Synthesis of Zinc Oxide Nanostructures on Graphene/Glass Substrate via Electrochemical Deposition: Effects of Potassium Chloride and Hexamethylenetetramine as Supporting Reagents
Corresponding Author: Abdul Manaf Hashim
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 317-324
Abstract
The effects of the supporting reagents hexamethylenetetramine (HMTA) and potassium chloride (KCl) mixed in zinc nitrate hexahydrate (Zn(NO3)2·6H2O) on the morphological, structural, and optical properties of the resulting ZnO nanostructures electrodeposited on graphene/glass substrates were investigated. The supporting reagent HMTA does not increase the density of nanorods, but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75 °C. Hydroxyl (OH−) ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of ZnO on the polar plane to produce vertically aligned nanorods along the c axis. By contrast, the highly electronegative chlorine (Cl−) ions from the supporting reagent KCl suppress the growth of ZnO on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures. HMTA was found to be able to significantly improve the crystallinity of the grown ZnO structures, as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region. Equimolar mixtures of Zn(NO3)2·6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density, uniform ZnO nanostructures. The corresponding transmittances for such molar ranges are approximately 55–58 % (HMTA) and 63–70 % (KCl), which are acceptable for solar cell and optoelectronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Wilander, O. Nur, N. Bano, K. Sultana, Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. New J. Phys. 11, 125020 (2009). doi:10.1088/1367-2630/11/12/125020
- B.H. Kim, J.W. Kwon, Metal-catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates. Sci. Rep-UK 4, 4379 (2014). doi:10.1038/srep04379
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849
- A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). doi:10.1126/science.1158877
- B. Astuti, M. Tanikawa, S.F.A. Rahman, K. Yasui, A.M. Hashim, Graphene as a buffer layer for silicon carbide-on-insulator structures. Materials 5(11), 2270–2279 (2012). doi:10.3390/ma5112270
- N.S.A. Aziz, T. Nishiyama, N.I. Rusli, M.R. Mahmood, K. Yasui, A.M. Hashim, Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition. Nanoscale Res. Lett. 9, 337 (2014). doi:10.1186/1556-276X-9-337
- N.S.A. Aziz, M.R. Mahmood, K. Yasui, A.M. Hashim, Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Res. Lett. 9, 95 (2014). doi:10.1186/1556-276X-9-95
- N.F. Ahmad, N.I. Rusli, M.R. Mahmood, K. Yasui, A.M. Hashim, Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation. Nanoscale Res. Lett. 9, 83 (2014). doi:10.1186/1556-276X-9-83
- N.F. Ahmad, K. Yasui, A.M. Hashim, Seed/catalyst-free growth of zinc oxide on graphene by thermal evaporation: effects of substrate inclination angles and graphene thicknesses. Nanoscale Res. Lett. 10, 10 (2015). doi:10.1186/s11671-014-0716-z
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). doi:10.1038/nature04233
- B. Kumar, K.Y. Lee, H.-K. Park, S.J. Chae, Y.H. Lee, S.-W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5(5), 4197–4204 (2011). doi:10.1021/nn200942s
- C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648 (2002). doi:10.1063/1.1518810
- D. Choi, M.-Y. Choi, W.-M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S.J. Chae, Y.H. Lee, Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22(19), 2187–2192 (2010). doi:10.1002/adma.200903815
- J.O. Hwang, D.H. Lee, J.Y. Kim, T.H. Han, B.H. Kim, M. Park, K. No, S.O. Kim, Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J. Mater. Chem. 21(10), 3432 (2011). doi:10.1039/C0JM01495H
- K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012). doi:10.1038/nature11458
- Y. Zhang, Y.-W, Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). doi:10.1038/nature04235
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). doi:10.1038/nature07719
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). doi:10.1021/nl0731872
- S.F.A. Rahman, S. Kasai, A.M. Hashim, Room temperature nonlinear operation of a graphene-based three-branch nanojunction device chemical doping. Appl. Phys. Lett. 100, 193116 (2012). doi:10.1063/1.4711035
- K. Chung, C.H. Lee, G.C. Yi, Transferable GaN layers grown on ZnO-coated graphene for optoelectronic devices. Science 330, 655–657 (2010). doi:10.1126/science.1195403
- Y.-J. Kim, J.-H. Lee, G.C. Yi, Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 95(21), 213101 (2009). doi:10.1063/1.3266836
- L. Liu, S. Ryu, M.R. Tomasik, E. Stolyarova, N. Jung, M.S. Hybertsen, M.L. Steigerwald, L.E. Brus, G.W. Flynn, Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008). doi:10.1021/nl0808684
- Y.-J. Kim, A. Yoon, M. Kim, G.-C. Yi, C. Liu, Hydrothermally grown ZnO nanostructures on few-layer graphene sheets. Nanotechnology 22(24), 245603 (2011). doi:10.1088/0957-4484/22/24/245603
- C. Xu, B.-S. Kim, J.-H. Lee, M. Kim, S.W. Hwang, B.L. Choi, E.K. Lee, J.M. Kim, D. Whang, Seed-free electrochemical growth of ZnO nanotube arrays on single-layer graphene. Mater. Lett. 72, 25–28 (2012). doi:10.1016/j.matlet.2011.12.057
- N.A. Hambali, H. Yahaya, M.R. Mahmood, T. Terasako, A.M. Hashim, Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature. Nanoscale Res. Lett. 9, 609 (2014). doi:10.1186/1556-276X-9-609
- D. Pradhan, S. Sindhwani, Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition. Nanoscale Res. Lett. 5, 1727–1736 (2010). doi:10.1007/s11671-010-9702-2
- H.Y. Yang, Y.S. No, J.Y. Kim, T.W. Kim, Effect of potassium chloride concentration on the structural and optical properties of ZnO nanorods grown on glass substrates coated with indium tin oxide film. Jpn. J. Appl. Phys. 51(6), 06FG13 (2012). doi:10.1143/JJAP.51.06FG13
- K. Mahmood, S.S. Park, H.J. Sung, Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C 1, 3138–3149 (2013). doi:10.1039/c3tc00082f
- J.-J. Wu, S.-C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14(3), 215–218 (2002). doi:10.1002/1521-4095(20020205)14:3<215:AID-ADMA215>3.0.CO;2-J
- A. Umar, S.H. Kim, J.H. Kim, A. Al-Hajry, Y.B. Hahn, Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process. J. Alloys Compd. 463, 516–521 (2008). doi:10.1016/j.jallcom.2007.09.065
- K.M.K. Srivatsa, D. Chikara, M.S. Kumar, Synthesis of aligned ZnO nanorod array on silicon and sapphire substrates by thermal evaporation technique. J. Mater. Sci. Technol. 27(8), 701–706 (2011). doi:10.1016/S1005-0302(11)60129-1
- N.K. Hassan, M.R. Hashim, Y. Al-Douri, K. Al-Heuseen, Current dependence growth of ZnO nanostructures by electrochemical deposition technique. Int. J. Electrochem. Sci. 7(5), 4625–4635 (2012)
- M. Ghosh, A.K. Raychaudhuri, Shape transition in ZnO nanostructures and its effect on blue–green photoluminescence. Nanotechnology 19(44), 1–7 (2008). doi:10.1088/0957-4484/19/44/445704
- X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, Polycrystalline ZnO thin films on Si(100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth 223(1–2), 201–205 (2001). doi:10.1016/S0022-0248(01)00611-X
References
M. Wilander, O. Nur, N. Bano, K. Sultana, Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. New J. Phys. 11, 125020 (2009). doi:10.1088/1367-2630/11/12/125020
B.H. Kim, J.W. Kwon, Metal-catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates. Sci. Rep-UK 4, 4379 (2014). doi:10.1038/srep04379
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849
A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). doi:10.1126/science.1158877
B. Astuti, M. Tanikawa, S.F.A. Rahman, K. Yasui, A.M. Hashim, Graphene as a buffer layer for silicon carbide-on-insulator structures. Materials 5(11), 2270–2279 (2012). doi:10.3390/ma5112270
N.S.A. Aziz, T. Nishiyama, N.I. Rusli, M.R. Mahmood, K. Yasui, A.M. Hashim, Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition. Nanoscale Res. Lett. 9, 337 (2014). doi:10.1186/1556-276X-9-337
N.S.A. Aziz, M.R. Mahmood, K. Yasui, A.M. Hashim, Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Res. Lett. 9, 95 (2014). doi:10.1186/1556-276X-9-95
N.F. Ahmad, N.I. Rusli, M.R. Mahmood, K. Yasui, A.M. Hashim, Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation. Nanoscale Res. Lett. 9, 83 (2014). doi:10.1186/1556-276X-9-83
N.F. Ahmad, K. Yasui, A.M. Hashim, Seed/catalyst-free growth of zinc oxide on graphene by thermal evaporation: effects of substrate inclination angles and graphene thicknesses. Nanoscale Res. Lett. 10, 10 (2015). doi:10.1186/s11671-014-0716-z
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). doi:10.1038/nature04233
B. Kumar, K.Y. Lee, H.-K. Park, S.J. Chae, Y.H. Lee, S.-W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5(5), 4197–4204 (2011). doi:10.1021/nn200942s
C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648 (2002). doi:10.1063/1.1518810
D. Choi, M.-Y. Choi, W.-M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S.J. Chae, Y.H. Lee, Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22(19), 2187–2192 (2010). doi:10.1002/adma.200903815
J.O. Hwang, D.H. Lee, J.Y. Kim, T.H. Han, B.H. Kim, M. Park, K. No, S.O. Kim, Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J. Mater. Chem. 21(10), 3432 (2011). doi:10.1039/C0JM01495H
K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012). doi:10.1038/nature11458
Y. Zhang, Y.-W, Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). doi:10.1038/nature04235
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). doi:10.1038/nature07719
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). doi:10.1021/nl0731872
S.F.A. Rahman, S. Kasai, A.M. Hashim, Room temperature nonlinear operation of a graphene-based three-branch nanojunction device chemical doping. Appl. Phys. Lett. 100, 193116 (2012). doi:10.1063/1.4711035
K. Chung, C.H. Lee, G.C. Yi, Transferable GaN layers grown on ZnO-coated graphene for optoelectronic devices. Science 330, 655–657 (2010). doi:10.1126/science.1195403
Y.-J. Kim, J.-H. Lee, G.C. Yi, Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 95(21), 213101 (2009). doi:10.1063/1.3266836
L. Liu, S. Ryu, M.R. Tomasik, E. Stolyarova, N. Jung, M.S. Hybertsen, M.L. Steigerwald, L.E. Brus, G.W. Flynn, Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008). doi:10.1021/nl0808684
Y.-J. Kim, A. Yoon, M. Kim, G.-C. Yi, C. Liu, Hydrothermally grown ZnO nanostructures on few-layer graphene sheets. Nanotechnology 22(24), 245603 (2011). doi:10.1088/0957-4484/22/24/245603
C. Xu, B.-S. Kim, J.-H. Lee, M. Kim, S.W. Hwang, B.L. Choi, E.K. Lee, J.M. Kim, D. Whang, Seed-free electrochemical growth of ZnO nanotube arrays on single-layer graphene. Mater. Lett. 72, 25–28 (2012). doi:10.1016/j.matlet.2011.12.057
N.A. Hambali, H. Yahaya, M.R. Mahmood, T. Terasako, A.M. Hashim, Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature. Nanoscale Res. Lett. 9, 609 (2014). doi:10.1186/1556-276X-9-609
D. Pradhan, S. Sindhwani, Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition. Nanoscale Res. Lett. 5, 1727–1736 (2010). doi:10.1007/s11671-010-9702-2
H.Y. Yang, Y.S. No, J.Y. Kim, T.W. Kim, Effect of potassium chloride concentration on the structural and optical properties of ZnO nanorods grown on glass substrates coated with indium tin oxide film. Jpn. J. Appl. Phys. 51(6), 06FG13 (2012). doi:10.1143/JJAP.51.06FG13
K. Mahmood, S.S. Park, H.J. Sung, Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C 1, 3138–3149 (2013). doi:10.1039/c3tc00082f
J.-J. Wu, S.-C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14(3), 215–218 (2002). doi:10.1002/1521-4095(20020205)14:3<215:AID-ADMA215>3.0.CO;2-J
A. Umar, S.H. Kim, J.H. Kim, A. Al-Hajry, Y.B. Hahn, Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process. J. Alloys Compd. 463, 516–521 (2008). doi:10.1016/j.jallcom.2007.09.065
K.M.K. Srivatsa, D. Chikara, M.S. Kumar, Synthesis of aligned ZnO nanorod array on silicon and sapphire substrates by thermal evaporation technique. J. Mater. Sci. Technol. 27(8), 701–706 (2011). doi:10.1016/S1005-0302(11)60129-1
N.K. Hassan, M.R. Hashim, Y. Al-Douri, K. Al-Heuseen, Current dependence growth of ZnO nanostructures by electrochemical deposition technique. Int. J. Electrochem. Sci. 7(5), 4625–4635 (2012)
M. Ghosh, A.K. Raychaudhuri, Shape transition in ZnO nanostructures and its effect on blue–green photoluminescence. Nanotechnology 19(44), 1–7 (2008). doi:10.1088/0957-4484/19/44/445704
X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, Polycrystalline ZnO thin films on Si(100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth 223(1–2), 201–205 (2001). doi:10.1016/S0022-0248(01)00611-X