Polymer Film Supported Bimetallic Au–Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media
Corresponding Author: Zekerya Dursun
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 358-370
Abstract
Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles. The glassy carbon electrode was firstly covered with polymeric film electrochemically and then, Au, Ag, and Au–Ag nanoparticles were deposited on the polymeric film, respectively. The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was found that alloyed Au–Ag bimetallic nanoparticles are formed. Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media. The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane. Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.L. Henrietta, G.S. McGrady, Non-hydride systems of the main group elements as hydrogen storage materials. Coordin. Chem. Rev. 251(7), 925–935 (2007). doi:10.1016/j.ccr.2006.09.009
- Ö. Metin, E. Kayhan, S. Özkar, J.J. Schneider, Palladium nanoparticles supported on chemically derived graphene: an efficient and reusable catalyst for the dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 37(10), 8161–8169 (2012). doi:10.1016/j.ijhydene.2012.02.128
- R. Chiriac, F. Toche, U.B. Demirci, P. Miele, Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides. Int. J. Hydrogen Energy 37(8), 6749–6755 (2012). doi:10.1016/j.ijhydene.2012.01.037
- G.P. Rachiero, U.B. Demirci, P. Miele, Bimetallic RuCo and RuCu catalysts supported on γ-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 36(12), 7051–7065 (2011). doi:10.1016/j.ijhydene.2011.03.009
- J. Liao, H. Li, X. Zhang, Preparation of Ti supported Co film composed of Co nanofibers as catalyst for the hydrolysis of ammonia borane. Catal. Commun. 67, 1–5 (2015). doi:10.1016/j.catcom.2015.03.036
- A.C. Gangal, P. Kale, R. Edla, J. Manna, P. Sharma, Study of kinetics and thermal decomposition of ammonia borane in presence of silicon nanoparticles. Int. J. Hydrogen Energy 37(8), 6741–6748 (2012). doi:10.1016/j.ijhydene.2012.01.017
- M.B.M. Conchaa, M. Chateneta, F.H.B. Limab, E.A. TicianelliI, In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes. Electrochim. Acta 89, 607–615 (2013). doi:10.1016/j.electacta.2012.11.027
- M. Rakap, S. Özkar, Hydrogen generation from the hydrolysis of ammonia-borane using intra zeolite cobalt(0) nanoclusters catalyst. Int. J. Hydrogen Energy 35(8), 3341–3346 (2010). doi:10.1016/j.ijhydene.2010.01.138
- U.B. Demirci, P. Miele, Hydrolysis of solid ammonia borane. J. Power Sources 195(13), 4030–4035 (2010). doi:10.1016/j.jpowsour.2010.01.002
- M. Rakap, S. Özkar, Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 36(12), 7019–7027 (2011). doi:10.1016/j.ijhydene.2011.03.017
- S. Basu, A. Brockman, P. Gagare, Y. Zheng, P.V. Ramachandran, W.N. Delgass, J.P. Gore, Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. J. Power Sources 188(1), 238–243 (2009). doi:10.1016/j.jpowsour.2008.11.085
- M. Zahmakıran, T. Ayvalı, S. Akbayrak, S. Çalışkan, D. Çelik, S. Özkar, Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catal. Today 170(1), 76–84 (2011). doi:10.1016/j.cattod.2010.09.022
- X. Yang, F. Cheng, Z. Tao, J. Chen, Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles. J. Power Sources 196(5), 2785–2789 (2011). doi:10.1016/j.jpowsour.2010.09.079
- M. Wen, S. Zhou, Q. Wu, J. Zhang, Q. Wu, C. Wang, Y. Sun, Construction of NiCo-Pt nanopolyhedron inlay-structures and their highly efficient catalysis hydrolytic dehydrogenation toward ammonia borane. J. Power Sources 232(12), 86–92 (2013). doi:10.1016/j.jpowsour.2012.12.070
- V. Kiran, S.B. Kalidindi, B.R. Jagirdar, S. Sampath, Electrochemical oxidation of boron containing compounds on titanium carbide and its implications to direct fuel cell. Electrochim. Acta 56(28), 10493–10499 (2011). doi:10.1016/j.electacta.2011.04.032
- L.C. Nagle, J.F. Rohan, Nanoporous gold catalyst for direct ammonia borane fuel cells. J. Electrochem. Soc. 158(7), B772–B778 (2011). doi:10.1149/1.3583637
- L.C. Nagle, J.F. Rohan, Ammonia borane oxidation at gold microelectrodes in alkaline solutions. J. Electrochem. Soc. 153(153), C773–C776 (2006). doi:10.1149/1.2344842
- X.B. Zhang, S. Han, J.M. Yan, H. Shioyama, N. Kuriyama, T. Kobayashi, Q. Xu, Electrochemical oxidation of ammonia borane on gold electrode. Int. J. Hydrogen Energy 34(1), 174–179 (2009). doi:10.1016/j.ijhydene.2008.09.083
- X.B. Zhang, J.M. Yan, S. Han, H. Shioyama, Q. Xu, Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J. Am. Chem. Soc. 131(8), 2778–2779 (2009). doi:10.1021/ja808830a
- M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, M.A. Sheikh-Mohseni, A. Benvidi, B.B.F. Mirjalili, R. Zare, A self-assembled monolayer on gold nanoparticles modified electrode for simultaneous determination of isoproterenol and uric acid. Measurement 62, 88–96 (2015). doi:10.1016/j.measurement.2014.11.020
- B.E. Roustom, G. Siné, G. Fóti, C. Comninellis, A novel method for the preparation of bi-metallic (Pt–Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction. J. Appl. Electrochem. 37(11), 1227–1236 (2007). doi:10.1007/s10800-007-9359-4
- D. Duan, J. Liang, H. Liu, X. You, H. Wei, G. Wei, S. Liu, The effective carbon supported core–shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int. J. Hydrogen Energy 40(1), 488–500 (2015). doi:10.1016/j.ijhydene.2014.10.101
- N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdogen, Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015). doi:10.1039/c5ra03735b
- A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
- M. Taei, F. Hasanpour, H. Salavati, S.H. Banitaba, F. Kazemi, Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode. Matter. Sci. Eng. C 59, 120–128 (2016). doi:10.1016/j.msec.2015.06.002
- M.L. Yola, N. Atar, A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim. Acta 119(6), 24–31 (2014). doi:10.1016/j.electacta.2013.12.028
- M. Atmeh, B.E. Alcock-Earley, A conducting polymer/Ag nanoparticle composite as a nitrate sensor. J. Appl. Electrochem. 41(11), 1341–1347 (2011). doi:10.1007/s10800-011-0354-4
- M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte Part I. BH4-electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51(25), 5459–5467 (2006). doi:10.1016/j.electacta.2006.02.015
- Y. Lu, W. Chen, Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 197(1), 107–110 (2012). doi:10.1016/j.jpowsour.2011.09.033
- S. Yallappa, J. Manjanna, B.L. Dhananjaya, U. Vishwanatha, B. Ravishankar, H. Gururaj, P. Niranjana, B.S. Hungund, Phytochemically functionalized Cu and Ag Nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano-Micro Lett. 8(2), 120–130 (2016). doi:10.1007/s40820-015-0066-0
- Y. Jiang, J. Gang, S.Y. Xu, Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett. 4(4), 228–234 (2012). doi:10.3786/nml.v4i4.p228-234
- S.U. Karabiberoğlu, E.M. Ayan, Z. Dursun, Electroanalysis of caffeic acid in red wine and investigation of thermodynamic parameters using an Ag nanoparticles modified poly (thiophene) film glassy carbon electrode. Electroanalysis 25(8), 1933–1945 (2013). doi:10.1002/elan.201300091
- M.F. Juárez, G. Soldano, H. Guesmi, F. Tielens, E. Santos, Catalytic properties of Au electrodes modified by an underlayer of Pd. Surf. Sci. 631, 235–247 (2015). doi:10.1016/j.susc.2014.06.015
- I. Banerjee, V. Kumaran, V. Santhanam, Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 119(11), 5982–5987 (2015). doi:10.1021/jp5113284
- Q. Yi, J. Zhang, A. Chen, X. Liu, G. Xu, Z. Zhou, Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. J. Appl. Electrochem. 38(5), 695–701 (2008). doi:10.1007/s10800-008-9490-x
- D.M.D. Anjos, K.B. Kokoh, J.M. LéGer, A.R. De Andrade, P. Olivi, G. Tremiliosi-Filho, Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J. Appl. Electrochem. 36(12), 1391–1397 (2006). doi:10.1007/s10800-006-9222-z
- R. Ojani, J.B. Raoof, E. Hasheminejad, One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction. Int. J. Hydrogen Energy 38(1), 92–99 (2013). doi:10.1016/j.ijhydene.2012.10.015
- M. Mohl, D. Dobo, A. Kukovecz, Z. Konya, K. Kordas, J. Wei, R. Vajtai, P.M. Ajayan, Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 115(19), 9403–9409 (2011). doi:10.1021/jp112128g
- F.H. Ko, M.R. Tai, F.K. Liu, Y.C. Chang, Au–Ag core–shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering. Sens. Actuator B 211, 283–289 (2015). doi:10.1016/j.snb.2015.01.047
- J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Elecetroanal. Chem. 641(1–2), 71–77 (2010). doi:10.1016/j.jelechem.2009.12.018
- Z. Dursun, Ş. Ulubay, B. Gelmez, F.N. Ertas, Electrocatalytic reduction of oxygen on a Pd ad-layer modified Au (111) electrode in alkaline solution. Catal. Lett. 132(1–2), 127–132 (2009). doi:10.1007/s10562-009-0058-0
- K. Jayakumar, R. Rajesh, V. Dharuman, R. Venkatasan, J.H. Hahn, S.K. Pandian, Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing. Biosens. Bioelectron. 31(1), 406–412 (2012). doi:10.1016/j.bios.2011.11.001
- Z. Li, G.L. Fan, Z.Q. Tan, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
- S. Jayabal, R. Ramaraj, Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction. Appl. Catal. A-Gen. 470(2), 369–375 (2014). doi:10.1016/j.apcata.2013.10.056
- Q. Shi, G. Diao, S. Mu, The electrocatalytic oxidation of glucose on the bimetallic Au–Ag particles-modified reduced graphene oxide electrodes in alkaline solutions. Electrochim. Acta 133(7), 335–346 (2014). doi:10.1016/j.ultsonch.2014.02.006
- B. Neppolian, C. Wang, M. Ashokkumar, Sonochemically synthesized mono and bimetallic Au–Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity. Ultrason. Sonochem. 21(6), 1948–1953 (2014). doi:10.1016/j.ultsonch.2014.02.006
- C.-W. Yen, M.-L. Lin, A. Wang, S.-A. Chen, J.-M. Chen, C.-Y. Mou, CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C 113(41), 17831–17839 (2009). doi:10.1021/jp9037683
- T.-H. Tsai, S. Thiagarajan, S.-M. Chen, Green synthesized Au–Ag bimetallic nanoparticles modified electrodes for the amperometric detection of hydrogen peroxide. J. Appl. Electrochem. 40(12), 2071–2076 (2010). doi:10.1007/s10800-010-0188-5
- L. Rahman, A. Shah, S.B. Khan, A.M. Asiri, H. Hussain et al., Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J. Appl. Electrochem. 45(5), 463–472 (2015). doi:10.1007/s10800-015-0807-2
- Ç.C. Koçak, Z. Dursun, Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly (p-aminophenol) film modified electrode. J. Electroanal. Chem. 694(2), 94–103 (2013). doi:10.1016/j.jelechem.2013.02.006
- A. Bayler, A. Schier, G.A. Bowmaker, H. Schmidbaur, Gold is smaller than silver. crystal structures of [bis(trimesitylphosphine)gold(i)] and [bis(trimesitylphosphine)silver(i)] tetrafluoroborate. J. Am. Chem. Soc. 118(29), 7006–7007 (1996). doi:10.1021/ja961363v
- D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuator B 148(1), 247–252 (2010). doi:10.1016/j.snb.2010.04.031
- Ç.C. Bakır, N. Sahin, R. Polat, Z. Dursun, Electrocatalytic reduction of oxygen on bimetallic copper-gold nanoparticles- multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 662(2), 275–280 (2011). doi:10.1016/j.jelechem.2011.06.016
- X. Zhang, C. Wei, Y. Song, X. Song, Z. Sun, Nanoporous Ag-ZrO2 composites prepared by chemical dealloying for borohydride electrooxidation. Int. J. Hydrogen Energy 39(28), 15646–15655 (2014). doi:10.1016/j.ijhydene.2014.07.102
- D. Zhao, Y. Yu, C. Xu, A sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin based on a hierarchical nanoporous AuAg alloy. RSC Adv. 6, 87–93 (2016). doi:10.1039/c5ra24300a
- Y. Zhang, G. Gao, Q. Qian, D. Cui, Chloroplasts-mediated biosynthesis of nanoscale Au–Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res. Lett. 7, 475–482 (2012). doi:10.1186/1556-276X-7-475
- A.Q. Wang, J.H. Liu, S.D. Liu, T.S. Lin, C.Y. Mou, A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J. Catal. 233(1), 186–197 (2005). doi:10.1016/j.jcat.2005.04.028
- E. Laviron, The use of linear potential sweep voltammetry and of A.C. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and redox modified electrodes. J. Electroanal. Chem. 100(1–2), 263–270 (1979). doi:10.1016/S0022-0728(79)80167-9
- W. Guo, M. Geng, L. Zhou, S. Chao, R. Yang, H. An, H. Liu, C. Cui, Multi-walled carbon nanotube modified electrode for sensitive determination of an anesthetic drug: tetracaine hydrochloride. Int. J. Electrochem. Sci. 8(4), 5369–5381 (2013)
- A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Application (Wiley, New York, 2001)
- F.H.B. Lima, A.M. Pasqualeti, M.B.M. Concha, M. Chatenet, E.A. Ticianelli, Borohydride electrooxidation on Au and Pt electrodes. Electrochim. Acta 84(1), 202–212 (2012). doi:10.1016/j.electacta.2012.05.030
- H. Cheng, K. Scott, Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim. Acta 51(17), 3429–3433 (2006). doi:10.1016/j.electacta.2005.09.038
- E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim. Acta 49(6), 965–978 (2004). doi:10.1016/j.electacta.2003.10.008
- M.V. Mirkin, H. Yang, A.J. Bard, Borohydride oxidation at a gold electrode. J. Electrochem. Soc. 139(8), 2212–2217 (1992). doi:10.1149/1.2221204
- J.L. Wei, X.Y. Wang, Y. Wang, Q.Q. Chen, F. Pei, Y.S. Wang, Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int. J. Hydrogen Energy 34(8), 3360–3366 (2009). doi:10.1016/j.ijhydene.2009.02.014
References
W.L. Henrietta, G.S. McGrady, Non-hydride systems of the main group elements as hydrogen storage materials. Coordin. Chem. Rev. 251(7), 925–935 (2007). doi:10.1016/j.ccr.2006.09.009
Ö. Metin, E. Kayhan, S. Özkar, J.J. Schneider, Palladium nanoparticles supported on chemically derived graphene: an efficient and reusable catalyst for the dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 37(10), 8161–8169 (2012). doi:10.1016/j.ijhydene.2012.02.128
R. Chiriac, F. Toche, U.B. Demirci, P. Miele, Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides. Int. J. Hydrogen Energy 37(8), 6749–6755 (2012). doi:10.1016/j.ijhydene.2012.01.037
G.P. Rachiero, U.B. Demirci, P. Miele, Bimetallic RuCo and RuCu catalysts supported on γ-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 36(12), 7051–7065 (2011). doi:10.1016/j.ijhydene.2011.03.009
J. Liao, H. Li, X. Zhang, Preparation of Ti supported Co film composed of Co nanofibers as catalyst for the hydrolysis of ammonia borane. Catal. Commun. 67, 1–5 (2015). doi:10.1016/j.catcom.2015.03.036
A.C. Gangal, P. Kale, R. Edla, J. Manna, P. Sharma, Study of kinetics and thermal decomposition of ammonia borane in presence of silicon nanoparticles. Int. J. Hydrogen Energy 37(8), 6741–6748 (2012). doi:10.1016/j.ijhydene.2012.01.017
M.B.M. Conchaa, M. Chateneta, F.H.B. Limab, E.A. TicianelliI, In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes. Electrochim. Acta 89, 607–615 (2013). doi:10.1016/j.electacta.2012.11.027
M. Rakap, S. Özkar, Hydrogen generation from the hydrolysis of ammonia-borane using intra zeolite cobalt(0) nanoclusters catalyst. Int. J. Hydrogen Energy 35(8), 3341–3346 (2010). doi:10.1016/j.ijhydene.2010.01.138
U.B. Demirci, P. Miele, Hydrolysis of solid ammonia borane. J. Power Sources 195(13), 4030–4035 (2010). doi:10.1016/j.jpowsour.2010.01.002
M. Rakap, S. Özkar, Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 36(12), 7019–7027 (2011). doi:10.1016/j.ijhydene.2011.03.017
S. Basu, A. Brockman, P. Gagare, Y. Zheng, P.V. Ramachandran, W.N. Delgass, J.P. Gore, Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. J. Power Sources 188(1), 238–243 (2009). doi:10.1016/j.jpowsour.2008.11.085
M. Zahmakıran, T. Ayvalı, S. Akbayrak, S. Çalışkan, D. Çelik, S. Özkar, Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catal. Today 170(1), 76–84 (2011). doi:10.1016/j.cattod.2010.09.022
X. Yang, F. Cheng, Z. Tao, J. Chen, Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles. J. Power Sources 196(5), 2785–2789 (2011). doi:10.1016/j.jpowsour.2010.09.079
M. Wen, S. Zhou, Q. Wu, J. Zhang, Q. Wu, C. Wang, Y. Sun, Construction of NiCo-Pt nanopolyhedron inlay-structures and their highly efficient catalysis hydrolytic dehydrogenation toward ammonia borane. J. Power Sources 232(12), 86–92 (2013). doi:10.1016/j.jpowsour.2012.12.070
V. Kiran, S.B. Kalidindi, B.R. Jagirdar, S. Sampath, Electrochemical oxidation of boron containing compounds on titanium carbide and its implications to direct fuel cell. Electrochim. Acta 56(28), 10493–10499 (2011). doi:10.1016/j.electacta.2011.04.032
L.C. Nagle, J.F. Rohan, Nanoporous gold catalyst for direct ammonia borane fuel cells. J. Electrochem. Soc. 158(7), B772–B778 (2011). doi:10.1149/1.3583637
L.C. Nagle, J.F. Rohan, Ammonia borane oxidation at gold microelectrodes in alkaline solutions. J. Electrochem. Soc. 153(153), C773–C776 (2006). doi:10.1149/1.2344842
X.B. Zhang, S. Han, J.M. Yan, H. Shioyama, N. Kuriyama, T. Kobayashi, Q. Xu, Electrochemical oxidation of ammonia borane on gold electrode. Int. J. Hydrogen Energy 34(1), 174–179 (2009). doi:10.1016/j.ijhydene.2008.09.083
X.B. Zhang, J.M. Yan, S. Han, H. Shioyama, Q. Xu, Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J. Am. Chem. Soc. 131(8), 2778–2779 (2009). doi:10.1021/ja808830a
M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, M.A. Sheikh-Mohseni, A. Benvidi, B.B.F. Mirjalili, R. Zare, A self-assembled monolayer on gold nanoparticles modified electrode for simultaneous determination of isoproterenol and uric acid. Measurement 62, 88–96 (2015). doi:10.1016/j.measurement.2014.11.020
B.E. Roustom, G. Siné, G. Fóti, C. Comninellis, A novel method for the preparation of bi-metallic (Pt–Au) nanoparticles on boron doped diamond (BDD) substrate: application to the oxygen reduction reaction. J. Appl. Electrochem. 37(11), 1227–1236 (2007). doi:10.1007/s10800-007-9359-4
D. Duan, J. Liang, H. Liu, X. You, H. Wei, G. Wei, S. Liu, The effective carbon supported core–shell structure of Ni@Au catalysts for electro-oxidation of borohydride. Int. J. Hydrogen Energy 40(1), 488–500 (2015). doi:10.1016/j.ijhydene.2014.10.101
N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdogen, Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015). doi:10.1039/c5ra03735b
A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
M. Taei, F. Hasanpour, H. Salavati, S.H. Banitaba, F. Kazemi, Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode. Matter. Sci. Eng. C 59, 120–128 (2016). doi:10.1016/j.msec.2015.06.002
M.L. Yola, N. Atar, A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim. Acta 119(6), 24–31 (2014). doi:10.1016/j.electacta.2013.12.028
M. Atmeh, B.E. Alcock-Earley, A conducting polymer/Ag nanoparticle composite as a nitrate sensor. J. Appl. Electrochem. 41(11), 1341–1347 (2011). doi:10.1007/s10800-011-0354-4
M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte Part I. BH4-electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51(25), 5459–5467 (2006). doi:10.1016/j.electacta.2006.02.015
Y. Lu, W. Chen, Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 197(1), 107–110 (2012). doi:10.1016/j.jpowsour.2011.09.033
S. Yallappa, J. Manjanna, B.L. Dhananjaya, U. Vishwanatha, B. Ravishankar, H. Gururaj, P. Niranjana, B.S. Hungund, Phytochemically functionalized Cu and Ag Nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano-Micro Lett. 8(2), 120–130 (2016). doi:10.1007/s40820-015-0066-0
Y. Jiang, J. Gang, S.Y. Xu, Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett. 4(4), 228–234 (2012). doi:10.3786/nml.v4i4.p228-234
S.U. Karabiberoğlu, E.M. Ayan, Z. Dursun, Electroanalysis of caffeic acid in red wine and investigation of thermodynamic parameters using an Ag nanoparticles modified poly (thiophene) film glassy carbon electrode. Electroanalysis 25(8), 1933–1945 (2013). doi:10.1002/elan.201300091
M.F. Juárez, G. Soldano, H. Guesmi, F. Tielens, E. Santos, Catalytic properties of Au electrodes modified by an underlayer of Pd. Surf. Sci. 631, 235–247 (2015). doi:10.1016/j.susc.2014.06.015
I. Banerjee, V. Kumaran, V. Santhanam, Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 119(11), 5982–5987 (2015). doi:10.1021/jp5113284
Q. Yi, J. Zhang, A. Chen, X. Liu, G. Xu, Z. Zhou, Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. J. Appl. Electrochem. 38(5), 695–701 (2008). doi:10.1007/s10800-008-9490-x
D.M.D. Anjos, K.B. Kokoh, J.M. LéGer, A.R. De Andrade, P. Olivi, G. Tremiliosi-Filho, Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J. Appl. Electrochem. 36(12), 1391–1397 (2006). doi:10.1007/s10800-006-9222-z
R. Ojani, J.B. Raoof, E. Hasheminejad, One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction. Int. J. Hydrogen Energy 38(1), 92–99 (2013). doi:10.1016/j.ijhydene.2012.10.015
M. Mohl, D. Dobo, A. Kukovecz, Z. Konya, K. Kordas, J. Wei, R. Vajtai, P.M. Ajayan, Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 115(19), 9403–9409 (2011). doi:10.1021/jp112128g
F.H. Ko, M.R. Tai, F.K. Liu, Y.C. Chang, Au–Ag core–shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering. Sens. Actuator B 211, 283–289 (2015). doi:10.1016/j.snb.2015.01.047
J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Elecetroanal. Chem. 641(1–2), 71–77 (2010). doi:10.1016/j.jelechem.2009.12.018
Z. Dursun, Ş. Ulubay, B. Gelmez, F.N. Ertas, Electrocatalytic reduction of oxygen on a Pd ad-layer modified Au (111) electrode in alkaline solution. Catal. Lett. 132(1–2), 127–132 (2009). doi:10.1007/s10562-009-0058-0
K. Jayakumar, R. Rajesh, V. Dharuman, R. Venkatasan, J.H. Hahn, S.K. Pandian, Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing. Biosens. Bioelectron. 31(1), 406–412 (2012). doi:10.1016/j.bios.2011.11.001
Z. Li, G.L. Fan, Z.Q. Tan, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
S. Jayabal, R. Ramaraj, Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction. Appl. Catal. A-Gen. 470(2), 369–375 (2014). doi:10.1016/j.apcata.2013.10.056
Q. Shi, G. Diao, S. Mu, The electrocatalytic oxidation of glucose on the bimetallic Au–Ag particles-modified reduced graphene oxide electrodes in alkaline solutions. Electrochim. Acta 133(7), 335–346 (2014). doi:10.1016/j.ultsonch.2014.02.006
B. Neppolian, C. Wang, M. Ashokkumar, Sonochemically synthesized mono and bimetallic Au–Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity. Ultrason. Sonochem. 21(6), 1948–1953 (2014). doi:10.1016/j.ultsonch.2014.02.006
C.-W. Yen, M.-L. Lin, A. Wang, S.-A. Chen, J.-M. Chen, C.-Y. Mou, CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C 113(41), 17831–17839 (2009). doi:10.1021/jp9037683
T.-H. Tsai, S. Thiagarajan, S.-M. Chen, Green synthesized Au–Ag bimetallic nanoparticles modified electrodes for the amperometric detection of hydrogen peroxide. J. Appl. Electrochem. 40(12), 2071–2076 (2010). doi:10.1007/s10800-010-0188-5
L. Rahman, A. Shah, S.B. Khan, A.M. Asiri, H. Hussain et al., Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J. Appl. Electrochem. 45(5), 463–472 (2015). doi:10.1007/s10800-015-0807-2
Ç.C. Koçak, Z. Dursun, Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly (p-aminophenol) film modified electrode. J. Electroanal. Chem. 694(2), 94–103 (2013). doi:10.1016/j.jelechem.2013.02.006
A. Bayler, A. Schier, G.A. Bowmaker, H. Schmidbaur, Gold is smaller than silver. crystal structures of [bis(trimesitylphosphine)gold(i)] and [bis(trimesitylphosphine)silver(i)] tetrafluoroborate. J. Am. Chem. Soc. 118(29), 7006–7007 (1996). doi:10.1021/ja961363v
D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuator B 148(1), 247–252 (2010). doi:10.1016/j.snb.2010.04.031
Ç.C. Bakır, N. Sahin, R. Polat, Z. Dursun, Electrocatalytic reduction of oxygen on bimetallic copper-gold nanoparticles- multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 662(2), 275–280 (2011). doi:10.1016/j.jelechem.2011.06.016
X. Zhang, C. Wei, Y. Song, X. Song, Z. Sun, Nanoporous Ag-ZrO2 composites prepared by chemical dealloying for borohydride electrooxidation. Int. J. Hydrogen Energy 39(28), 15646–15655 (2014). doi:10.1016/j.ijhydene.2014.07.102
D. Zhao, Y. Yu, C. Xu, A sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin based on a hierarchical nanoporous AuAg alloy. RSC Adv. 6, 87–93 (2016). doi:10.1039/c5ra24300a
Y. Zhang, G. Gao, Q. Qian, D. Cui, Chloroplasts-mediated biosynthesis of nanoscale Au–Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res. Lett. 7, 475–482 (2012). doi:10.1186/1556-276X-7-475
A.Q. Wang, J.H. Liu, S.D. Liu, T.S. Lin, C.Y. Mou, A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J. Catal. 233(1), 186–197 (2005). doi:10.1016/j.jcat.2005.04.028
E. Laviron, The use of linear potential sweep voltammetry and of A.C. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and redox modified electrodes. J. Electroanal. Chem. 100(1–2), 263–270 (1979). doi:10.1016/S0022-0728(79)80167-9
W. Guo, M. Geng, L. Zhou, S. Chao, R. Yang, H. An, H. Liu, C. Cui, Multi-walled carbon nanotube modified electrode for sensitive determination of an anesthetic drug: tetracaine hydrochloride. Int. J. Electrochem. Sci. 8(4), 5369–5381 (2013)
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Application (Wiley, New York, 2001)
F.H.B. Lima, A.M. Pasqualeti, M.B.M. Concha, M. Chatenet, E.A. Ticianelli, Borohydride electrooxidation on Au and Pt electrodes. Electrochim. Acta 84(1), 202–212 (2012). doi:10.1016/j.electacta.2012.05.030
H. Cheng, K. Scott, Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim. Acta 51(17), 3429–3433 (2006). doi:10.1016/j.electacta.2005.09.038
E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim. Acta 49(6), 965–978 (2004). doi:10.1016/j.electacta.2003.10.008
M.V. Mirkin, H. Yang, A.J. Bard, Borohydride oxidation at a gold electrode. J. Electrochem. Soc. 139(8), 2212–2217 (1992). doi:10.1149/1.2221204
J.L. Wei, X.Y. Wang, Y. Wang, Q.Q. Chen, F. Pei, Y.S. Wang, Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int. J. Hydrogen Energy 34(8), 3360–3366 (2009). doi:10.1016/j.ijhydene.2009.02.014