Facile In Situ Fabrication of Nanostructured Graphene–CuO Hybrid with Hydrogen Sulfide Removal Capacity
Corresponding Author: Vikas Mittal
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 312-319
Abstract
A simple and scalable synthetic approach for one-step synthesis of graphene–CuO (TRGC) nanocomposite by an in situ thermo-annealing method has been developed. Using graphene oxide (GO) and copper hydroxide as a precursors reagent, the reduction of GO and the uniform deposition of in situ formed CuO nanoparticles on graphene was simultaneously achieved. The method employed no solvents, toxic-reducing agents, or organic modifiers. The resulting nanostructured hybrid exhibited improved H2S sorption capacity of 1.5 mmol H2S/g-sorbent (3 g S/100 g-sorbent). Due to its highly dispersed sub-20 nm CuO nanoparticles and large specific surface area, TRGC nanocomposite exhibits tremendous potential for energy and environment applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.I. Park, C.-H. Lee, J.M. Lee, N.-J. Kim, G.-C. Yi, Inorganic nanostructures grown on graphene layers. Nanoscale 3(9), 3522–3533 (2011). doi:10.1039/c1nr10370a
- Z. Tao, Y. Huang, X. Liu, J. Chen, W. Lei et al., High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragmentsdecorated ZnO nanowires. Nano-Micro Lett. In Press. doi:10.1007/s40820-016-0083-7
- J. Zhu, M. Chen, Q. He, L. Shao, S. Wei, Z. Guo, An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv. 3(45), 22790–22824 (2013). doi:10.1039/c3ra44621b
- S. Bai, X. Shen, Graphene-inorganic nanocomposites. RSC Adv. 2(1), 64 (2012). doi:10.1039/c1ra00260k
- MathSciNet
- M. Sun, H. Liu, Y. Liu, J. Qu, J. Li, Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 7(4), 1250–1269 (2015). doi:10.1039/c4nr05838k
- Q. Li, N. Mahmood, J. Zhu, Y. Hou, S. Sun, Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014). doi:10.1016/j.nantod.2014.09.002
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010). doi:10.1002/adma.201001068
- Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang, F.D. Nie, C.M. Liu, S.H. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60(1), 208–337 (2014). doi:10.1016/j.pmatsci.2013.09.003
- M.H. Lee, K.T. Kim, T. Gemming, D.J. Sordelet, J. Eckert, Enhanced gas adsorption property of hybrid nanopore-structured copper oxide synthesized from the carbon nanotube/copper composites. J. Appl. Phys. 108(6), 064303 (2010). doi:10.1063/1.3481431
- C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-State synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4(2), 73–77 (2012). doi:10.3786/nml.v4i2.p73-77
- D.M.A. Raj, A.D. Raj, A.A. Irudayaraj, Facile synthesis of rice shaped CuO nanostructures for battery application. J. Mater. Sci-Mater. Electron. 25(3), 1441–1445 (2014). doi:10.1007/s10854-014-1748-y
- E. Mohammadi-Manesh, M. Vaezzadeh, M. Saeidi, Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature. Surf. Sci. 636, 36–41 (2015). doi:10.1016/j.susc.2015.02.002
- K. Ramachandran, K.J. Babu, G.G. Kumar, A.R. Kim, D.J. Yoo, One-pot synthesis of graphene supported CuO nanorods for the electrochemical hydrazine sensor applications. Sci. Adv. Mater. 7(2), 329–336 (2015). doi:10.1166/sam.2015.2025
- L.L. Cheng, Y.J. Wang, D.H. Huang, T. Nguyen, Y. Jiang, H.C. Yu, N. Ding, G.J. Ding, Z. Jiao, Facile synthesis of size-tunable CuO/graphene composites and their high photocatalytic performance. Mater. Res. Bull. 61, 409–414 (2015). doi:10.1016/j.materresbull.2014.10.036
- N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. Mater. Lett. 93(1), 393–396 (2013). doi:10.1016/j.matlet.2012.10.015
- S.D. Seo, D.H. Lee, J.C. Kim, G.H. Lee, D.W. Kim, Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram. Int. 39(2), 1749–1755 (2013). doi:10.1016/j.ceramint.2012.08.021
- A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kang, B.J. Paul, N.K. Singh, J. Song, J. Kim, Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J. Power Sources 244(4), 435–441 (2013). doi:10.1016/j.jpowsour.2012.11.112
- D.F. Qiu, B. Zhao, Z.X. Lin, L. Pu, L.J. Pan, Y. Shi, In situ growth of CuO nanoparticles on graphene matrix as anode material for lithium-ion batteries. Mater. Lett. 105(7), 242–245 (2013). doi:10.1016/j.matlet.2013.04.030
- Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 56(5), 2306–2311 (2011). doi:10.1016/j.electacta.2010.11.036
- Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14(20), 6710–6719 (2012). doi:10.1039/c2ce25509j
- K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4(45), 23485–23491 (2014). doi:10.1039/C4ra02107j
- Q. Wang, J. Zhao, W.F. Shan, X.B. Xia, L.L. Xing, X.Y. Xue, CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes. J. Alloy. Compd. 590(2), 424–427 (2014). doi:10.1016/j.jallcom.2013.12.083
- X.Y. Zhou, J.J. Shi, Y. Liu, Q.M. Su, J. Zhang, G.H. Du, Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloy. Compd. 615(2), 390–394 (2014). doi:10.1016/j.jallcom.2014.07.013
- X.Y. Zhou, J. Zhang, Q.M. Su, J.J. Shi, Y. Liu, G.H. Du, Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014). doi:10.1016/j.electacta.2014.01.155
- A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta 88(2), 347–357 (2013). doi:10.1016/j.electacta.2012.10.088
- T.T. Baby, R. Sundara, Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. C 115(17), 8527–8533 (2011). doi:10.1021/Jp200273g
- D. Panza, V. Belgiorno, Hydrogen sulphide removal from landfill gas. Process Saf. Environ. Prot. 88(6), 420–424 (2010). doi:10.1016/j.psep.2010.07.003
- L.C. Yang, X.M. Ge, C.X. Wan, F. Yu, Y.B. Li, Progress and perspectives in converting biogas to transportation fuels. Renew. Sust. Energy Rev. 40, 1133–1152 (2014). doi:10.1016/j.rser.2014.08.008
- W.R.P.J. Kidnay, D.G. McCartney, Fundamentals of Natural Gas Processing (CRC Press, Boca Raton, FL, 2011)
- M. Xue, R. Chitrakar, K. Sakane, K. Ooi, Screening of adsorbents for removal of H2S at room temperature. Green Chem. 5(5), 529–534 (2003). doi:10.1039/B303167p
- C.L. Carnes, K.J. Klabunde, Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide. Chem. Mater. 14(4), 1806–1811 (2002). doi:10.1021/Cm011588r
- S. Yasyerli, G. Dogu, I. Ar, T. Dogu, Activities of copper oxide and Cu–V and Cu–Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40(23), 5206–5214 (2001). doi:10.1021/Ie0010621
- H.S. Song, M.G. Park, S.J. Kwon, K.B. Yi, E. Croiset, Z. Chen, S.C. Nam, Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Appl. Surf. Sci. 276(3), 646–652 (2013). doi:10.1016/j.apsusc.2013.03.147
- D.P. Singh, A.K. Ojha, O.N. Srivastava, Synthesis of different Cu(OH)(2) and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. J. Phys. Chem. C 113(9), 3409–3418 (2009). doi:10.1021/Jp804832g
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/Nn1006368
- X.X. Wang, X.L. Ma, X.C. Xu, L. Sun, C.S. Song, Mesoporous-molecular-sieve-supported polymer sorbents for removing H(2)S from hydrogen gas streams. Top. Catal. 49(1–2), 108–117 (2008). doi:10.1007/s11244-008-9072-5
- H.M. Ju, S.H. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes. J. Korean Phys. Soc. 57(6), 1649 (2010). doi:10.3938/Jkps.57.1649
- M. Cheng, R. Yang, L.C. Zhang, Z.W. Shi, W. Yang, D.M. Wang, G.B. Xie, D.X. Shi, G.Y. Zhang, Restoration of graphene from graphene oxide by defect repair. Carbon 50(7), 2581–2587 (2012). doi:10.1016/j.carbon.2012.02.016
- D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007). doi:10.1021/nl061702a
- D. Zhan, Z.H. Ni, W. Chen, L. Sun, Z.Q. Luo, L.F. Lai, T. Yu, A.T.S. Wee, Z.X. Shen, Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 49(4), 1362–1366 (2011). doi:10.1016/j.carbon.2010.12.002
- O. Karvan, H. Atakul, Investigation of CuO/mesoporous SBA-15 sorbents for hot gas desulfurization. Fuel Process. Technol. 89(9), 908–915 (2008). doi:10.1016/j.fuproc.2008.03.004
- D. Liu, S. Chen, X. Fei, C. Huang, Y. Zhang, Regenerable CuO-based adsorbents for low temperature desulfurization application. Ind. Eng. Chem. Res. 54(14), 3556–3562 (2015). doi:10.1021/acs.iecr.5b00180
- Y.K. Song, K.B. Lee, H.S. Lee, Y.W. Rhee, Reactivity of copper oxide-based sorbent in coal gas desulfurization. Korean J. Chem. Eng. 17(6), 691–695 (2000). doi:10.1007/Bf02699119
- F. Li, J. Wei, Y. Yang, G.H. Yang, T. Lei, Preparation of sorbent loaded with nano-CuO for room temperature to remove of hydrogen sulfide. Appl. Mech. Mater. Sens. Meas. Intell. Mater. II(475–476), 1329–1333 (2014). doi:10.4028/www.scientific.net/AMM.475-476.1329
- D. Montes, E. Tocuyo, E. Gonzalez, D. Rodriguez, R. Solano, R. Atencio, M.A. Ramos, A. Moronta, Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous. Mater. 168(168), 111–120 (2013). doi:10.1016/j.micromeso.2012.09.018
- H.S. Song, M.G. Park, W. Ahn, S.N. Lim, K.B. Yi, E. Croiset, Z. Chen, S.C. Nam, Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. Chem. Eng. J. 253(7), 264–273 (2014). doi:10.1016/j.cej.2014.05.058
- A. Galtayries, J.P. Bonnelle, XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces. Surf. Interface Anal. 23(3), 171–179 (1995). doi:10.1002/sia.740230308
- M. Seredych, O. Mabayoje, T.J. Bandosz, Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene. Langmuir 28(2), 1337–1346 (2012). doi:10.1021/La204277c
- O. Mabayoje, M. Seredych, T.J. Bandosz, Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides. ACS Appl. Mater. Inter. 4(6), 3316–3324 (2012). doi:10.1021/am300702a
References
W.I. Park, C.-H. Lee, J.M. Lee, N.-J. Kim, G.-C. Yi, Inorganic nanostructures grown on graphene layers. Nanoscale 3(9), 3522–3533 (2011). doi:10.1039/c1nr10370a
Z. Tao, Y. Huang, X. Liu, J. Chen, W. Lei et al., High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragmentsdecorated ZnO nanowires. Nano-Micro Lett. In Press. doi:10.1007/s40820-016-0083-7
J. Zhu, M. Chen, Q. He, L. Shao, S. Wei, Z. Guo, An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv. 3(45), 22790–22824 (2013). doi:10.1039/c3ra44621b
S. Bai, X. Shen, Graphene-inorganic nanocomposites. RSC Adv. 2(1), 64 (2012). doi:10.1039/c1ra00260k
MathSciNet
M. Sun, H. Liu, Y. Liu, J. Qu, J. Li, Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 7(4), 1250–1269 (2015). doi:10.1039/c4nr05838k
Q. Li, N. Mahmood, J. Zhu, Y. Hou, S. Sun, Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014). doi:10.1016/j.nantod.2014.09.002
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010). doi:10.1002/adma.201001068
Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang, F.D. Nie, C.M. Liu, S.H. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60(1), 208–337 (2014). doi:10.1016/j.pmatsci.2013.09.003
M.H. Lee, K.T. Kim, T. Gemming, D.J. Sordelet, J. Eckert, Enhanced gas adsorption property of hybrid nanopore-structured copper oxide synthesized from the carbon nanotube/copper composites. J. Appl. Phys. 108(6), 064303 (2010). doi:10.1063/1.3481431
C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-State synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4(2), 73–77 (2012). doi:10.3786/nml.v4i2.p73-77
D.M.A. Raj, A.D. Raj, A.A. Irudayaraj, Facile synthesis of rice shaped CuO nanostructures for battery application. J. Mater. Sci-Mater. Electron. 25(3), 1441–1445 (2014). doi:10.1007/s10854-014-1748-y
E. Mohammadi-Manesh, M. Vaezzadeh, M. Saeidi, Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature. Surf. Sci. 636, 36–41 (2015). doi:10.1016/j.susc.2015.02.002
K. Ramachandran, K.J. Babu, G.G. Kumar, A.R. Kim, D.J. Yoo, One-pot synthesis of graphene supported CuO nanorods for the electrochemical hydrazine sensor applications. Sci. Adv. Mater. 7(2), 329–336 (2015). doi:10.1166/sam.2015.2025
L.L. Cheng, Y.J. Wang, D.H. Huang, T. Nguyen, Y. Jiang, H.C. Yu, N. Ding, G.J. Ding, Z. Jiao, Facile synthesis of size-tunable CuO/graphene composites and their high photocatalytic performance. Mater. Res. Bull. 61, 409–414 (2015). doi:10.1016/j.materresbull.2014.10.036
N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. Mater. Lett. 93(1), 393–396 (2013). doi:10.1016/j.matlet.2012.10.015
S.D. Seo, D.H. Lee, J.C. Kim, G.H. Lee, D.W. Kim, Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram. Int. 39(2), 1749–1755 (2013). doi:10.1016/j.ceramint.2012.08.021
A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kang, B.J. Paul, N.K. Singh, J. Song, J. Kim, Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J. Power Sources 244(4), 435–441 (2013). doi:10.1016/j.jpowsour.2012.11.112
D.F. Qiu, B. Zhao, Z.X. Lin, L. Pu, L.J. Pan, Y. Shi, In situ growth of CuO nanoparticles on graphene matrix as anode material for lithium-ion batteries. Mater. Lett. 105(7), 242–245 (2013). doi:10.1016/j.matlet.2013.04.030
Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 56(5), 2306–2311 (2011). doi:10.1016/j.electacta.2010.11.036
Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14(20), 6710–6719 (2012). doi:10.1039/c2ce25509j
K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4(45), 23485–23491 (2014). doi:10.1039/C4ra02107j
Q. Wang, J. Zhao, W.F. Shan, X.B. Xia, L.L. Xing, X.Y. Xue, CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes. J. Alloy. Compd. 590(2), 424–427 (2014). doi:10.1016/j.jallcom.2013.12.083
X.Y. Zhou, J.J. Shi, Y. Liu, Q.M. Su, J. Zhang, G.H. Du, Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloy. Compd. 615(2), 390–394 (2014). doi:10.1016/j.jallcom.2014.07.013
X.Y. Zhou, J. Zhang, Q.M. Su, J.J. Shi, Y. Liu, G.H. Du, Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014). doi:10.1016/j.electacta.2014.01.155
A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta 88(2), 347–357 (2013). doi:10.1016/j.electacta.2012.10.088
T.T. Baby, R. Sundara, Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. C 115(17), 8527–8533 (2011). doi:10.1021/Jp200273g
D. Panza, V. Belgiorno, Hydrogen sulphide removal from landfill gas. Process Saf. Environ. Prot. 88(6), 420–424 (2010). doi:10.1016/j.psep.2010.07.003
L.C. Yang, X.M. Ge, C.X. Wan, F. Yu, Y.B. Li, Progress and perspectives in converting biogas to transportation fuels. Renew. Sust. Energy Rev. 40, 1133–1152 (2014). doi:10.1016/j.rser.2014.08.008
W.R.P.J. Kidnay, D.G. McCartney, Fundamentals of Natural Gas Processing (CRC Press, Boca Raton, FL, 2011)
M. Xue, R. Chitrakar, K. Sakane, K. Ooi, Screening of adsorbents for removal of H2S at room temperature. Green Chem. 5(5), 529–534 (2003). doi:10.1039/B303167p
C.L. Carnes, K.J. Klabunde, Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide. Chem. Mater. 14(4), 1806–1811 (2002). doi:10.1021/Cm011588r
S. Yasyerli, G. Dogu, I. Ar, T. Dogu, Activities of copper oxide and Cu–V and Cu–Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40(23), 5206–5214 (2001). doi:10.1021/Ie0010621
H.S. Song, M.G. Park, S.J. Kwon, K.B. Yi, E. Croiset, Z. Chen, S.C. Nam, Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Appl. Surf. Sci. 276(3), 646–652 (2013). doi:10.1016/j.apsusc.2013.03.147
D.P. Singh, A.K. Ojha, O.N. Srivastava, Synthesis of different Cu(OH)(2) and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. J. Phys. Chem. C 113(9), 3409–3418 (2009). doi:10.1021/Jp804832g
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/Nn1006368
X.X. Wang, X.L. Ma, X.C. Xu, L. Sun, C.S. Song, Mesoporous-molecular-sieve-supported polymer sorbents for removing H(2)S from hydrogen gas streams. Top. Catal. 49(1–2), 108–117 (2008). doi:10.1007/s11244-008-9072-5
H.M. Ju, S.H. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes. J. Korean Phys. Soc. 57(6), 1649 (2010). doi:10.3938/Jkps.57.1649
M. Cheng, R. Yang, L.C. Zhang, Z.W. Shi, W. Yang, D.M. Wang, G.B. Xie, D.X. Shi, G.Y. Zhang, Restoration of graphene from graphene oxide by defect repair. Carbon 50(7), 2581–2587 (2012). doi:10.1016/j.carbon.2012.02.016
D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007). doi:10.1021/nl061702a
D. Zhan, Z.H. Ni, W. Chen, L. Sun, Z.Q. Luo, L.F. Lai, T. Yu, A.T.S. Wee, Z.X. Shen, Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 49(4), 1362–1366 (2011). doi:10.1016/j.carbon.2010.12.002
O. Karvan, H. Atakul, Investigation of CuO/mesoporous SBA-15 sorbents for hot gas desulfurization. Fuel Process. Technol. 89(9), 908–915 (2008). doi:10.1016/j.fuproc.2008.03.004
D. Liu, S. Chen, X. Fei, C. Huang, Y. Zhang, Regenerable CuO-based adsorbents for low temperature desulfurization application. Ind. Eng. Chem. Res. 54(14), 3556–3562 (2015). doi:10.1021/acs.iecr.5b00180
Y.K. Song, K.B. Lee, H.S. Lee, Y.W. Rhee, Reactivity of copper oxide-based sorbent in coal gas desulfurization. Korean J. Chem. Eng. 17(6), 691–695 (2000). doi:10.1007/Bf02699119
F. Li, J. Wei, Y. Yang, G.H. Yang, T. Lei, Preparation of sorbent loaded with nano-CuO for room temperature to remove of hydrogen sulfide. Appl. Mech. Mater. Sens. Meas. Intell. Mater. II(475–476), 1329–1333 (2014). doi:10.4028/www.scientific.net/AMM.475-476.1329
D. Montes, E. Tocuyo, E. Gonzalez, D. Rodriguez, R. Solano, R. Atencio, M.A. Ramos, A. Moronta, Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous. Mater. 168(168), 111–120 (2013). doi:10.1016/j.micromeso.2012.09.018
H.S. Song, M.G. Park, W. Ahn, S.N. Lim, K.B. Yi, E. Croiset, Z. Chen, S.C. Nam, Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. Chem. Eng. J. 253(7), 264–273 (2014). doi:10.1016/j.cej.2014.05.058
A. Galtayries, J.P. Bonnelle, XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces. Surf. Interface Anal. 23(3), 171–179 (1995). doi:10.1002/sia.740230308
M. Seredych, O. Mabayoje, T.J. Bandosz, Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene. Langmuir 28(2), 1337–1346 (2012). doi:10.1021/La204277c
O. Mabayoje, M. Seredych, T.J. Bandosz, Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides. ACS Appl. Mater. Inter. 4(6), 3316–3324 (2012). doi:10.1021/am300702a