1039/C4RA13734E
Sunil P. Lonkar, Vishnu V. Pillai, Samuel Stephen, Ahmed Abdala, Vikas Mittal, Facile in situ fabrication of nanostructured graphene-CuO hybrid with hydrogen sulfide removal capacity. Nano-Micro Lett. 8(4), 312–319 (2016). doi:10.1007/s40820-016-0090-8
P. Kar, S. Sardar, S. Ghosh, M.R. Parida, B. Liu, O.F. Mohammed, P. Lemmens, S.K. Pal, Nano surface engineering of Mn2O3 for potential light-harvesting application. J. Mater. Chem. C 3(31), 8200–8211 (2015). doi:10.1039/C5TC01475A
T.K. Maji, D. Bagchi, P. Kar, D. Karmakar, S.K. Pal, Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: Ultrafast spectroscopy and computational studies. J. Photochem. Photobiol. A 332, 391–398 (2017). doi:10.1016/j.jphotochem.2016.09.017
Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5(18), 8326–8339 (2013). doi:10.1039/c3nr01577g
J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 79(2), 133–151 (2003). doi:10.1016/S0927-0248(02)00393-8
H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal. 5(7), 4094–4103 (2015). doi:10.1021/acscatal.5b00444
H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7(1), 482–492 (2015). doi:10.1021/am5065409
H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B 199, 75–86 (2016). doi:10.1016/j.apcatb.2016.06.020
H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118(26), 14379–14387 (2014). doi:10.1021/jp503025b
Q. He, S. Huang, C. Wang, Q. Qiao, N. Liang, M. Xu, W. Chen, J. Zai, X. Qian, The role of Mott-Schottky heterojunctions in Ag–Ag8SnS6 as counter electrodes in dye-sensitized solar cells. Chem. Sus. Chem. 8(5), 817–820 (2015). doi:10.1002/cssc.201403343
S. Huang, Q. He, J. Zai, M. Wang, X. Li, B. Li, X. Qian, The role of Mott-Schottky heterojunctions in PtCo-Cu2ZnGeS4 as counter electrodes in dye-sensitized solar cells. Chem. Commun. 51(43), 8950–8953 (2015). doi:10.1039/C5CC02584B
L. Jin, G. Zhu, M. Hojamberdiev, X. Luo, C. Tan, J. Peng, X. Wei, J. Li, P. Liu, A plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 53(35), 13718–13727 (2014). doi:10.1021/ie502133x
G. Zhu, M. Hojamberdiev, K.-I. Katsumata, X. Cai, N. Matsushita, K. Okada, P. Liu, J. Zhou, Heterostructured Fe3O4/Bi2O2CO3 photocatalyst: synthesis, characterization and application in recyclable photodegradation of organic dyes under visible light irradiation. Mater. Chem. Phys. 142(1), 95–105 (2013). doi:10.1016/j.matchemphys.2013.06.046
A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 130(30), 9658–9659 (2008). doi:10.1021/ja803603y
S. Xiao, Y. Li, J. Hu, H. Li, X. Zhang, L. Liu, J. Lian, One-step synthesis of nanostructured Bi-Bi2O2CO3-ZnO composites with enhanced photocatalytic performance. Cryst. Eng. Comm. 17(20), 3809–3819 (2015). doi:10.1039/C5CE00338E
P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, p-n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 43(18), 6735–6743 (2014). doi:10.1039/c3dt53613k
Y. Zhang, G. Zhu, M. Hojamberdiev, J. Gao, J. Hao, J. Zhou, P. Liu, Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {001} facets for the degradation of organic pollutants. Appl. Surf. Sci. 371, 231–241 (2016). doi:10.1016/j.apsusc.2016.02.210
C. Greaves, S.K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater. Res. Bull. 23(7), 1001–1008 (1988). doi:10.1016/0025-5408(88)90055-4
P. Madhusudan, J. Zhang, B. Cheng, G. Liu, Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrystEngComm 15(2), 231–240 (2013). doi:10.1039/C2CE26639C
T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 13(12), 4010–4017 (2011). doi:10.1039/c1ce05113j
P. Madhusudan, J. Yu, W. Wang, B. Cheng, G. Liu, Facile synthesis of novel hierarchical graphene-Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Trans. 41(47), 14345–14353 (2012). doi:10.1039/c2dt31528a
Y.-S. Xu, W.-D. Zhang, Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 140–141, 306–316 (2013). doi:10.1016/j.apcatb.2013.04.019
Z. Zhao, Y. Zhou, F. Wang, K. Zhang, S. Yu, K. Cao, Polyaniline-decorated {001} facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 7(1), 730–737 (2015). doi:10.1021/am507089x
N. Liang, M. Wang, L. Jin, S. Huang, W. Chen et al., Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl. Mater. Interfaces 6(14), 11698–11705 (2014). doi:10.1021/am502481z
S. Peng, L. Li, H. Tan, Y. Wu, R. Cai et al., Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. J. Mater. Chem. A 1(26), 7630–7638 (2013). doi:10.1039/c3ta10951h
R. Wang, X. Li, W. Cui, Y. Zhang, F. Dong, In situ growth of Au nanoparticles on 3D Bi2O2CO3 for surface plasmon enhanced visible light photocatalysis. New J. Chem. 39(11), 8446–8453 (2015). doi:10.1039/C5NJ01882J
F. Dong, Q. Li, Y. Sun, W.-K. Ho, Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 4(12), 4341–4350 (2014). doi:10.1021/cs501038q
H. Safardoust-Hojaghan, M. Salavati-Niasari, M.H. Motaghedifard, S.M. Hosseinpour-Mashkani, Synthesis of micro sphere-like bismuth nanoparticles by microwave assisted polyol method; designing a novel electrochemical nanosensor for ultra-trace measurement of Pb2+ ions. New J. Chem. 39(6), 4676–4684 (2015). doi:10.1039/C5NJ00532A
Z. Wang, C. Jiang, R. Huang, H. Peng, X. Tang, Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C 118(2), 1155–1160 (2014). doi:10.1021/jp4065505
F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, Z. Wu, A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 50(72), 10386–10389 (2014). doi:10.1039/C4CC02724H
D. Chen, M. Zhang, Q. Lu, J. Chen, B. Liu, Z. Wang, Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties. J. Alloys Compd. 646, 647–654 (2015). doi:10.1016/j.jallcom.2015.06.113
Y. Huang, W. Wang, Q. Zhang, J.-J. Cao, R.-J. Huang, W. Ho, S.C. Lee, In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplate heterojunctions with tunable optical property and photocatalytic activity. Sci. Rep. 6, 23435 (2016). doi:10.1038/srep23435
C. Chang, L. Zhu, Y. Fu, X. Chu, Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 233, 305–314 (2013). doi:10.1016/j.cej.2013.08.048
M. Gao, D. Zhang, X. Pu, H. Li, D. Lv, B. Zhang, X. Shao, Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B. Sep. Purif. Technol. 154, 211–216 (2015). doi:10.1016/j.seppur.2015.09.063
Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, Z. Wang, Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity. J. Alloys Compd. 651, 114–120 (2015). doi:10.1016/j.jallcom.2015.08.119
X. Liu, H. Cao, J. Yin, Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 4(5), 470–482 (2011). doi:10.1007/s12274-011-0103-3
S. Sardar, P. Kar, S. Sarkar, P. Lemmens, S.K. Pal, Interfacial carrier dynamics in PbS-ZnO light harvesting assemblies and their potential implication in photovoltaic/photocatalysis application. Sol. Energ. Mat. Sol. Cells 134, 400–406 (2015). doi:10.1016/j.solmat.2014.12.032
P.K. Sarkar, N. Polley, S. Chakrabarti, P. Lemmens, S.K. Pal, Nanosurface energy transfer based highly selective and ultrasensitive “Turn on” fluorescence mercury sensor. ACS Sens. 1(6), 789–797 (2016). doi:10.1021/acssensors.6b00153
S. Sardar, P. Kar, H. Remita, B. Liu, P. Lemmens, S. Kumar Pal, S. Ghosh, Enhanced charge separation and FRET at heterojunctions between semiconductor nanoparticles and conducting polymer nanofibers for efficient solar light harvesting. Sci. Rep. 5, 17313 (2015). doi:10.1038/srep17313
Y. Sun, Z. Zhao, F. Dong, W. Zhang, Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Phys. Chem. Chem. Phys. 17(16), 10383–10390 (2015). doi:10.1039/C4CP06045H
J.L.T. Chen, V. Nalla, G. Kannaiyan, V. Mamidala, W. Ji, J.J. Vittal, Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites. New J. Chem. 38(3), 985–992 (2014). doi:10.1039/c3nj01380d
S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Adv. 5(55), 44398–44407 (2015). doi:10.1039/C5RA06220A
G. Cheng, H. Yang, K. Rong, Z. Lu, X. Yu, R. Chen, Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials. J. Solid State Chem. 183(8), 1878–1883 (2010). doi:10.1016/j.jssc.2010.06.004
G. Zhu, Y. Liu, M. Hojamberdiev, J. Han, J. Rodriguez, S.A. Bilmes, P. Liu, Thermodecomposition synthesis of porous β-Bi2O3/Bi2O2CO3 heterostructured photocatalysts with improved visible light photocatalytic activity. New J. Chem. 39(12), 9557–9568 (2015). doi:10.1039/C5NJ01462J
S. Lin, L. Liu, Y. Liang, W. Cui, Z. Zhang, Oil-in-water self-assembled synthesis of Ag@AgCl nano-particles on flower-like Bi2O2CO3 with enhanced visible-light-driven photocatalytic activity. Materials 9(6), 486 (2016). doi:10.3390/ma9060486
J. Siegel, O. Kvítek, P. Ulbrich, Z. Kolská, P. Slepička, V. Švorčík, Progressive approach for metal nanoparticle synthesis. Mater. Lett. 89, 47–50 (2012). doi:10.1016/j.matlet.2012.08.048
S. Weng, B. Chen, L. Xie, Z. Zheng, P. Liu, Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 1(9), 3068–3075 (2013). doi:10.1039/c2ta01004f
J. Toudert, R. Serna, M. Jiménez de Castro, Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 116(38), 20530–20539 (2012). doi:10.1021/jp3065882
S.K. Cushing, N. Wu, Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7(4), 666–675 (2016). doi:10.1021/acs.jpclett.5b02393
J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9(9), 601–607 (2015). doi:10.1038/nphoton.2015.142
R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U. Banin, Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett. 8(2), 637–641 (2008). doi:10.1021/nl0730514
C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516(17), 5881–5884 (2008). doi:10.1016/j.tsf.2007.10.050
A. Mills, J. Wang, Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? J. Photochem. Photobiol. A 127(1–3), 123–134 (1999). doi:10.1016/S1010-6030(99)00143-4
A. Giri, N. Goswami, M. Pal, M.T. Zar Myint, S. Al-Harthi, A. Singha, B. Ghosh, J. Dutta, S.K. Pal, Rational surface modification of Mn3O4 nanoparticles to induce multiple photoluminescence and room temperature ferromagnetism. J. Mater. Chem. C 1(9), 1885–1895 (2013). doi:10.1039/c3tc00709j
Y. Park, S.-H. Lee, S.O. Kang, W. Choi, Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem. Commun. 46(14), 2477–2479 (2010). doi:10.1039/b924829c
Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ. Sci. Technol. 43(11), 4143–4150 (2009). doi:10.1021/es9004366
F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater. 219–220, 26–34 (2012). doi:10.1016/j.jhazmat.2012.03.015
Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012). doi:10.1039/C1CS15172J
Q. Li, H. Liu, F. Dong, M. Fu, Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors. J. Colloid Interface Sci. 408, 33–42 (2013). doi:10.1016/j.jcis.2013.07.040
S. Yu, H. Huang, F. Dong, M. Li, N. Tian, T. Zhang, Y. Zhang, Synchronously achieving plasmonic Bi metal deposition and I– doping by utilizing BiOIO3 as the self-sacrificing template for high-performance multifunctional applications. ACS Appl. Mater. Interfaces 7(50), 27925–27933 (2015). doi:10.1021/acsami.5b09994
Y. Guo, Y. Zhang, N. Tian, H. Huang, Homogeneous {001}-BiOBr/Bi heterojunctions: facile controllable synthesis and morphology-dependent photocatalytic activity. ACS Sustain. Chem. Eng. 4(7), 4003–4012 (2016). doi:10.1021/acssuschemeng.6b00884
V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004). doi:10.1021/ja0315199
S. Trasatti, Electronegativity, work function, and heat of adsorption of hydrogen on metals. J. Chem. Soc. Faraday Trans. 1 68, 229–236 (1972). doi:10.1039/f19726800229
Y. Yu, C. Cao, H. Liu, P. Li, F. Wei, Y. Jiang, W. Song, A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2(6), 1677–1681 (2014). doi:10.1039/C3TA14494A