Phytochemically Functionalized Cu and Ag Nanoparticles Embedded in MWCNTs for Enhanced Antimicrobial and Anticancer Properties
Corresponding Author: J. Manjanna
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 120-130
Abstract
Nanomedicine is an emerging field concerned with the use of precision engineered nanomaterials, which leads to the development of novel remedial and diagnostic modalities for human use. In this study, Cu(NO3)2 and AgNO3 precursors were reduced to copper nanoparticles (CuNPs) and silver nanoparticles (AgNPs) using Terminalia arjuna bark extracts under microwave irradiation in the presence of well-dispersed multi-walled carbon nanotubes (MWCNTs) in aqueous medium. The formation of CuNPs or AgNPs and their functionalization with MWCNTs via bioactive molecules of plant extract were evidenced from UV–Vis spectra, XRD, FTIR, FESEM, EDX, and TEM images. The phytochemically functionalized Cu-MWCNTs and Ag-MWCNTs nanomaterials showed enhanced biocide activity, and the inhibitory activity for bacteria was higher than that of fungus. Furthermore, these biohybrid nanomaterials are non-toxic to normal epithelial cells (Vero), whereas they are highly toxic for tested human cancer cells of MDA-MB-231, HeLa, SiHa, and Hep-G2. The cell viability was found to decrease with the increasing dose from 10 to 50 µg mL−1, as well as incubation time from 24 to 72 h. For instance, the cell viability was found to be ~91 % for normal Vero cells and ~76 % for cancer cells for lower dose of 10 µg mL−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Catauro, M.G. Raucci, G.F.D. De, A. Marotta, Antibacterial and bioactive silver containing Na2O·CaO·2SiO2 glass prepared by sol–gel method. J. Mater. Sci. Mater. Med. 15(7), 831–837 (2004). doi:10.1023/B:JMSM.0000032825.51052.00
- J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Handott, A. Fish-Man, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial. Int. 23(4), 368–374 (2003)
- V. Ratnika, B. Seema, S.G. Mulayam, A review: biological synthesis of silver and copper nano particles. Nano Biomed. Eng. 4(2), 99–106 (2012). doi:10.5101/nbe.v4i2.p99-106
- P.K. Brown, A.T. Qureshi, A.N. Moll, D.J. Hayes, W.T. Monroe, Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7(4), 2948–2959 (2013). doi:10.1021/nn304868y
- P. Szymanski, T. Fraczek, M. Markowicz, E.M. Olasik, Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25(6), 1089–1112 (2012). doi:10.1007/s10534-012-9578-y
- C. Damm, H. Munstedt, A. Rosch, The antimicrobial efficacy of polyamide 6/silver-nano and microcomposites. Mater. Chem. Phys. 108(1), 61–66 (2008). doi:10.1016/j.matchemphys.2007.09.002
- S. Taheri, G. Baier, P. Majewski, M. Barton, R. Forch, K. Landfester, K. Vasilev, Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J. Mater. Chem. B 2, 1838–1845 (2014). doi:10.1039/c3tb21690j
- A.S. Thakor, S.S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63(6), 395–418 (2013). doi:10.3322/caac.21199
- Y. Tauran, A. Brioude, A.W. Coleman, M. Rhimi, B. Kim, Molecular recognition by gold, silver and copper nanoparticles. World J. Biol. Chem. 4(3), 35–63 (2013)
- V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldie, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17(26), 2679–2694 (2007). doi:10.1039/b700857k
- G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal nanopartictes and related materials supported on carbon nanotubes: methods and applications. Small 2(2), 182–193 (2006). doi:10.1002/smll.200500324
- Y. Zhao, L. Fan, H. Zhong, Y. Li, S. Yang, Platinum nanoparticle clusters immobilized on multi-walled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv. Funct. Mater. 17(9), 1537–1541 (2007). doi:10.1002/adfm.200600416
- Y.T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani, Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Edit. 45(3), 407–411 (2005). doi:10.1002/anie.200501792
- H.S. Kim, H. Lee, K.S. Han, J.H. Kim, M.S. Song, M.S. Park, J.Y. Lee, J.K. Kang, Hydrogen storage in Ni nanoparticle-dispersed multi-walled carbon nanotubes. J. Phys. Chem. B 109(18), 8983–8986 (2005). doi:10.1021/jp044727b
- L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3), 363–372 (2000). doi:10.1016/S0008-6223(99)00112-8
- D.J. Guo, H.L. Li, Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43(6), 1259–1264 (2005). doi:10.1016/j.carbon.2004.12.021
- Y.C. Chen, R.J. Young, J.V. Macpherson, N.R. Wilson, Single-walled carbon nanotube networks decorated with silver nanoparticles: a novel graded SERS substrate. J. Phys. Chem. C 111(44), 16167–16173 (2007). doi:10.1021/jp073771z
- K.C. Chin, A. Gohel, W.Z. Chen, H.I. Elim, W. Ji, G.L. Chong, C.H. Sow, A.T.S. Wee, Gold and silver coated carbon nanotubes: an improved broad-band optical limiter. Chem. Phys. Lett. 409(1–3), 85–88 (2005). doi:10.1016/j.cplett.2005.04.092
- S.D. Oh, B.K. So, S.H. Choi, A. Gopalan, K.P. Lee, K.R. Yoon, Dispersing of Ag, Pd, and Pt-Ru alloy nanoparticles on single-walled carbon nanotubes by γ-irradiation. Mater. Lett. 59(10), 1121–1124 (2005). doi:10.1016/j.matlet.2004.10.080
- S. Yallappa, J. Manjanna, M.A. Sindhe, N.D. Satyanarayan, S.N. Pramod, K. Nagaraja, Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta A 110, 108–115 (2013). doi:10.1016/j.saa.2013.03.005
- S. Yallappa, J. Manjanna, Biological evaluation of silver nanoparticles obtained from T. arjuna bark extract as both reducing and capping agent. J. Cluster Sci. 25(5), 1449–1462 (2014). doi:10.1007/s10876-014-0722-4
- R. Mohan, A.M. Shanmugharaj, R.S. Hun, An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J. Biomed. Mater. Res. B 96(1), 119–126 (2011). doi:10.1002/jbm.b.31747
- J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27(16), 10256–10264 (2011). doi:10.1021/la201851r
- S. Shrivastava, B.E. Tanmay, A. Roy, G. Singh, P.R. Rao, D. Dash, Characterization of enhanced antibacterial affects of novel silver nanoparticles. Nanotechnology 18(22), 1–9 (2007). doi:10.1088/0957-4484/18/22/225103
- M. Prasenjit, S. Mahua, C.S. Parames, Protection of arsenic-induced hepatic disorder by arjunolic Acid. Basic Clin. Pharmacol. 101(5), 333–338 (2007). doi:10.1111/j.1742-7843.2007.00132.x
- G. Mie, Beitrage zur optik truber medien, speziell kolloidaler metallosungen. Ann. Phys. 330(3), 377–445 (1908). doi:10.1002/andp.19083300302
- J.H. Castillo, T. Rindzeciclus, L.V. Novoa, W.E. Svendsen, N. Rozlosnik, A. Boisen, P. Escobar, F. Martinez, J.C. Leon, Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over expressing folate receptors. J. Mater. Chem. B 1, 1475–1481 (2013). doi:10.1039/c2tb00434h
- M. Sastry, A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 28(4), 313–318 (2003). doi:10.1016/S0927-7765(02)00174-1
- M. Terrones, W.K. Hsu, A. Schilder, H.N. Grobert, J.P. Hare, Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66(3), 307–317 (1998). doi:10.1007/s003390050671
- M.M. Kholoud, A. El-Noura, A. Eftaihab, A. Al-Warthanb, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3(3), 135–140 (2010). doi:10.1016/j.arabjc.2010.04.008
- S.S. Shankar, A. Ahamad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822–1826 (2003). doi:10.1039/b303808b
- X. Jiang, D. Sun, G. Zhang, N. He, H. Lin, J. Huang, T.O. Wubah, Q. Li, Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract. J. Nanopart. Res. 15, 1741–1751 (2013). doi:10.1007/s11051-013-1741-z
- J.P. Guggenbichler, M. Boswald, S. Lugauer, T. Krall, A new technology of micro dispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27(1), S16–S23 (1999). doi:10.1007/BF02561612
- B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2), 139–148 (2007). doi:10.1016/j.burns.2006.06.010
- S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13), 6409–6413 (2008). doi:10.1021/la800951v
- A. Niu, Y.J. Han, J.A. Wu, N. Yu, Q. Xu, Synthesis of one-dimensional carbon nanomaterials Wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C 114(29), 12728–12735 (2010). doi:10.1021/jp104720w
- Y. Jiang, J. Gang, S.Y. Xu, Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett. 4(4), 228–234 (2012). doi:10.1007/BF03353719
- I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275(1), 177–182 (2004). doi:10.1016/j.jcis.2004.02.012
- V.K. Rangari, G.M. Mohammad, S. Jeelani, A. Hundley, K. Vig, S.R. Singh, S. Pillai, Synthesis of Ag/CNTs hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposites fibers for antimicrobial applications. Nanotechnology 21(9), 5102–5112 (2010). doi:10.1088/0957-4484/21/9/095102
- A. Mewada, S. Pandey, G. Oza, R. Shah, M. Thakur, A. Gupta, M. Sharon, A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes. J. Bionanosci. 7(2), 174–180 (2013). doi:10.1166/jbns.2013.1107
- M.A.F. Molina, E.M. Gamboa, C.A.S. Rivera, R.A.G. Flores, P.Z. Benavides et al., Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 29, 148–155 (2010). doi:10.1186/1756-9966-29-148
References
M. Catauro, M.G. Raucci, G.F.D. De, A. Marotta, Antibacterial and bioactive silver containing Na2O·CaO·2SiO2 glass prepared by sol–gel method. J. Mater. Sci. Mater. Med. 15(7), 831–837 (2004). doi:10.1023/B:JMSM.0000032825.51052.00
J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Handott, A. Fish-Man, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial. Int. 23(4), 368–374 (2003)
V. Ratnika, B. Seema, S.G. Mulayam, A review: biological synthesis of silver and copper nano particles. Nano Biomed. Eng. 4(2), 99–106 (2012). doi:10.5101/nbe.v4i2.p99-106
P.K. Brown, A.T. Qureshi, A.N. Moll, D.J. Hayes, W.T. Monroe, Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7(4), 2948–2959 (2013). doi:10.1021/nn304868y
P. Szymanski, T. Fraczek, M. Markowicz, E.M. Olasik, Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25(6), 1089–1112 (2012). doi:10.1007/s10534-012-9578-y
C. Damm, H. Munstedt, A. Rosch, The antimicrobial efficacy of polyamide 6/silver-nano and microcomposites. Mater. Chem. Phys. 108(1), 61–66 (2008). doi:10.1016/j.matchemphys.2007.09.002
S. Taheri, G. Baier, P. Majewski, M. Barton, R. Forch, K. Landfester, K. Vasilev, Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J. Mater. Chem. B 2, 1838–1845 (2014). doi:10.1039/c3tb21690j
A.S. Thakor, S.S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63(6), 395–418 (2013). doi:10.3322/caac.21199
Y. Tauran, A. Brioude, A.W. Coleman, M. Rhimi, B. Kim, Molecular recognition by gold, silver and copper nanoparticles. World J. Biol. Chem. 4(3), 35–63 (2013)
V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldie, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17(26), 2679–2694 (2007). doi:10.1039/b700857k
G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal nanopartictes and related materials supported on carbon nanotubes: methods and applications. Small 2(2), 182–193 (2006). doi:10.1002/smll.200500324
Y. Zhao, L. Fan, H. Zhong, Y. Li, S. Yang, Platinum nanoparticle clusters immobilized on multi-walled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv. Funct. Mater. 17(9), 1537–1541 (2007). doi:10.1002/adfm.200600416
Y.T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani, Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Edit. 45(3), 407–411 (2005). doi:10.1002/anie.200501792
H.S. Kim, H. Lee, K.S. Han, J.H. Kim, M.S. Song, M.S. Park, J.Y. Lee, J.K. Kang, Hydrogen storage in Ni nanoparticle-dispersed multi-walled carbon nanotubes. J. Phys. Chem. B 109(18), 8983–8986 (2005). doi:10.1021/jp044727b
L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3), 363–372 (2000). doi:10.1016/S0008-6223(99)00112-8
D.J. Guo, H.L. Li, Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43(6), 1259–1264 (2005). doi:10.1016/j.carbon.2004.12.021
Y.C. Chen, R.J. Young, J.V. Macpherson, N.R. Wilson, Single-walled carbon nanotube networks decorated with silver nanoparticles: a novel graded SERS substrate. J. Phys. Chem. C 111(44), 16167–16173 (2007). doi:10.1021/jp073771z
K.C. Chin, A. Gohel, W.Z. Chen, H.I. Elim, W. Ji, G.L. Chong, C.H. Sow, A.T.S. Wee, Gold and silver coated carbon nanotubes: an improved broad-band optical limiter. Chem. Phys. Lett. 409(1–3), 85–88 (2005). doi:10.1016/j.cplett.2005.04.092
S.D. Oh, B.K. So, S.H. Choi, A. Gopalan, K.P. Lee, K.R. Yoon, Dispersing of Ag, Pd, and Pt-Ru alloy nanoparticles on single-walled carbon nanotubes by γ-irradiation. Mater. Lett. 59(10), 1121–1124 (2005). doi:10.1016/j.matlet.2004.10.080
S. Yallappa, J. Manjanna, M.A. Sindhe, N.D. Satyanarayan, S.N. Pramod, K. Nagaraja, Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta A 110, 108–115 (2013). doi:10.1016/j.saa.2013.03.005
S. Yallappa, J. Manjanna, Biological evaluation of silver nanoparticles obtained from T. arjuna bark extract as both reducing and capping agent. J. Cluster Sci. 25(5), 1449–1462 (2014). doi:10.1007/s10876-014-0722-4
R. Mohan, A.M. Shanmugharaj, R.S. Hun, An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J. Biomed. Mater. Res. B 96(1), 119–126 (2011). doi:10.1002/jbm.b.31747
J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27(16), 10256–10264 (2011). doi:10.1021/la201851r
S. Shrivastava, B.E. Tanmay, A. Roy, G. Singh, P.R. Rao, D. Dash, Characterization of enhanced antibacterial affects of novel silver nanoparticles. Nanotechnology 18(22), 1–9 (2007). doi:10.1088/0957-4484/18/22/225103
M. Prasenjit, S. Mahua, C.S. Parames, Protection of arsenic-induced hepatic disorder by arjunolic Acid. Basic Clin. Pharmacol. 101(5), 333–338 (2007). doi:10.1111/j.1742-7843.2007.00132.x
G. Mie, Beitrage zur optik truber medien, speziell kolloidaler metallosungen. Ann. Phys. 330(3), 377–445 (1908). doi:10.1002/andp.19083300302
J.H. Castillo, T. Rindzeciclus, L.V. Novoa, W.E. Svendsen, N. Rozlosnik, A. Boisen, P. Escobar, F. Martinez, J.C. Leon, Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells over expressing folate receptors. J. Mater. Chem. B 1, 1475–1481 (2013). doi:10.1039/c2tb00434h
M. Sastry, A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 28(4), 313–318 (2003). doi:10.1016/S0927-7765(02)00174-1
M. Terrones, W.K. Hsu, A. Schilder, H.N. Grobert, J.P. Hare, Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66(3), 307–317 (1998). doi:10.1007/s003390050671
M.M. Kholoud, A. El-Noura, A. Eftaihab, A. Al-Warthanb, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3(3), 135–140 (2010). doi:10.1016/j.arabjc.2010.04.008
S.S. Shankar, A. Ahamad, R. Pasricha, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822–1826 (2003). doi:10.1039/b303808b
X. Jiang, D. Sun, G. Zhang, N. He, H. Lin, J. Huang, T.O. Wubah, Q. Li, Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract. J. Nanopart. Res. 15, 1741–1751 (2013). doi:10.1007/s11051-013-1741-z
J.P. Guggenbichler, M. Boswald, S. Lugauer, T. Krall, A new technology of micro dispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27(1), S16–S23 (1999). doi:10.1007/BF02561612
B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2), 139–148 (2007). doi:10.1016/j.burns.2006.06.010
S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13), 6409–6413 (2008). doi:10.1021/la800951v
A. Niu, Y.J. Han, J.A. Wu, N. Yu, Q. Xu, Synthesis of one-dimensional carbon nanomaterials Wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C 114(29), 12728–12735 (2010). doi:10.1021/jp104720w
Y. Jiang, J. Gang, S.Y. Xu, Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett. 4(4), 228–234 (2012). doi:10.1007/BF03353719
I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275(1), 177–182 (2004). doi:10.1016/j.jcis.2004.02.012
V.K. Rangari, G.M. Mohammad, S. Jeelani, A. Hundley, K. Vig, S.R. Singh, S. Pillai, Synthesis of Ag/CNTs hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposites fibers for antimicrobial applications. Nanotechnology 21(9), 5102–5112 (2010). doi:10.1088/0957-4484/21/9/095102
A. Mewada, S. Pandey, G. Oza, R. Shah, M. Thakur, A. Gupta, M. Sharon, A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes. J. Bionanosci. 7(2), 174–180 (2013). doi:10.1166/jbns.2013.1107
M.A.F. Molina, E.M. Gamboa, C.A.S. Rivera, R.A.G. Flores, P.Z. Benavides et al., Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 29, 148–155 (2010). doi:10.1186/1756-9966-29-148