A Short Review on Copper Calcium Titanate (CCTO) Electroceramic: Synthesis, Dielectric Properties, Film Deposition, and Sensing Application
Corresponding Author: Zainal Arifin Ahmad
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 291-311
Abstract
Electroceramic calcium copper titanates (CaCu3Ti4O12, CCTO), with high dielectric permittivities (ε) of approximately 105 and 104, respectively, for single crystal and bulk materials, are produced for a number of well-established and emerging applications such as resonator, capacitor, and sensor. These applications take advantage of the unique properties achieved through the structure and properties of CCTO. This review comprehensively focuses on the primary processing routes, effect of impurity, dielectric permittivity, and deposition technique used for the processing of electroceramics along with their chemical composition and micro and nanostructures. Emphasis is given to versatile and basic approaches that allow one to control the microstructural features that ultimately determine the properties of the CCTO ceramic. Despite the intensive research in this area, none of the studies available in the literature provides all the possible relevant information about CCTO fabrication, structure, the factors influencing its dielectric properties, CCTO immobilization, and sensing applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A. Sleight, High dielectric constant in ACaCu3Ti4O12 and A CaCu3Ti4O12 phases. J. Solid State Chem. 151(2), 323–325 (2000). doi:10.1006/jssc.2000.8703
- R. Lohnert, H. Bartsch, R. Schmidt, B. Capraro, J. Topfer, Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. J. Am. Ceram. Soc. 98(1), 141–147 (2014). doi:10.1111/jace.13260
- L.C. Kretly, A.F.L. Almeida, R.S. de Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw. Opt. Technol. Lett. 39(2), 145–150 (2003). doi:10.1002/mop.11152
- M.A. Ponce, M.A. Ramirez, F. Schipani, E. Joanni, J.P. Tomba, M.S. Castro, Electrical behavior analysis of n-type CaCu3Ti4O12 thick films exposed to different atmospheres. J. Eur. Ceram. Soc. 35(1), 153–161 (2015). doi:10.1016/j.jeurceramsoc.2014.08.041
- M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloy. Compd. 493(1), 486–492 (2010). doi:10.1016/j.jallcom.2009.12.137
- W.X. Yuan, S.K. Hark, W.N. Mei, Investigation of triple extrinsic origins of colossal dielectric constant in CaCu3Ti4O12 ceramics. J. Electrochem. Soc. 157(5), G117–G120 (2010). doi:10.1149/1.3353040
- W.M. Hua, Z. Fu, W.Q. Li, Y. Chao, Synthesis of CaCu3Ti4O12 powders and ceramics by sol–gel method using decanedioic acid and its dielectric properties. J. Cent. South Univ. 19(12), 3385–3389 (2012). doi:10.1007/s11771-012-1418-2
- N. Banerjee, S.B. Krupanidhi, Low temperature synthesis of nano-crystalline CaCu3Ti4O12 through a fuel mediated auto-combustion pathway. Curr. Nanosci. 6(4), 432–438 (2010). doi:10.2174/157341310791658955
- K.M. Kim, S.J. Kim, J.H. Lee, D.Y. Kim, Microstructural evolution and dielectric properties of SiO2-doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 27(13), 3991–3995 (2007). doi:10.1016/j.jeurceramsoc.2007.02.081
- B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeaud, T. Lebey, E. Dutarde, CaCu3Ti4O12 ceramics from co-precipitation method: dielectric properties of pellets and thick films. J. Eur. Ceram. Soc. 29(4), 731–735 (2009). doi:10.1016/j.jeurceramsoc.2008.07.042
- M.M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Mechanochemical synthesis and giant dielectric properties of CaCu3Ti4O12. Appl. Phys. A 116(3), 1299–1306 (2014). doi:10.1007/s00339-014-8224-7
- V.P.B. Marques, A. Ries, A.Z. Simoes, M.A. Ramrez, J.A. Varela, E. Longo, Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum. Ceram. Int. 33(7), 1187–1190 (2007). doi:10.1016/j.ceramint.2006.04.003
- M.A.L. Cordeiro, F.L. Souza, E.R. Leite, A.J.C. Lanfredi, Anomalous current-voltage behavior of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 93(18), 182912–182913 (2008). doi:10.1063/1.3023061
- W.X. Yuana, S.K. Harka, W.N. Meib, Effective synthesis to fabricate a giant dielectric-constant material CaCu3Ti4O12 via solid state reactions. J. Ceram. Process. Res. 10(5), 696–699 (2009)
- P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature. J. Eur. Ceram. Soc. 28(3), 505–529 (2008). doi:10.1016/j.jeurceramsoc.2007.06.011
- I.-D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films. Nano Lett. 6(2), 193–198 (2006). doi:10.1021/nl051965p
- E. Joanni, R. Savu, P.R. Bueno, E. Longo, J.A. Varela, P-Type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films. Appl. Phys. Lett. 92(13), 132110–132113 (2008). doi:10.1063/1.2905810
- G. Heiland, Zum Einfluss von Wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen. Zeit. Phys. 138, 459–464 (1954). doi:10.1007/BF01327362
- A. Bielanski, J. Deren, J. Haber, Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179, 668–669 (1957). doi:10.1038/179668a0
- B. Wang, Y.P. Pu, H.D. Wua, K. Chena, N. Xua, Influence of sintering atmosphere on dielectric properties and microstructure of CaCu3Ti4O12 ceramics. Ceram. Int. 39(1), S525–S528 (2013). doi:10.1016/j.ceramint.2012.10.127
- P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics. J. Alloy. Compd. 650(59–64), 2015 (2015). doi:10.1016/j.jallcom.2015.07.247
- S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99(8), 084106–084111 (2006). doi:10.1063/1.2191447
- J. Liu, R.W. Smith, W.N. Mei, Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem. Mater. 19(24), 6020–6024 (2007). doi:10.1021/cm0716553
- Z. Yang, Y. Zhang, R. Xiong, J. Shi, Effect of sintering in oxygen on electrical conduction and dielectric properties in CaCu3Ti4O12. Mater. Res. Bull. 48(2), 310–314 (2013). doi:10.1016/j.materresbull.2012.10.029
- Y. Li, P. Liang, X. Chao, Z. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceram. Int. 39(7), 7879–7889 (2013). doi:10.1016/j.ceramint.2013.03.049
- M.H. Wang, B. Zhang, F. Zhou, Preparation and characterization of CaCu3Ti4O12 powders by non-hydrolytic sol–gel method. J. Sol-Gel. Sci. Technol. 70(1), 62–66 (2014). doi:10.1007/s10971-014-3274-z
- L. Laijun, F. Huiqing, F. Pinyang, C. Xiuli, Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater. Res. Bull. 43(7), 1800–1807 (2008). doi:10.1016/j.materresbull.2007.07.012
- Z. Surowiak, M.F. Kupriyanov, D. Czekaj, Properties of nanocrystalline ferroelectric PZT ceramics. J. Eur. Ceram. Soc. 21(10), 1377–1381 (2001). doi:10.1016/S0955-2219(01)00022-X
- H.Q. Fan, H.E. Kim, Microstructure and electrical properties of sol–gel derived Pb(Mg1/3Nb2/3)0.7Ti0.3O3 thin films with single perovskite phase. Jpn. J. Appl. Phys. 41(11B), 6768–6772 (2002). http://iopscience.iop.org/1347-4065/41/11S/6768
- S.M. Moussa, B.J. Kennedy, Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3. Mater. Res. Bull. 36(13), 2525–2529 (2001). doi:10.1016/S0025-5408(01)00732-2
- M. Ahmadipour, K. Venkateswara Rao, V. Rajendar, Formation of nano scale Mg(x)Fe(1-x)O (x = 0.1, 0.2, 0.4) structure by solution combustion: effect of fuel to oxidizer ratio. J. Nanomater. 2012, 1–8 (2012). doi:10.1155/2012/163909
- G. Xanthopoulou, Catalytic properties of the SHS products. Adv. Sci. Technol. 63, 287–296 (2010). doi:10.4028/www.scientific.net/AST.63.287
- A.G. Merzhanov, V.V. Barzykin, Some problems of propellant ignition. Preprint of the Institute of Chemical Physics of USSR Academy of Science, Moscow, 1970
- E.G. Gillan, R.B. Kaner, Synthesis of refractory ceramic via rapid metathesis reactions between solid-state precursor. Chem. Mater. 8(2), 333–343 (1996). doi:10.1021/cm950232a
- J.J. Kingsley, K.C. Patil, A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6(11), 427–432 (1988). doi:10.1016/0167-577X(88)90045-6
- M. Ahmadipour, M. Hatami, K.V. Rao, Preparation and characterization of nano-sized (Mg(x)Fe(1–x)O/SiO2) (x = 0.1) core-shell nanoparticles by chemical precipitation method. Adv. Nanoparticles 1(3), 37–43 (2012). doi:10.4236/anp.2012.13006
- S. Patra, Synthesis and characterization of CaCu3Ti4O12 and lanthanum doped CaCu3Ti4O12 by auto-combustion technique, Master of science thesis, Department of Ceramic Engineering National Institute of Technology, Rourkela, India, 2009
- A. Gendaken, Sonochemistry and its application to nanochemistry. Curr. Sci. 85(12), 1720–1722 (2003)
- N. Wongpisutpaisan, N. Vittayakorn, A. Ruangphanit, W. Pecharapa, CaCu3Ti4O12 ceramic synthesized by sonochemical-assisted process. Integr. Ferroelectr. 149(1), 56–60 (2013). doi:10.1080/10584587.2013.852936
- D. Harvey, Modern analytical chemistry, illustrated (McGraw-Hill, New York, 2000), pp. 1–798
- M.H. Whangbo, M.A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant. Chem. Mater. 18(14), 3257–3260 (2006). doi:10.1021/cm060323f
- T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73(9), 094124–094129 (2006). doi:10.1103/PhysRevB.73.094124
- Calcium copper tianate. http://en.wikipedia.org/wiki/Calcium_copper_tianate. Accessed 18 September 2015
- J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman, Z.A. Ahmad, Microstructure and dielectric properties of CaCu3Ti4O12 ceramic. Mater. Lett. 61(8), 1835–1838 (2007). doi:10.1016/j.matlet.2006.07.192
- P. Fiorenza, R.L. Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Localized electrical characterization of the giant permittivity effect in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 92(18), 182907-3 (2008). doi:10.1063/1.2919095
- T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002). doi:10.1002/15214095(20020916)14:18<1321:aid-adma1321>3.0.co;2-p
- C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, M.A. Subramanian, A.P. Ramirez, Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12. Phys. Rev. B 67(9), 092106-4 (2003). doi:10.1103/PhysRevB.67.092106
- I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb). J. Appl. Phys. 93(7), 4130–4137 (2003). doi:10.1063/1.1558205
- M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem. 19, 5916–5919 (2009). doi:10.1039/b910871h
- W.X. Yuan, S.K. Hark, Investigation on the origin of the giant dielectric constant in CaCu3Ti4O12 ceramics through analyzing CaCu3Ti4O12–HfO2 composites. J. Eur. Ceram. Soc. 32(2), 465–470 (2012). doi:10.1016/j.jeurceramsoc.2011.09.021
- A. Deschanvres, B. Ravenau, F. Tollemer, Remplacement de metal bivalent par le cuivre dans les titanates de type perowskite. Bull. Chim. Soc. Fr. 11, 4077–4078 (1967)
- B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117(3), 339–347 (2005). doi:10.1016/j.mseb.2004.11.019
- D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153 (2002). doi:10.1063/1.1463211
- W.X. Yuana, Z.J. Li, Microstructures and dielectric properties of CaCu3Ti4O12 ceramics via combustion method. Eur. Phys. J. Appl. Phys. 57(1), 11302–11306 (2012). doi:10.1051/epjap/2011110226
- L. Wei, X. Zhao-Xian, X. Hao, Preparation and electrical properties of CaCu3Ti4O12 thin ceramic sheets via water-based tape casting. J. Inorg. Mater. 29(11), 1228–1232 (2014). doi:10.15541/jim20140255
- R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012). doi:10.1016/j.jeurceramsoc.2012.03.040
- J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández, Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 30(3), 737–742 (2010). doi:10.1016/j.jeurceramsoc.2012.03.040
- A. Rajabatabar, W.L. Li, O.S. Bishe, L.D. Wang, X.L. Li, N. Li, W.D. Fei, Effect of synthesis technique on dielectric properties of CaCu3Ti4O12 ceramic. Trans. Nonferrous Met. Soc. China 21(2), s400–s404 (2011). doi:10.1016/S1003-6326(11)61614-2
- D.L. Sun, A.Y. Wu, S.T. Yin, Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by Sol–Gel process. J. Am. Ceram. Soc. 91(1), 169–173 (2008). doi:10.1111/j.1551-2916.2007.02096.x
- W.Q. Ni, X.H. Zheng, J.C. Yu, Sintering effects on structure and dielectric properties of dielectrics CaCu3Ti4O12. J. Mater. Sci. 42(3), 1037–1041 (2007). doi:10.1007/s10853-006-1431-7
- G. Chiodellia, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials. Solid State Commun. 132(3), 241–246 (2004). doi:10.1016/j.ssc.2004.07.058
- L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, Dielectric properites of Al-doped CaCu3Ti4O12 ceramics by coprecipitation method, in IEEE, conference proceedings of ISEIM, pp. 23–26, 2011. doi:10.1109/ISEIM.2011.6826267
- S.W. Choi, S.H. Hong, Y.M. Kim, Effect of Al doping on the electric and dielectric properties of CaCu3Ti4O12. J. Am. Ceram. Soc. 90(12), 4009–4011 (2007). doi:10.1111/j.1551-2916.2007.01983.x
- S.H. Hong, D.Y. Kim, Electric and dielectric properties of Nb-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 90(7), 2118–2121 (2007). doi:10.1111/j.1551-2916.2007.01709.x
- Y. Liu, Q. Chen, X. Zhao, Dielectric response of Sb-doped CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 25(3), 1547–1552 (2014). doi:10.1007/s10854-014-1766-9
- L. Singh, U.S. Rai, Dielectric properties of ultrafine Zn-doped CaCu3Ti4O12 ceramic. J. Adv. Dielectr. 2(1), 1250007-6 (2012). doi:10.1142/S2010135X12500075
- MathSciNet
- S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique. J. Alloy. Compd. 476(1), 477–481 (2009). doi:10.1016/j.jallcom.2008.09.025
- L.F. Xu, P.B. Qi, X.P. Song, X.J. Luo, C.P. Yang, Dielectric relaxation behaviors of pure and Pr6O11-doped CaCu3Ti4O12 ceramics in high temperature range. J. Alloy. Compd. 509(29), 7697–7701 (2011). doi:10.1016/j.jallcom.2011.02.105
- S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Selectivity of doping ions to effectively improve dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics. Ceram. Int. 39(7), 8133–8137 (2013). doi:10.1016/j.ceramint.2013.03.086
- C. Mua, H. Zhang, Y. He, P. Liu, Influence of temperature on dielectric properties of Fe doped CaCu3Ti4O12 ceramics. Phys. B 405(1), 386–389 (2010). doi:10.1016/j.physb.2009.08.093
- Z. Yang, Y. Zhang, G. You, K. Zhang, R. Xiong, J. Shi, Dielectric and electrical transport properties of the Fe3+-doped CaCu3Ti4O12. J. Mater. Sci. Technol. 28(12), 1145–1150 (2012). doi:10.1016/S1005-0302(12)60184-4
- T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X.Z. Cao, B. Wang, Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40(7), 9061–9067 (2014). doi:10.1016/j.ceramint.2014.01.119
- X. Dong, S. Qi, Z. Ke, X.H. Xing, Y.Y. Tao, Y.R. Hong, NiO-doped CaCu3Ti4O12 thin film by sol–gel method. J. Inorg. Mater. 28(10), 1–4 (2013). doi:10.3724/SP.J.1077.2013.13113
- V.S. Saji, H.C. Choe, Effect of yttrium doping on the dielectric properties of CaCu3Ti4O12 thin film produced by chemical solution deposition. Thin Solid Films 517(14), 3896–3899 (2009). doi:10.1016/j.tsf.2009.01.100
- F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y-doped calcium copper titanate. J. Am. Ceram. Soc. 93(10), 3043–3045 (2010). doi:10.1111/j.1551-2916.2010.04022.x
- L. Shengtao, Y. Yang, W. Hui, L. Jianying, Dielectric properties of B-doped CaCu3Ti4O12 ceramics, in IEEE, conference proceedings of ISEIM, pp. 482–485, 2011. doi:10.1109/ISEIM.2011.6826318
- W. Makcharoen, T. Tunkasiri, Microstructures and dielectric relaxation behaviors of pure and tellurium doped CaCu3Ti4O12 ceramics prepared via vibro-milling method. Ceram. Int. 39(1), s359–s364 (2013). doi:10.1016/j.ceramint.2012.10.094
- C. Mu, Y. Song, H. Wang, X. Wang, Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 Ceramics. J. Appl. Phys. 117, 17B723–17B724 (2015). doi:10.1063/1.4916116
- W.L. Li, Y. Zhao, Q.G. Chi, Z.G. Zhang, W.D. Fei, Enhanced performance of core-shell-like structure Zr-doped CaCu3Ti4O12 ceramics prepared by a flame synthetic approach. RSC Adv. 2(14), 6073–6078 (2012). doi:10.1039/C2RA20806G
- Q.G. Chi, L. Gao, X. Wanga, J.Q. Lin, J. Sun, Q.Q. Lei, Effects of Zr doping on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 559, 45–48 (2013). doi:10.1016/j.jallcom.2013.01.090
- J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Enhancement of giant dielectric response in Ga-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39(2), 1057–1064 (2013). doi:10.1016/j.ceramint.2012.07.027
- P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, V. Amornkitbamrung, S. Maensiri, Effects of La3+ doping ions on dielectric properties and formation of Schottky barriers at internal interfaces in a Ca2Cu2Ti4O12 composite system. J. Mater. Sci.: Mater. Electron. 25(10), 4657–4663 (2014). doi:10.1007/s10854-014-2219-1
- S. Jin, H. Xia, Y. Zhang, Effect of La-doping on the properties of CaCu3Ti4O12 dielectric ceramics. Ceram. Int. 35(1), 309–313 (2009). doi:10.1016/j.ceramint.2007.10.007
- W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 26(8), 682–686 (2010). doi:10.1016/S1005-0302(10)60107-7
- J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Dielectric properties of Sm-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39(1), s149–s152 (2013). doi:10.1016/j.ceramint.2012.10.052
- M. Li, A. Feteira, D.C. Sinclair, A.R. West, Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88(23), 232903 (2006). doi:10.1063/1.2200732
- C.H. Kim, Y.H. Jang, S.J. Seo, C.H. Song, J.Y. Son, Y.S. Yang, J.H. Cho, Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12. Phys. Rev. B 85(24), 245210–245216 (2012). doi:10.1103/PhysRevB.85.245210
- K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Grain size independence of giant dielectric permittivity of CaCu3Ti4-xScxO12 ceramics. Ceram. Int. 40(10), 15897–15906 (2014). doi:10.1016/j.ceramint.2014.07.118
- P. Thongbai, S. Vangchangyia, E. Swatsitang, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Non-Ohmic and dielectric properties of Ba-doped CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 24(3), 875–883 (2013). doi:10.1007/s10854-012-0842-2
- Z. Xu, H. Qiang, Z. Chen, Y. Chen, Dielectric behavior of Ba-doped CaCu3Ti4O12 ceramics prepared from citrate-nitrate combustion derived powders. J. Mater. Sci.: Mater. Electron. 26(1), 578–582 (2015). doi:10.1007/s10854-014-2437-6
- W. Si, E.M. Cruz, P.D. Johnson, P.W. Barnes, P. Woodward, A.P. Ramirez, Epitaxial thin films of the giant-dielectric-constant material grown by pulsed-laser deposition. Appl. Phys. Lett. 81(11), 2056–2058 (2002). doi:10.1063/1.1506951
- K. Cho, N. Wu, A. Ignatiev, Dielectric properties of CaCu3Ti4O12 thin films, in Isaf 2002: proceedings of the 13th IEEE international symposium on applications of ferroelectrics, pp. 187–190, 2002. doi:10.1109/ISAF.2002.1195901
- J.R. Li, Dielectric characterization of polycrystalline and epitaxial thin film CaCu3Ti4O12 (CCTO), in Proceedings of the 7th international conference on properties and applications of dielectric materials, vol. 3, pp. 1096–1099, 2003. doi:10.1109/ICPADM.2003.1218614
- L. Fang, M.R. Shen, Deposition and dielectric properties of CaCu3Ti4O12 thin films on Pt/Ti/SiO2/Si substrates using pulsed-laser deposition. Thin Solid Films 440(1), 60–65 (2003). doi:10.1016/S0040-6090(03)00825-3
- Y.L. Zhao, G.W. Pan, Q.B. Ren, Y.G. Cao, L.X. Feng, Z.K. Jiao, High dielectric constant in CaCu3Ti4O12 thin film prepared by pulsed laser deposition. Thin Solid Films 445(1), 7–13 (2003). doi:10.1016/S0040-6090(03)00666-7
- G. Deng, T. Yamada, P. Muralt, Evidence for the existence of a metal-insulator-semiconductor CaCu3Ti4O12 junction at the electrode interfaces of thin film capacitors. Appl. Phys. Lett. 91(20), 202903-3 (2007). doi:10.1063/1.2814043
- B.S. Prakash, K. Varma, D. Michau, M. Maglione, Deposition and dielectric properties of CaCu3Ti4O12 thin films deposited on Pt/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. Thin Solid Films 516(10), 2874–2880 (2008). doi:10.1016/j.tsf.2007.05.060
- R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragalà, P. Fiorenza, V. Raineri, Effects of high temperature annealing on MOCVD grown CaCu3Ti4O12 films on LaAlO3 substrates. Surf. Coat. Technol. 201(22), 9243–9247 (2007). doi:10.1016/j.surfcoat.2007.05.019
- R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragalà, P. Fiorenza, V. Raineri, Chemical stability of CaCu3Ti4O12 thin films grown by MOCVD on different substrates. Thin Solid Films 515(16), 6470–6473 (2007). doi:10.1016/j.tsf.2006.11.050
- S. Jin, H. Xia, Y. Zhang, J. Guo, J. Xu, Synthesis of CaCu3Ti4O12 ceramic via a sol–gel method. Mater. Lett. 61(6), 1404–1407 (2007). doi:10.1016/j.matlet.2006.07.041
- L. Feng, Y. Wang, Y. Yan, G. Cao, Z. Jiao, Growth of highly-oriented CaCu3Ti4O12 thin films on SrTiO3 (1 0 0) substrates by a chemical solution route. Appl. Surf. Sci. 253(4), 2268–2271 (2006). doi:10.1016/j.apsusc.2006.04.029
- D. Maurya, D.P. Singh, D.C. Agrawal, Y.N. Mohapatra, Preparation of high dielectric constant thin films of CaCu3Ti4O12 by sol–gel. Bull. Mater. Sci. 31(1), 55–59 (2008). doi:10.1007/s12034-008-0010-8
- M. Smith, A.F. Turner, Vacuum deposited thin films using a ruby laser. Appl. Opt. 4(1), 147–148 (1965). doi:10.1364/AO.4.000147
- L. Fang, M.R. Shen, Z.Y. Li, Effect of double-sided CaTiO3 buffer layers on the electrical properties of CaCu3Ti4O12 films on Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 100(10), 104101–104105 (2006). doi:10.1063/1.2374952
- L. Fang, M. Shen, J. Yang, Z. Li, Reduced dielectric loss and leakage current in CaCu3Ti4O12 /SiO2/ CaCu3Ti4O12 multilayered films. Solid State Commun. 137(7), 381–386 (2006). doi:10.1016/j.ssc.2005.12.004
- P. Fiorenza, R.L. Nigro, A. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, Perovskite CaCu3Ti4O12 thin films for capacitive applications: from the growth to the nanoscopic imaging of the permittivity. J. Appl. Phys. 105(1), 061634–061636 (2009). doi:10.1063/1.3086198
- R. Jiménez, M.L. Calzada, I. Bretos, J.C. Goes, A.S.B. Sombra, Dielectric properties of sol–gel derived CaCu3Ti4O12 thin films onto Pt/TiO2/Si(1 0 0) substrates. J. Eur. Ceram. Soc. 27(13), 3829–3833 (2007). doi:10.1016/j.jeurceramsoc.2007.02.050
- Y.S. Shen, B.S. Chiou, C.C. Ho, Effects of annealing temperature on the resistance switching behavior of CaCu3Ti4O12 films. Thin Solid Films 517(3), 1209–1213 (2008). doi:10.1016/j.tsf.2008.06.034
- Y.W. Li, Z.G. Hu, J.L. Sun, X.J. Meng, J.H. Chu, Preparation and properties of CaCu3Ti4O12 thin film grown on LaNiO3-coated silicon by sol–gel process. J. Cryst. Growth 310(2), 378–381 (2008). doi:10.1016/j.jcrysgro.2007.11.025
- Y.W. Li, Y.D. Shen, Z.G. Hu, F.Y. Yue, J.H. Chu, Effect of thickness on the dielectric property and nonlinear current-voltage behavior of CaCu3Ti4O12 thin films. Phys. Lett. A 373(27), 2389–2392 (2009). doi:10.1016/j.physleta.2009.05.001
- W.H. Brattain, J. Bardeen, Surface properties of germanium. Bell Syst. Tech. J. 32(1), 1–41 (1953). doi:10.1002/j.1538-7305.1953.tb01420.x
- T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
- E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, N. Yamazoe, Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B: Chem. 77(1), 72–77 (2001). doi:10.1016/S0925-4005(01)00675-X
- P.T. Moseley, Solid state gas sensors. Meas. Sci. Technol. 8(3), 223–237 (1997)
- S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S.A. Takahashi, Fibre-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens. Actuators B: Chem. 66(1), 142–145 (2000). doi:10.1016/S0925-4005(00)00330-0
- F. Morazzoni, R. Scotti, L. Origoni, M.D. Arienzo, I. Jimenez, A. Cornet, J.R. Morante, Mechanism of NH3 interaction with transition metal-added nanosized WO3 for gas sensing: in situ electron paramagnetic resonance study. Catal. Today 12(1), 169–176 (2006). doi:10.1016/j.cattod.2006.09.035
- K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stilzel, T.P. Vaid, D.R. Walt, Cross-reactive chemical sensor arrays. Chem. Rev. 100(7), 2595–2626 (2000). doi:10.1021/cr980102w
- Y. Shimizu, M. Egashira, Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 24(6), 18–24 (1999). doi:10.1557/S0883769400052465
- G. Martinelli, M.C. Carotta, E. Traversa, G. Ghiotti, Thick-film gas sensors based on nanosized semiconducting oxide powders. MRS Bull. 24(6), 30–36 (1999). doi:10.1557/S0883769400052489
- A.A. Tomchenko, G.P. Harmer, B.T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens. Actuators B: Chem. 108(1), 41–55 (2005). doi:10.1016/j.snb.2004.11.059
- A.A. Tomchenko, G.P. Harmer, B.T. Marquis, J.W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens. Actuators B: Chem. 93(1), 126–134 (2003). doi:10.1016/S0925-4005(03)00240-5
- M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter. Small 2(1), 36–50 (2006). doi:10.1002/smll.200500261
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B: Chem. 5(1), 17–19 (1991). doi:10.1016/0925-4005(91)80213-4
- H.T. Macholdt, R. Vaneldik, High pressure effects on ligand substitution reactions of molybdenum(0) carbonyl complexes. Transit. Met. Chem. 10(9), 323–325 (1985). doi:10.1021/ic00193a042
- G. Magner, M. Savy, G. Scarbeck, J. Riga, J.J. Verbist, Effects of substitution of iron by molybdenum in the naphthalocyanine structures upon their electrocatalytic properties for O2 reduction and evolution in alkaline media. J. Electrochem. Soc. 128(8), 1674–1680 (1981). doi:10.1149/1.2127709
- I. Simon, N. Bârsan, M. Bauer, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens. Actuators B: Chem. 73(1), 1–26 (2001). doi:10.1016/S0925-4005(00)00639
- M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12. Sens. Actuators B: Chem. 147(2), 447–452 (2010). doi:10.1016/j.snb.2010.03.063
- L.J. Miao, J.W. Xin, Z.Y. Shen, Y.J. Zhang, H.Y. Wang, A.G. Wub, Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. Sens. Actuators B: Chem. 176, 906–912 (2013). doi:10.1016/j.snb.2012.10.070
- M. Stankova, X. Vilanova, J. Calderer, E. Llobet, J. Brezmes, I. Gracia, C. Cane, X. Correig, Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sens. Actuators B: Chem. 113(1), 241–248 (2006). doi:10.1016/j.snb.2005.02.056
- X.T. Yin, X.M. Guo, Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B: Chem. 200, 213–218 (2014). doi:10.1016/j.snb.2014.04.026
- S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B: Chem. 226, 478–485 (2016). doi:10.1016/j.snb.2015.12.005
- M. Wang, L. Zhu, C. Zhang, G. Gai, X. Ji, B. Li, Y. Yao, Lanthanum oxide@ antimony-doped tin oxide with high gas sensitivity and selectivity towards ethanol vapor. Sens. Actuators B: Chem. 224, 478–484 (2016). doi:10.1016/j.snb.2015.10.083
- S.Y. Chung, I.L.D. Kim, S.J.L. Kang, Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004). doi:10.1038/nmat1238
- R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. J. Solid State Chem. 183(6), 1209–1214 (2010). doi:10.1016/j.jssc.2010.03.033
- E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra thin flexible capacitive humidity sensor. Sens. Actuators B: Chem. 143(1), 302–307 (2009). doi:10.1016/j.snb.2009.09.004
- J. Kim, K. Yong, Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing. J. Phys. Chem. 115(15), 7218–7224 (2011). doi:10.1021/jp110129f
- F. Mohammadzadeh, M. Jahanshahi, A.M. Rashidi, Preparation of nanosensors based on organic functionalized MWCNT for H2S detection. Appl. Surf. Sci. 259, 159–165 (2012). doi:10.1016/j.apsusc.2012.07.011
- R. Nisha, K.N. Madhusoodanan, T.V. Vimalkumar, K.P. Vijayakumar, Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis. Bull. Mater. Sci. 38(3), 583–591 (2015). doi:10.1007/s12034-015-0911-2
References
M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A. Sleight, High dielectric constant in ACaCu3Ti4O12 and A CaCu3Ti4O12 phases. J. Solid State Chem. 151(2), 323–325 (2000). doi:10.1006/jssc.2000.8703
R. Lohnert, H. Bartsch, R. Schmidt, B. Capraro, J. Topfer, Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. J. Am. Ceram. Soc. 98(1), 141–147 (2014). doi:10.1111/jace.13260
L.C. Kretly, A.F.L. Almeida, R.S. de Oliveira, J.M. Sasaki, A.S.B. Sombra, Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw. Opt. Technol. Lett. 39(2), 145–150 (2003). doi:10.1002/mop.11152
M.A. Ponce, M.A. Ramirez, F. Schipani, E. Joanni, J.P. Tomba, M.S. Castro, Electrical behavior analysis of n-type CaCu3Ti4O12 thick films exposed to different atmospheres. J. Eur. Ceram. Soc. 35(1), 153–161 (2015). doi:10.1016/j.jeurceramsoc.2014.08.041
M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloy. Compd. 493(1), 486–492 (2010). doi:10.1016/j.jallcom.2009.12.137
W.X. Yuan, S.K. Hark, W.N. Mei, Investigation of triple extrinsic origins of colossal dielectric constant in CaCu3Ti4O12 ceramics. J. Electrochem. Soc. 157(5), G117–G120 (2010). doi:10.1149/1.3353040
W.M. Hua, Z. Fu, W.Q. Li, Y. Chao, Synthesis of CaCu3Ti4O12 powders and ceramics by sol–gel method using decanedioic acid and its dielectric properties. J. Cent. South Univ. 19(12), 3385–3389 (2012). doi:10.1007/s11771-012-1418-2
N. Banerjee, S.B. Krupanidhi, Low temperature synthesis of nano-crystalline CaCu3Ti4O12 through a fuel mediated auto-combustion pathway. Curr. Nanosci. 6(4), 432–438 (2010). doi:10.2174/157341310791658955
K.M. Kim, S.J. Kim, J.H. Lee, D.Y. Kim, Microstructural evolution and dielectric properties of SiO2-doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 27(13), 3991–3995 (2007). doi:10.1016/j.jeurceramsoc.2007.02.081
B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeaud, T. Lebey, E. Dutarde, CaCu3Ti4O12 ceramics from co-precipitation method: dielectric properties of pellets and thick films. J. Eur. Ceram. Soc. 29(4), 731–735 (2009). doi:10.1016/j.jeurceramsoc.2008.07.042
M.M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Mechanochemical synthesis and giant dielectric properties of CaCu3Ti4O12. Appl. Phys. A 116(3), 1299–1306 (2014). doi:10.1007/s00339-014-8224-7
V.P.B. Marques, A. Ries, A.Z. Simoes, M.A. Ramrez, J.A. Varela, E. Longo, Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum. Ceram. Int. 33(7), 1187–1190 (2007). doi:10.1016/j.ceramint.2006.04.003
M.A.L. Cordeiro, F.L. Souza, E.R. Leite, A.J.C. Lanfredi, Anomalous current-voltage behavior of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 93(18), 182912–182913 (2008). doi:10.1063/1.3023061
W.X. Yuana, S.K. Harka, W.N. Meib, Effective synthesis to fabricate a giant dielectric-constant material CaCu3Ti4O12 via solid state reactions. J. Ceram. Process. Res. 10(5), 696–699 (2009)
P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature. J. Eur. Ceram. Soc. 28(3), 505–529 (2008). doi:10.1016/j.jeurceramsoc.2007.06.011
I.-D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films. Nano Lett. 6(2), 193–198 (2006). doi:10.1021/nl051965p
E. Joanni, R. Savu, P.R. Bueno, E. Longo, J.A. Varela, P-Type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films. Appl. Phys. Lett. 92(13), 132110–132113 (2008). doi:10.1063/1.2905810
G. Heiland, Zum Einfluss von Wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen. Zeit. Phys. 138, 459–464 (1954). doi:10.1007/BF01327362
A. Bielanski, J. Deren, J. Haber, Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179, 668–669 (1957). doi:10.1038/179668a0
B. Wang, Y.P. Pu, H.D. Wua, K. Chena, N. Xua, Influence of sintering atmosphere on dielectric properties and microstructure of CaCu3Ti4O12 ceramics. Ceram. Int. 39(1), S525–S528 (2013). doi:10.1016/j.ceramint.2012.10.127
P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics. J. Alloy. Compd. 650(59–64), 2015 (2015). doi:10.1016/j.jallcom.2015.07.247
S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99(8), 084106–084111 (2006). doi:10.1063/1.2191447
J. Liu, R.W. Smith, W.N. Mei, Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem. Mater. 19(24), 6020–6024 (2007). doi:10.1021/cm0716553
Z. Yang, Y. Zhang, R. Xiong, J. Shi, Effect of sintering in oxygen on electrical conduction and dielectric properties in CaCu3Ti4O12. Mater. Res. Bull. 48(2), 310–314 (2013). doi:10.1016/j.materresbull.2012.10.029
Y. Li, P. Liang, X. Chao, Z. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceram. Int. 39(7), 7879–7889 (2013). doi:10.1016/j.ceramint.2013.03.049
M.H. Wang, B. Zhang, F. Zhou, Preparation and characterization of CaCu3Ti4O12 powders by non-hydrolytic sol–gel method. J. Sol-Gel. Sci. Technol. 70(1), 62–66 (2014). doi:10.1007/s10971-014-3274-z
L. Laijun, F. Huiqing, F. Pinyang, C. Xiuli, Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater. Res. Bull. 43(7), 1800–1807 (2008). doi:10.1016/j.materresbull.2007.07.012
Z. Surowiak, M.F. Kupriyanov, D. Czekaj, Properties of nanocrystalline ferroelectric PZT ceramics. J. Eur. Ceram. Soc. 21(10), 1377–1381 (2001). doi:10.1016/S0955-2219(01)00022-X
H.Q. Fan, H.E. Kim, Microstructure and electrical properties of sol–gel derived Pb(Mg1/3Nb2/3)0.7Ti0.3O3 thin films with single perovskite phase. Jpn. J. Appl. Phys. 41(11B), 6768–6772 (2002). http://iopscience.iop.org/1347-4065/41/11S/6768
S.M. Moussa, B.J. Kennedy, Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3. Mater. Res. Bull. 36(13), 2525–2529 (2001). doi:10.1016/S0025-5408(01)00732-2
M. Ahmadipour, K. Venkateswara Rao, V. Rajendar, Formation of nano scale Mg(x)Fe(1-x)O (x = 0.1, 0.2, 0.4) structure by solution combustion: effect of fuel to oxidizer ratio. J. Nanomater. 2012, 1–8 (2012). doi:10.1155/2012/163909
G. Xanthopoulou, Catalytic properties of the SHS products. Adv. Sci. Technol. 63, 287–296 (2010). doi:10.4028/www.scientific.net/AST.63.287
A.G. Merzhanov, V.V. Barzykin, Some problems of propellant ignition. Preprint of the Institute of Chemical Physics of USSR Academy of Science, Moscow, 1970
E.G. Gillan, R.B. Kaner, Synthesis of refractory ceramic via rapid metathesis reactions between solid-state precursor. Chem. Mater. 8(2), 333–343 (1996). doi:10.1021/cm950232a
J.J. Kingsley, K.C. Patil, A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6(11), 427–432 (1988). doi:10.1016/0167-577X(88)90045-6
M. Ahmadipour, M. Hatami, K.V. Rao, Preparation and characterization of nano-sized (Mg(x)Fe(1–x)O/SiO2) (x = 0.1) core-shell nanoparticles by chemical precipitation method. Adv. Nanoparticles 1(3), 37–43 (2012). doi:10.4236/anp.2012.13006
S. Patra, Synthesis and characterization of CaCu3Ti4O12 and lanthanum doped CaCu3Ti4O12 by auto-combustion technique, Master of science thesis, Department of Ceramic Engineering National Institute of Technology, Rourkela, India, 2009
A. Gendaken, Sonochemistry and its application to nanochemistry. Curr. Sci. 85(12), 1720–1722 (2003)
N. Wongpisutpaisan, N. Vittayakorn, A. Ruangphanit, W. Pecharapa, CaCu3Ti4O12 ceramic synthesized by sonochemical-assisted process. Integr. Ferroelectr. 149(1), 56–60 (2013). doi:10.1080/10584587.2013.852936
D. Harvey, Modern analytical chemistry, illustrated (McGraw-Hill, New York, 2000), pp. 1–798
M.H. Whangbo, M.A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant. Chem. Mater. 18(14), 3257–3260 (2006). doi:10.1021/cm060323f
T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73(9), 094124–094129 (2006). doi:10.1103/PhysRevB.73.094124
Calcium copper tianate. http://en.wikipedia.org/wiki/Calcium_copper_tianate. Accessed 18 September 2015
J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman, Z.A. Ahmad, Microstructure and dielectric properties of CaCu3Ti4O12 ceramic. Mater. Lett. 61(8), 1835–1838 (2007). doi:10.1016/j.matlet.2006.07.192
P. Fiorenza, R.L. Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Localized electrical characterization of the giant permittivity effect in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 92(18), 182907-3 (2008). doi:10.1063/1.2919095
T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002). doi:10.1002/15214095(20020916)14:18<1321:aid-adma1321>3.0.co;2-p
C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, M.A. Subramanian, A.P. Ramirez, Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12. Phys. Rev. B 67(9), 092106-4 (2003). doi:10.1103/PhysRevB.67.092106
I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb). J. Appl. Phys. 93(7), 4130–4137 (2003). doi:10.1063/1.1558205
M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics. J. Mater. Chem. 19, 5916–5919 (2009). doi:10.1039/b910871h
W.X. Yuan, S.K. Hark, Investigation on the origin of the giant dielectric constant in CaCu3Ti4O12 ceramics through analyzing CaCu3Ti4O12–HfO2 composites. J. Eur. Ceram. Soc. 32(2), 465–470 (2012). doi:10.1016/j.jeurceramsoc.2011.09.021
A. Deschanvres, B. Ravenau, F. Tollemer, Remplacement de metal bivalent par le cuivre dans les titanates de type perowskite. Bull. Chim. Soc. Fr. 11, 4077–4078 (1967)
B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117(3), 339–347 (2005). doi:10.1016/j.mseb.2004.11.019
D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153 (2002). doi:10.1063/1.1463211
W.X. Yuana, Z.J. Li, Microstructures and dielectric properties of CaCu3Ti4O12 ceramics via combustion method. Eur. Phys. J. Appl. Phys. 57(1), 11302–11306 (2012). doi:10.1051/epjap/2011110226
L. Wei, X. Zhao-Xian, X. Hao, Preparation and electrical properties of CaCu3Ti4O12 thin ceramic sheets via water-based tape casting. J. Inorg. Mater. 29(11), 1228–1232 (2014). doi:10.15541/jim20140255
R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012). doi:10.1016/j.jeurceramsoc.2012.03.040
J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández, Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 30(3), 737–742 (2010). doi:10.1016/j.jeurceramsoc.2012.03.040
A. Rajabatabar, W.L. Li, O.S. Bishe, L.D. Wang, X.L. Li, N. Li, W.D. Fei, Effect of synthesis technique on dielectric properties of CaCu3Ti4O12 ceramic. Trans. Nonferrous Met. Soc. China 21(2), s400–s404 (2011). doi:10.1016/S1003-6326(11)61614-2
D.L. Sun, A.Y. Wu, S.T. Yin, Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by Sol–Gel process. J. Am. Ceram. Soc. 91(1), 169–173 (2008). doi:10.1111/j.1551-2916.2007.02096.x
W.Q. Ni, X.H. Zheng, J.C. Yu, Sintering effects on structure and dielectric properties of dielectrics CaCu3Ti4O12. J. Mater. Sci. 42(3), 1037–1041 (2007). doi:10.1007/s10853-006-1431-7
G. Chiodellia, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials. Solid State Commun. 132(3), 241–246 (2004). doi:10.1016/j.ssc.2004.07.058
L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, Dielectric properites of Al-doped CaCu3Ti4O12 ceramics by coprecipitation method, in IEEE, conference proceedings of ISEIM, pp. 23–26, 2011. doi:10.1109/ISEIM.2011.6826267
S.W. Choi, S.H. Hong, Y.M. Kim, Effect of Al doping on the electric and dielectric properties of CaCu3Ti4O12. J. Am. Ceram. Soc. 90(12), 4009–4011 (2007). doi:10.1111/j.1551-2916.2007.01983.x
S.H. Hong, D.Y. Kim, Electric and dielectric properties of Nb-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 90(7), 2118–2121 (2007). doi:10.1111/j.1551-2916.2007.01709.x
Y. Liu, Q. Chen, X. Zhao, Dielectric response of Sb-doped CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 25(3), 1547–1552 (2014). doi:10.1007/s10854-014-1766-9
L. Singh, U.S. Rai, Dielectric properties of ultrafine Zn-doped CaCu3Ti4O12 ceramic. J. Adv. Dielectr. 2(1), 1250007-6 (2012). doi:10.1142/S2010135X12500075
MathSciNet
S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique. J. Alloy. Compd. 476(1), 477–481 (2009). doi:10.1016/j.jallcom.2008.09.025
L.F. Xu, P.B. Qi, X.P. Song, X.J. Luo, C.P. Yang, Dielectric relaxation behaviors of pure and Pr6O11-doped CaCu3Ti4O12 ceramics in high temperature range. J. Alloy. Compd. 509(29), 7697–7701 (2011). doi:10.1016/j.jallcom.2011.02.105
S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Selectivity of doping ions to effectively improve dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics. Ceram. Int. 39(7), 8133–8137 (2013). doi:10.1016/j.ceramint.2013.03.086
C. Mua, H. Zhang, Y. He, P. Liu, Influence of temperature on dielectric properties of Fe doped CaCu3Ti4O12 ceramics. Phys. B 405(1), 386–389 (2010). doi:10.1016/j.physb.2009.08.093
Z. Yang, Y. Zhang, G. You, K. Zhang, R. Xiong, J. Shi, Dielectric and electrical transport properties of the Fe3+-doped CaCu3Ti4O12. J. Mater. Sci. Technol. 28(12), 1145–1150 (2012). doi:10.1016/S1005-0302(12)60184-4
T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X.Z. Cao, B. Wang, Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40(7), 9061–9067 (2014). doi:10.1016/j.ceramint.2014.01.119
X. Dong, S. Qi, Z. Ke, X.H. Xing, Y.Y. Tao, Y.R. Hong, NiO-doped CaCu3Ti4O12 thin film by sol–gel method. J. Inorg. Mater. 28(10), 1–4 (2013). doi:10.3724/SP.J.1077.2013.13113
V.S. Saji, H.C. Choe, Effect of yttrium doping on the dielectric properties of CaCu3Ti4O12 thin film produced by chemical solution deposition. Thin Solid Films 517(14), 3896–3899 (2009). doi:10.1016/j.tsf.2009.01.100
F. Luo, J. He, J. Hu, Y.H. Lin, Electric and dielectric behaviors of Y-doped calcium copper titanate. J. Am. Ceram. Soc. 93(10), 3043–3045 (2010). doi:10.1111/j.1551-2916.2010.04022.x
L. Shengtao, Y. Yang, W. Hui, L. Jianying, Dielectric properties of B-doped CaCu3Ti4O12 ceramics, in IEEE, conference proceedings of ISEIM, pp. 482–485, 2011. doi:10.1109/ISEIM.2011.6826318
W. Makcharoen, T. Tunkasiri, Microstructures and dielectric relaxation behaviors of pure and tellurium doped CaCu3Ti4O12 ceramics prepared via vibro-milling method. Ceram. Int. 39(1), s359–s364 (2013). doi:10.1016/j.ceramint.2012.10.094
C. Mu, Y. Song, H. Wang, X. Wang, Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 Ceramics. J. Appl. Phys. 117, 17B723–17B724 (2015). doi:10.1063/1.4916116
W.L. Li, Y. Zhao, Q.G. Chi, Z.G. Zhang, W.D. Fei, Enhanced performance of core-shell-like structure Zr-doped CaCu3Ti4O12 ceramics prepared by a flame synthetic approach. RSC Adv. 2(14), 6073–6078 (2012). doi:10.1039/C2RA20806G
Q.G. Chi, L. Gao, X. Wanga, J.Q. Lin, J. Sun, Q.Q. Lei, Effects of Zr doping on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 559, 45–48 (2013). doi:10.1016/j.jallcom.2013.01.090
J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Enhancement of giant dielectric response in Ga-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39(2), 1057–1064 (2013). doi:10.1016/j.ceramint.2012.07.027
P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, V. Amornkitbamrung, S. Maensiri, Effects of La3+ doping ions on dielectric properties and formation of Schottky barriers at internal interfaces in a Ca2Cu2Ti4O12 composite system. J. Mater. Sci.: Mater. Electron. 25(10), 4657–4663 (2014). doi:10.1007/s10854-014-2219-1
S. Jin, H. Xia, Y. Zhang, Effect of La-doping on the properties of CaCu3Ti4O12 dielectric ceramics. Ceram. Int. 35(1), 309–313 (2009). doi:10.1016/j.ceramint.2007.10.007
W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 26(8), 682–686 (2010). doi:10.1016/S1005-0302(10)60107-7
J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Dielectric properties of Sm-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39(1), s149–s152 (2013). doi:10.1016/j.ceramint.2012.10.052
M. Li, A. Feteira, D.C. Sinclair, A.R. West, Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88(23), 232903 (2006). doi:10.1063/1.2200732
C.H. Kim, Y.H. Jang, S.J. Seo, C.H. Song, J.Y. Son, Y.S. Yang, J.H. Cho, Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12. Phys. Rev. B 85(24), 245210–245216 (2012). doi:10.1103/PhysRevB.85.245210
K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Grain size independence of giant dielectric permittivity of CaCu3Ti4-xScxO12 ceramics. Ceram. Int. 40(10), 15897–15906 (2014). doi:10.1016/j.ceramint.2014.07.118
P. Thongbai, S. Vangchangyia, E. Swatsitang, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Non-Ohmic and dielectric properties of Ba-doped CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 24(3), 875–883 (2013). doi:10.1007/s10854-012-0842-2
Z. Xu, H. Qiang, Z. Chen, Y. Chen, Dielectric behavior of Ba-doped CaCu3Ti4O12 ceramics prepared from citrate-nitrate combustion derived powders. J. Mater. Sci.: Mater. Electron. 26(1), 578–582 (2015). doi:10.1007/s10854-014-2437-6
W. Si, E.M. Cruz, P.D. Johnson, P.W. Barnes, P. Woodward, A.P. Ramirez, Epitaxial thin films of the giant-dielectric-constant material grown by pulsed-laser deposition. Appl. Phys. Lett. 81(11), 2056–2058 (2002). doi:10.1063/1.1506951
K. Cho, N. Wu, A. Ignatiev, Dielectric properties of CaCu3Ti4O12 thin films, in Isaf 2002: proceedings of the 13th IEEE international symposium on applications of ferroelectrics, pp. 187–190, 2002. doi:10.1109/ISAF.2002.1195901
J.R. Li, Dielectric characterization of polycrystalline and epitaxial thin film CaCu3Ti4O12 (CCTO), in Proceedings of the 7th international conference on properties and applications of dielectric materials, vol. 3, pp. 1096–1099, 2003. doi:10.1109/ICPADM.2003.1218614
L. Fang, M.R. Shen, Deposition and dielectric properties of CaCu3Ti4O12 thin films on Pt/Ti/SiO2/Si substrates using pulsed-laser deposition. Thin Solid Films 440(1), 60–65 (2003). doi:10.1016/S0040-6090(03)00825-3
Y.L. Zhao, G.W. Pan, Q.B. Ren, Y.G. Cao, L.X. Feng, Z.K. Jiao, High dielectric constant in CaCu3Ti4O12 thin film prepared by pulsed laser deposition. Thin Solid Films 445(1), 7–13 (2003). doi:10.1016/S0040-6090(03)00666-7
G. Deng, T. Yamada, P. Muralt, Evidence for the existence of a metal-insulator-semiconductor CaCu3Ti4O12 junction at the electrode interfaces of thin film capacitors. Appl. Phys. Lett. 91(20), 202903-3 (2007). doi:10.1063/1.2814043
B.S. Prakash, K. Varma, D. Michau, M. Maglione, Deposition and dielectric properties of CaCu3Ti4O12 thin films deposited on Pt/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. Thin Solid Films 516(10), 2874–2880 (2008). doi:10.1016/j.tsf.2007.05.060
R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragalà, P. Fiorenza, V. Raineri, Effects of high temperature annealing on MOCVD grown CaCu3Ti4O12 films on LaAlO3 substrates. Surf. Coat. Technol. 201(22), 9243–9247 (2007). doi:10.1016/j.surfcoat.2007.05.019
R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragalà, P. Fiorenza, V. Raineri, Chemical stability of CaCu3Ti4O12 thin films grown by MOCVD on different substrates. Thin Solid Films 515(16), 6470–6473 (2007). doi:10.1016/j.tsf.2006.11.050
S. Jin, H. Xia, Y. Zhang, J. Guo, J. Xu, Synthesis of CaCu3Ti4O12 ceramic via a sol–gel method. Mater. Lett. 61(6), 1404–1407 (2007). doi:10.1016/j.matlet.2006.07.041
L. Feng, Y. Wang, Y. Yan, G. Cao, Z. Jiao, Growth of highly-oriented CaCu3Ti4O12 thin films on SrTiO3 (1 0 0) substrates by a chemical solution route. Appl. Surf. Sci. 253(4), 2268–2271 (2006). doi:10.1016/j.apsusc.2006.04.029
D. Maurya, D.P. Singh, D.C. Agrawal, Y.N. Mohapatra, Preparation of high dielectric constant thin films of CaCu3Ti4O12 by sol–gel. Bull. Mater. Sci. 31(1), 55–59 (2008). doi:10.1007/s12034-008-0010-8
M. Smith, A.F. Turner, Vacuum deposited thin films using a ruby laser. Appl. Opt. 4(1), 147–148 (1965). doi:10.1364/AO.4.000147
L. Fang, M.R. Shen, Z.Y. Li, Effect of double-sided CaTiO3 buffer layers on the electrical properties of CaCu3Ti4O12 films on Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 100(10), 104101–104105 (2006). doi:10.1063/1.2374952
L. Fang, M. Shen, J. Yang, Z. Li, Reduced dielectric loss and leakage current in CaCu3Ti4O12 /SiO2/ CaCu3Ti4O12 multilayered films. Solid State Commun. 137(7), 381–386 (2006). doi:10.1016/j.ssc.2005.12.004
P. Fiorenza, R.L. Nigro, A. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, Perovskite CaCu3Ti4O12 thin films for capacitive applications: from the growth to the nanoscopic imaging of the permittivity. J. Appl. Phys. 105(1), 061634–061636 (2009). doi:10.1063/1.3086198
R. Jiménez, M.L. Calzada, I. Bretos, J.C. Goes, A.S.B. Sombra, Dielectric properties of sol–gel derived CaCu3Ti4O12 thin films onto Pt/TiO2/Si(1 0 0) substrates. J. Eur. Ceram. Soc. 27(13), 3829–3833 (2007). doi:10.1016/j.jeurceramsoc.2007.02.050
Y.S. Shen, B.S. Chiou, C.C. Ho, Effects of annealing temperature on the resistance switching behavior of CaCu3Ti4O12 films. Thin Solid Films 517(3), 1209–1213 (2008). doi:10.1016/j.tsf.2008.06.034
Y.W. Li, Z.G. Hu, J.L. Sun, X.J. Meng, J.H. Chu, Preparation and properties of CaCu3Ti4O12 thin film grown on LaNiO3-coated silicon by sol–gel process. J. Cryst. Growth 310(2), 378–381 (2008). doi:10.1016/j.jcrysgro.2007.11.025
Y.W. Li, Y.D. Shen, Z.G. Hu, F.Y. Yue, J.H. Chu, Effect of thickness on the dielectric property and nonlinear current-voltage behavior of CaCu3Ti4O12 thin films. Phys. Lett. A 373(27), 2389–2392 (2009). doi:10.1016/j.physleta.2009.05.001
W.H. Brattain, J. Bardeen, Surface properties of germanium. Bell Syst. Tech. J. 32(1), 1–41 (1953). doi:10.1002/j.1538-7305.1953.tb01420.x
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, N. Yamazoe, Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B: Chem. 77(1), 72–77 (2001). doi:10.1016/S0925-4005(01)00675-X
P.T. Moseley, Solid state gas sensors. Meas. Sci. Technol. 8(3), 223–237 (1997)
S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S.A. Takahashi, Fibre-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens. Actuators B: Chem. 66(1), 142–145 (2000). doi:10.1016/S0925-4005(00)00330-0
F. Morazzoni, R. Scotti, L. Origoni, M.D. Arienzo, I. Jimenez, A. Cornet, J.R. Morante, Mechanism of NH3 interaction with transition metal-added nanosized WO3 for gas sensing: in situ electron paramagnetic resonance study. Catal. Today 12(1), 169–176 (2006). doi:10.1016/j.cattod.2006.09.035
K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stilzel, T.P. Vaid, D.R. Walt, Cross-reactive chemical sensor arrays. Chem. Rev. 100(7), 2595–2626 (2000). doi:10.1021/cr980102w
Y. Shimizu, M. Egashira, Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 24(6), 18–24 (1999). doi:10.1557/S0883769400052465
G. Martinelli, M.C. Carotta, E. Traversa, G. Ghiotti, Thick-film gas sensors based on nanosized semiconducting oxide powders. MRS Bull. 24(6), 30–36 (1999). doi:10.1557/S0883769400052489
A.A. Tomchenko, G.P. Harmer, B.T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens. Actuators B: Chem. 108(1), 41–55 (2005). doi:10.1016/j.snb.2004.11.059
A.A. Tomchenko, G.P. Harmer, B.T. Marquis, J.W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens. Actuators B: Chem. 93(1), 126–134 (2003). doi:10.1016/S0925-4005(03)00240-5
M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter. Small 2(1), 36–50 (2006). doi:10.1002/smll.200500261
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B: Chem. 5(1), 17–19 (1991). doi:10.1016/0925-4005(91)80213-4
H.T. Macholdt, R. Vaneldik, High pressure effects on ligand substitution reactions of molybdenum(0) carbonyl complexes. Transit. Met. Chem. 10(9), 323–325 (1985). doi:10.1021/ic00193a042
G. Magner, M. Savy, G. Scarbeck, J. Riga, J.J. Verbist, Effects of substitution of iron by molybdenum in the naphthalocyanine structures upon their electrocatalytic properties for O2 reduction and evolution in alkaline media. J. Electrochem. Soc. 128(8), 1674–1680 (1981). doi:10.1149/1.2127709
I. Simon, N. Bârsan, M. Bauer, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens. Actuators B: Chem. 73(1), 1–26 (2001). doi:10.1016/S0925-4005(00)00639
M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12. Sens. Actuators B: Chem. 147(2), 447–452 (2010). doi:10.1016/j.snb.2010.03.063
L.J. Miao, J.W. Xin, Z.Y. Shen, Y.J. Zhang, H.Y. Wang, A.G. Wub, Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. Sens. Actuators B: Chem. 176, 906–912 (2013). doi:10.1016/j.snb.2012.10.070
M. Stankova, X. Vilanova, J. Calderer, E. Llobet, J. Brezmes, I. Gracia, C. Cane, X. Correig, Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sens. Actuators B: Chem. 113(1), 241–248 (2006). doi:10.1016/j.snb.2005.02.056
X.T. Yin, X.M. Guo, Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B: Chem. 200, 213–218 (2014). doi:10.1016/j.snb.2014.04.026
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B: Chem. 226, 478–485 (2016). doi:10.1016/j.snb.2015.12.005
M. Wang, L. Zhu, C. Zhang, G. Gai, X. Ji, B. Li, Y. Yao, Lanthanum oxide@ antimony-doped tin oxide with high gas sensitivity and selectivity towards ethanol vapor. Sens. Actuators B: Chem. 224, 478–484 (2016). doi:10.1016/j.snb.2015.10.083
S.Y. Chung, I.L.D. Kim, S.J.L. Kang, Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004). doi:10.1038/nmat1238
R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. J. Solid State Chem. 183(6), 1209–1214 (2010). doi:10.1016/j.jssc.2010.03.033
E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra thin flexible capacitive humidity sensor. Sens. Actuators B: Chem. 143(1), 302–307 (2009). doi:10.1016/j.snb.2009.09.004
J. Kim, K. Yong, Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing. J. Phys. Chem. 115(15), 7218–7224 (2011). doi:10.1021/jp110129f
F. Mohammadzadeh, M. Jahanshahi, A.M. Rashidi, Preparation of nanosensors based on organic functionalized MWCNT for H2S detection. Appl. Surf. Sci. 259, 159–165 (2012). doi:10.1016/j.apsusc.2012.07.011
R. Nisha, K.N. Madhusoodanan, T.V. Vimalkumar, K.P. Vijayakumar, Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis. Bull. Mater. Sci. 38(3), 583–591 (2015). doi:10.1007/s12034-015-0911-2