Micro-accelerometer Based on Vertically Movable Gate Field Effect Transistor
Corresponding Author: In-Hyouk Song
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 282-290
Abstract
A vertically movable gate field effect transistor (VMGFET) is proposed and demonstrated for a micro-accelerometer application. The VMGFET using air gap as an insulator layer allows the gate to move on the substrate vertically by external forces. Finite element analysis is used to simulate mechanical behaviors of the designed structure. For the simulation, the ground acceleration spectrum of the 1952 Kern County Earthquake is employed to investigate the structural integrity of the sensor in vibration. Based on the simulation, a prototype VMGFET accelerometer is fabricated from silicon on insulator wafer. According to current–voltage characteristics of the prototype VMGFET, the threshold voltage is measured to be 2.32 V, which determines the effective charge density and the mutual transconductance of 1.545×10−8 C cm−2 and 6.59 mA V−1, respectively. The device sensitivity is 9.36–9.42 mV g−1 in the low frequency, and the first natural frequency is found to be 1230 Hz. The profile smoothness of the sensed signal is in 3 dB range up to 1 kHz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Scaling the suspended-gate FET: impact of dielectric charging and roughness. IEEE Trans. Electron Devices 57, 804–813 (2010). doi:10.1109/TED.2009.2039963
- K. Scharnagl, M. Bogner, A. Fuchs, R. Winter, T. Doll, I. Eisele, Enhanced room temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET. Sens. Actuators, B 57, 35–38 (1999). doi:10.1016/S0925-4005(99)00059-3
- A.-C. Salaun, F. Le Bihan, T. Mohammed-Brahim, Modeling the high pH sensitivity of suspended gate field effect transistor (SGFET). Sens. Actuators, B 158, 138–143 (2011). doi:10.1016/j.snb.2011.05.056
- A. Persano, A. Cola, G. De Angelis, A. Taurino, P. Siciliano, F. Quaranta, Capacitive RF MEMS switches with tantalum-based materials. J. Microelectromech. Syst. 20, 365–370 (2011). doi:10.1109/JMEMS.2011.2107884
- J.-I. Lee, X. Huang, P.B. Chu, Nanoprecision MEMS capacitive sensor for linear and rotational positioning. J. Microelectromech. Syst. 18, 660–670 (2009). doi:10.1109/JMEMS.2009.2016275
- X. Sun, X. Peng, Y. Zheng, X. Li, H. Zhang, A 3-D Stacked high-Q PI-based MEMS inductor for wireless power transmission system in bio-implanted applications. J. Microelectromech. Syst. 23, 888–898 (2014). doi:10.1109/JMEMS.2013.2297627
- V. Lemarquand, G. Lemarquand, E. Lefeuvre, I. Shahosseini, R. Ravaud, J. Moulin, M. Woytasik, E. Martinsic, G. Pillonnet, Electrodynamic MEMS: application to mobile phone loudspeakers. IEEE Trans. Magn. 48, 3684–3687 (2009). doi:10.1109/TMAG.2012.2203798
- F. Caimmi, S. Mariani, M. De Fazio, P. Bendiscioli, Investigation of the effectiveness and robustness of an mems-based structural health monitoring system for composite laminates. IEEE Sens. J. 14, 2208–2215 (2014). doi:10.1109/JSEN.2014.2315831
- Y. Yee, J. Bu, K. Chun, J.-W. Lee, An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements. J. Micromech. Microeng. 10, 350–358 (2000). doi:10.1088/0960-1317/10/3/308
- R.S. Jachowicz, Z.M. Azgin, FET pressure sensor and iterative method for modelling of the device. Sens. Actuators, A 97–98, 369–378 (2002). doi:10.1016/S0924-4247(01)00856-1
- C.-L. Dai, P.-H. Kao, Y.-W. Tai, C.-C. Wu, Micro FET pressure sensor manufactured using CMOS-MEMS technique. Microelectron. J. 39, 744–749 (2008). doi:10.1016/j.mejo.2007.12.015
- I.-H. Song, P.K. Ajmera, A laterally movable gate field effect transistor. J. Microelectromech. Syst. 18, 208–216 (2009). doi:10.1109/JMEMS.2008.2008623
- J.M. Williams, B.S. Cole, B.H. You, H.S. Kang, I.-H. Song, Electrical modelling and design insight of a vertically movable gate field effect transistor for physical sensor applications. IET Micro Nano Lett. 7, 1117–1120 (2012). doi:10.1049/mnl.2012.0667
- G. Langfelder, T. Frizzi, A. Longoni, A. Tocchio, D. Manelli, E. Lasalandra, Readout of MEMS capacitive sensors beyond the condition of pull-in instability. Sens. Actuators, A 167, 374–384 (2011). doi:10.1016/j.sna.2011.02.003
- A.L. Roy, H. Sarkar, A. Dutta, T.K. Bhattacharyya, A high precision SOI MEMS-CMOS ±4 g piezoresistive accelerometer. Sens. Actuators, A 210, 77–85 (2014). doi:10.1016/j.sna.2014.01.036
- B.V. Amini, F. Ayazi, Micro-gravity capacitive silicon-on-insulator accelerometers. J. Micromech. Microeng. 15, 2113–2120 (2005). doi:10.1088/0960-1317/15/11/017
- S. Aoyagi, M. Suzuki, J. Kogure, T. Kong, R. Taguchi, T. Takahashi, S. Yokoyama, H. Tokunaga, Accelerometer using MOSFET with movable gate electrode: Electroplating thick nickel proof mass on flexible parylene beam for enhancing sensitivity, in Technical Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2011), Beijing (Jun 5–9, 2011), 2030–2033 (2011). doi:10.1109/TRANSDUCERS.2011.5969210
- K. Zandi, J.A. Belanger, Y.-A. Peter, Design and demonstration of an in-plane silicon-on-insulator optical MEMS fabry-perot-based accelerometer integrated with channel waveguides. J. Microelectromech. Syst. 21, 1464–1470 (2012). doi:10.1109/JMEMS.2012.2211577
- S.E. Alper, Y. Temiz, T. Akin, A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope. J. Microelectromech. Syst. 17, 1418–1429 (2008). doi:10.1109/JMEMS.2008.2007274
- I.-H. Song, B. You, H. Kang, K.-H. Lee, A vertically movable gate field effect transistor (VMGFET) on a silicon-on-insulator (SOI) wafer and method of forming a VMGFET. PCT/US2013/064239 (Oct 4, 2013)
- K. Hutton, Earthquake monitoring in Southern California for seventy-seven years (1932–2008). Bull. Seismol. Soc. Am. 100, 423–446 (2010)
- A. Novikov, Experimental measurement of work function in doped silicon surfaces. Solid-State Electron. 54, 8–13 (2010). doi:10.1016/j.sse.2009.09.005
References
M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Scaling the suspended-gate FET: impact of dielectric charging and roughness. IEEE Trans. Electron Devices 57, 804–813 (2010). doi:10.1109/TED.2009.2039963
K. Scharnagl, M. Bogner, A. Fuchs, R. Winter, T. Doll, I. Eisele, Enhanced room temperature gas sensing with metal oxides by means of the electroadsorptive effect in hybrid suspended gate FET. Sens. Actuators, B 57, 35–38 (1999). doi:10.1016/S0925-4005(99)00059-3
A.-C. Salaun, F. Le Bihan, T. Mohammed-Brahim, Modeling the high pH sensitivity of suspended gate field effect transistor (SGFET). Sens. Actuators, B 158, 138–143 (2011). doi:10.1016/j.snb.2011.05.056
A. Persano, A. Cola, G. De Angelis, A. Taurino, P. Siciliano, F. Quaranta, Capacitive RF MEMS switches with tantalum-based materials. J. Microelectromech. Syst. 20, 365–370 (2011). doi:10.1109/JMEMS.2011.2107884
J.-I. Lee, X. Huang, P.B. Chu, Nanoprecision MEMS capacitive sensor for linear and rotational positioning. J. Microelectromech. Syst. 18, 660–670 (2009). doi:10.1109/JMEMS.2009.2016275
X. Sun, X. Peng, Y. Zheng, X. Li, H. Zhang, A 3-D Stacked high-Q PI-based MEMS inductor for wireless power transmission system in bio-implanted applications. J. Microelectromech. Syst. 23, 888–898 (2014). doi:10.1109/JMEMS.2013.2297627
V. Lemarquand, G. Lemarquand, E. Lefeuvre, I. Shahosseini, R. Ravaud, J. Moulin, M. Woytasik, E. Martinsic, G. Pillonnet, Electrodynamic MEMS: application to mobile phone loudspeakers. IEEE Trans. Magn. 48, 3684–3687 (2009). doi:10.1109/TMAG.2012.2203798
F. Caimmi, S. Mariani, M. De Fazio, P. Bendiscioli, Investigation of the effectiveness and robustness of an mems-based structural health monitoring system for composite laminates. IEEE Sens. J. 14, 2208–2215 (2014). doi:10.1109/JSEN.2014.2315831
Y. Yee, J. Bu, K. Chun, J.-W. Lee, An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements. J. Micromech. Microeng. 10, 350–358 (2000). doi:10.1088/0960-1317/10/3/308
R.S. Jachowicz, Z.M. Azgin, FET pressure sensor and iterative method for modelling of the device. Sens. Actuators, A 97–98, 369–378 (2002). doi:10.1016/S0924-4247(01)00856-1
C.-L. Dai, P.-H. Kao, Y.-W. Tai, C.-C. Wu, Micro FET pressure sensor manufactured using CMOS-MEMS technique. Microelectron. J. 39, 744–749 (2008). doi:10.1016/j.mejo.2007.12.015
I.-H. Song, P.K. Ajmera, A laterally movable gate field effect transistor. J. Microelectromech. Syst. 18, 208–216 (2009). doi:10.1109/JMEMS.2008.2008623
J.M. Williams, B.S. Cole, B.H. You, H.S. Kang, I.-H. Song, Electrical modelling and design insight of a vertically movable gate field effect transistor for physical sensor applications. IET Micro Nano Lett. 7, 1117–1120 (2012). doi:10.1049/mnl.2012.0667
G. Langfelder, T. Frizzi, A. Longoni, A. Tocchio, D. Manelli, E. Lasalandra, Readout of MEMS capacitive sensors beyond the condition of pull-in instability. Sens. Actuators, A 167, 374–384 (2011). doi:10.1016/j.sna.2011.02.003
A.L. Roy, H. Sarkar, A. Dutta, T.K. Bhattacharyya, A high precision SOI MEMS-CMOS ±4 g piezoresistive accelerometer. Sens. Actuators, A 210, 77–85 (2014). doi:10.1016/j.sna.2014.01.036
B.V. Amini, F. Ayazi, Micro-gravity capacitive silicon-on-insulator accelerometers. J. Micromech. Microeng. 15, 2113–2120 (2005). doi:10.1088/0960-1317/15/11/017
S. Aoyagi, M. Suzuki, J. Kogure, T. Kong, R. Taguchi, T. Takahashi, S. Yokoyama, H. Tokunaga, Accelerometer using MOSFET with movable gate electrode: Electroplating thick nickel proof mass on flexible parylene beam for enhancing sensitivity, in Technical Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2011), Beijing (Jun 5–9, 2011), 2030–2033 (2011). doi:10.1109/TRANSDUCERS.2011.5969210
K. Zandi, J.A. Belanger, Y.-A. Peter, Design and demonstration of an in-plane silicon-on-insulator optical MEMS fabry-perot-based accelerometer integrated with channel waveguides. J. Microelectromech. Syst. 21, 1464–1470 (2012). doi:10.1109/JMEMS.2012.2211577
S.E. Alper, Y. Temiz, T. Akin, A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope. J. Microelectromech. Syst. 17, 1418–1429 (2008). doi:10.1109/JMEMS.2008.2007274
I.-H. Song, B. You, H. Kang, K.-H. Lee, A vertically movable gate field effect transistor (VMGFET) on a silicon-on-insulator (SOI) wafer and method of forming a VMGFET. PCT/US2013/064239 (Oct 4, 2013)
K. Hutton, Earthquake monitoring in Southern California for seventy-seven years (1932–2008). Bull. Seismol. Soc. Am. 100, 423–446 (2010)
A. Novikov, Experimental measurement of work function in doped silicon surfaces. Solid-State Electron. 54, 8–13 (2010). doi:10.1016/j.sse.2009.09.005