A Simple Method of Electrospun Tungsten Trioxide Nanofibers with Enhanced Visible-Light Photocatalytic Activity
Corresponding Author: Hern Kim
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 291-297
Abstract
The present study involves the fabrication of tungsten trioxide (WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone (PVP)/citric acid/tungstic acid as precursor solution. It was found that the PVP concentration was one of the most crucial processing parameters determining the final properties of WO3 nanofibers. The optimum concentration of PVP was from 75 to 94 g L−1. The average diameter of the nanofibers increases with increasing the PVP concentration, whereas it is decreased after sintering and orthorhombic structure were formed at 500 °C. The photocatalytic properties of the as-synthesized nanofibers were also investigated by degrading methylene blue and twofold efficiency was obtained compared with that of commercial WO3 microparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.P. Mouritz, M.K. Bannister, P.J. Falzon, K.H. Leong, Review of applications for advanced three dimensional fibre textile composites. Compos. Part A-Appl. Sci. Manuf. 30(12), 1445–1461 (1999). doi:10.1016/S1359-835X(99)00034-2
- K.S. Karn, H. Harada, Surface water pollution in three urban territories of Nepal, India, and Bangladesh. J. Environ. Manag. 28(4), 483–496 (2001). doi:10.1007/s002670010238
- H.R. Pouretedal, M.H. Keshavarz, Study of Congo red photodegradation kinetic catalyzed by Zn1−XCuXS and Zn1−XNiXS nanoparticles. Int. J. Phys. Sci. 6(27), 6268–6279 (2001). doi:10.5897/IJPS09.251
- K.I. Konstantinou, A.A. Triantafyllos, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B Environ. 49(1), 1–14 (2004). doi:10.1016/j.apcatb.2003.11.010
- C.A. Buckley, Membrane technology for the treatment of dyehouse effluents. Water Sci. Technol. 25(96), 203–209 (1992). doi:10.1016/S0958-2118(00)89257-5
- N.M. Mahmoodi, Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279(1–3), 332–337 (2011). doi:10.1016/j.desal.2011.06.027
- A. Reza, F.A. Sheikh, M.Z. Abedin, H. Kim, Facile strategy for utilizing sugarcane bagasse as bio-adsorbent for the removal of contaminant form effluents of textile industry. Energy Environ. Focus 4(1), 28–33 (2015). doi:10.1166/eef.2015.1135
- Q. Yu, Y. Mao, X. Peng, Separation membranes constructed from inorganic nanofibers by filtration technique. Chem. Rec. 13(1), 14–27 (2013). doi:10.1002/tcr.201200011
- M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252(1–3), 53–59 (2010). doi:10.1016/j.desal.2009.11.002
- A. Mittal, R. Jain, J. Mittal, S. Varshney, Removal of yellow ME 7 GL from industrial effluent using electrochemical and adsorption techniques. Int. J. Environ. Pollut. 43(4), 308–323 (2010). doi:10.1504/IJEP.2010.036929
- E.M. Golet, A. Strehler, A.C. Alder, W. Giger, Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 74(21), 5455–5462 (2002). doi:10.1021/ac025762m
- A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93(1), 154–168 (2012). doi:10.1016/j.jenvman.2011.09.012
- M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003). doi:10.1016/S1389-5567(03)00026-1
- C.G. Granqvist, Electrochromic tungsten oxide films: review of progress. Sol. Energy Mater. Sol. Cells 60(3), 201–262 (2000). doi:10.1016/S0927-0248(99)00088-4
- J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios, S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J. Hazard. Mater. 211–212, 30–46 (2012). doi:10.1016/j.jhazmat.2011.11.069
- A. Fakhri, S. Behrouzc, Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy 112, 163–168 (2015). doi:10.1016/j.solener.2014.11.014
- X. Yan, X. Zong, G.Q.M. Lu, L. Wang, Ordered mesoporous tungsten oxide and titanium oxide composites and their photocatalytic degradation behavior. Prog. Nat. Sci. 22(6), 654–660 (2012). doi:10.1016/j.pnsc.2012.11.016
- Y. Wicaksana, S. Liu, J. Scott, R. Amal, Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19(11), 17747–17762 (2014). doi:10.3390/molecules191117747
- M.M. Momeni, Y. Ghayeb, M. Davarzadeh, Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J. Mater. Sci.: Mater. Electron. 26(3), 1560–1567 (2015). doi:10.1007/s10854-014-2575-x
- C. Santato, M. Ulmann, J. Augustynski, Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105(5), 936–940 (2001). doi:10.1021/jp002232q
- F.A. Sheikh, J. Macossay, M.A. Kanjwal, A. Abdal-hay, M.A. Tantry, H. Kim, Titanium dioxide nanofibers and microparticles containing nickel nanoparticles. ISRN Nanomater. (2012). doi:10.1155/2014/843587
- F.A. Sheikh, T. Cantu, J. Macossay, H. Kim, Fabrication of poly (vinylidene fluoride) (PVDF) nanofibers containing nickel nanoparticles as future energy server materials. Sci. Adv. Mater. 3(2), 216–222 (2011). doi:10.1166/sam.2011.1148
- A.Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P.G. Spizzirri, W. Wlodarski, K. Kalantar-zadeh, High-temperature anodized WO3 nanoplatelet films for photosensitive devices. Langmuir 25(16), 9545–9551 (2009). doi:10.1021/la901944x
- J. Wang, E. Khoo, P.S. Lee, J. Ma, Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J. Phys. Chem. C 113(22), 9655–9658 (2009). doi:10.1021/jp901650v
- X. Lu, X. Liu, W. Zhang, C. Wang, Y. Wei, Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J. Colloid Interface. Sci. 298(2), 996–999 (2006). doi:10.1016/j.jcis.2006.01.032
- H.-S. Shim, J.W. Kim, Y.-E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energy Mater. Sol. Cells 93(12), 2062–2068 (2009). doi:10.1016/j.solmat.2009.02.008
- Y. Nah, A. Ghicov, D. Kim, P. Schmuki, Enhanced electrochromic properties of self-organized nanoporous WO3. Electrochem. Commun. 10(11), 1777–1780 (2008). doi:10.1016/j.elecom.2008.09.017
- Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003). doi:10.1016/S0266-3538(03)00178-7
- M. Rolandi, R. Rolandi, Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222 (2014). doi:10.1016/j.cis.2014.01.019
- P.X. Ma, R. Zhang, Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–67 (1999). doi:10.1002/(SICI)1097-4636(199907)46:1<60:AID-JBM7>3.0.CO;2-H
- N.R. Dhineshbabu, G. Karunakaran, R. Suriyaprabha, P. Manivasakan, V. Rajendran, Electrospun MgO/Nylon 6 hybrid nanofibers for protective clothing. Nano-Micro Lett. 6(1), 46–54 (2014). doi:10.5101/nml.v6i1.p46-54
- P. Zhang, L. Wang, X. Zhang, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
- R. Nirmala, R. Navamathavan, S.-J. Park, H.Y. Kim, Recent progress on the fabrication of ultrafine polyamide-6 based nanofibers via electrospinning: a topical review. Nano-Micro Lett. 6(2), 89–107 (2014). doi:10.5101/nml.v6i2.p89-107
- F.A. Sheikh, M.A. Kanjwal, S. Saranc, W.-J. Chungc, H. Kim, Polyurethane nanofibers containing copper nanoparticles as future materials. Appl. Surf. Sci. 257(7), 3020–3026 (2011). doi:10.1016/j.apsusc.2010.10.110
- J.-Y. Leng, X.-J. Xu, N. Lv, H.-T. Fan, T. Zhang, Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J. Colloid Interface Sci. 356(1), 54–57 (2011). doi:10.1016/j.jcis.2010.11.079
- I.M. Szilágyi, E. Santala, M. Heikkilä, V. Pore, M. Kemell, T. Nikitin, G. Teucher, T. Firkala, L. Khriachtchev, M. Räsänen, M. Ritala, M. Leskelä, Photocatalytic properties of WO3/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition. Chem. Vap. Depos. 19, 149–155 (2013). doi:10.1002/cvde.201207037
- G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline wo3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110(47), 23777–23782 (2006). doi:10.1021/jp0635819
- S.-J. Choi, S.-J. Kim, W.-T. Koo, H.-J. Cho, I.-D. Kim, Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. Chem. Commun. 2015, 1–4 (2015). doi:10.1039/C4CC09725D
- T.-A. Nguyen, T.-S. Jun, M. Rashid, Y.S. Kim, Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 65(17–18), 2823–2825 (2011). doi:10.1016/j.matlet.2011.05.103
- X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B-Chem. 193(31), 100–106 (2014). doi:10.1016/j.snb.2013.11.059
- X. Yan, G. Liu, Preparation, characterization, and solution viscosity of polystyrene-block-polyisoprene nanofiber fractions. Langmuir 20(11), 4677–4683 (2004). doi:10.1021/la049955b
References
A.P. Mouritz, M.K. Bannister, P.J. Falzon, K.H. Leong, Review of applications for advanced three dimensional fibre textile composites. Compos. Part A-Appl. Sci. Manuf. 30(12), 1445–1461 (1999). doi:10.1016/S1359-835X(99)00034-2
K.S. Karn, H. Harada, Surface water pollution in three urban territories of Nepal, India, and Bangladesh. J. Environ. Manag. 28(4), 483–496 (2001). doi:10.1007/s002670010238
H.R. Pouretedal, M.H. Keshavarz, Study of Congo red photodegradation kinetic catalyzed by Zn1−XCuXS and Zn1−XNiXS nanoparticles. Int. J. Phys. Sci. 6(27), 6268–6279 (2001). doi:10.5897/IJPS09.251
K.I. Konstantinou, A.A. Triantafyllos, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B Environ. 49(1), 1–14 (2004). doi:10.1016/j.apcatb.2003.11.010
C.A. Buckley, Membrane technology for the treatment of dyehouse effluents. Water Sci. Technol. 25(96), 203–209 (1992). doi:10.1016/S0958-2118(00)89257-5
N.M. Mahmoodi, Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279(1–3), 332–337 (2011). doi:10.1016/j.desal.2011.06.027
A. Reza, F.A. Sheikh, M.Z. Abedin, H. Kim, Facile strategy for utilizing sugarcane bagasse as bio-adsorbent for the removal of contaminant form effluents of textile industry. Energy Environ. Focus 4(1), 28–33 (2015). doi:10.1166/eef.2015.1135
Q. Yu, Y. Mao, X. Peng, Separation membranes constructed from inorganic nanofibers by filtration technique. Chem. Rec. 13(1), 14–27 (2013). doi:10.1002/tcr.201200011
M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252(1–3), 53–59 (2010). doi:10.1016/j.desal.2009.11.002
A. Mittal, R. Jain, J. Mittal, S. Varshney, Removal of yellow ME 7 GL from industrial effluent using electrochemical and adsorption techniques. Int. J. Environ. Pollut. 43(4), 308–323 (2010). doi:10.1504/IJEP.2010.036929
E.M. Golet, A. Strehler, A.C. Alder, W. Giger, Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 74(21), 5455–5462 (2002). doi:10.1021/ac025762m
A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93(1), 154–168 (2012). doi:10.1016/j.jenvman.2011.09.012
M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003). doi:10.1016/S1389-5567(03)00026-1
C.G. Granqvist, Electrochromic tungsten oxide films: review of progress. Sol. Energy Mater. Sol. Cells 60(3), 201–262 (2000). doi:10.1016/S0927-0248(99)00088-4
J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios, S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J. Hazard. Mater. 211–212, 30–46 (2012). doi:10.1016/j.jhazmat.2011.11.069
A. Fakhri, S. Behrouzc, Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy 112, 163–168 (2015). doi:10.1016/j.solener.2014.11.014
X. Yan, X. Zong, G.Q.M. Lu, L. Wang, Ordered mesoporous tungsten oxide and titanium oxide composites and their photocatalytic degradation behavior. Prog. Nat. Sci. 22(6), 654–660 (2012). doi:10.1016/j.pnsc.2012.11.016
Y. Wicaksana, S. Liu, J. Scott, R. Amal, Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19(11), 17747–17762 (2014). doi:10.3390/molecules191117747
M.M. Momeni, Y. Ghayeb, M. Davarzadeh, Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J. Mater. Sci.: Mater. Electron. 26(3), 1560–1567 (2015). doi:10.1007/s10854-014-2575-x
C. Santato, M. Ulmann, J. Augustynski, Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105(5), 936–940 (2001). doi:10.1021/jp002232q
F.A. Sheikh, J. Macossay, M.A. Kanjwal, A. Abdal-hay, M.A. Tantry, H. Kim, Titanium dioxide nanofibers and microparticles containing nickel nanoparticles. ISRN Nanomater. (2012). doi:10.1155/2014/843587
F.A. Sheikh, T. Cantu, J. Macossay, H. Kim, Fabrication of poly (vinylidene fluoride) (PVDF) nanofibers containing nickel nanoparticles as future energy server materials. Sci. Adv. Mater. 3(2), 216–222 (2011). doi:10.1166/sam.2011.1148
A.Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P.G. Spizzirri, W. Wlodarski, K. Kalantar-zadeh, High-temperature anodized WO3 nanoplatelet films for photosensitive devices. Langmuir 25(16), 9545–9551 (2009). doi:10.1021/la901944x
J. Wang, E. Khoo, P.S. Lee, J. Ma, Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J. Phys. Chem. C 113(22), 9655–9658 (2009). doi:10.1021/jp901650v
X. Lu, X. Liu, W. Zhang, C. Wang, Y. Wei, Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J. Colloid Interface. Sci. 298(2), 996–999 (2006). doi:10.1016/j.jcis.2006.01.032
H.-S. Shim, J.W. Kim, Y.-E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energy Mater. Sol. Cells 93(12), 2062–2068 (2009). doi:10.1016/j.solmat.2009.02.008
Y. Nah, A. Ghicov, D. Kim, P. Schmuki, Enhanced electrochromic properties of self-organized nanoporous WO3. Electrochem. Commun. 10(11), 1777–1780 (2008). doi:10.1016/j.elecom.2008.09.017
Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003). doi:10.1016/S0266-3538(03)00178-7
M. Rolandi, R. Rolandi, Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222 (2014). doi:10.1016/j.cis.2014.01.019
P.X. Ma, R. Zhang, Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–67 (1999). doi:10.1002/(SICI)1097-4636(199907)46:1<60:AID-JBM7>3.0.CO;2-H
N.R. Dhineshbabu, G. Karunakaran, R. Suriyaprabha, P. Manivasakan, V. Rajendran, Electrospun MgO/Nylon 6 hybrid nanofibers for protective clothing. Nano-Micro Lett. 6(1), 46–54 (2014). doi:10.5101/nml.v6i1.p46-54
P. Zhang, L. Wang, X. Zhang, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
R. Nirmala, R. Navamathavan, S.-J. Park, H.Y. Kim, Recent progress on the fabrication of ultrafine polyamide-6 based nanofibers via electrospinning: a topical review. Nano-Micro Lett. 6(2), 89–107 (2014). doi:10.5101/nml.v6i2.p89-107
F.A. Sheikh, M.A. Kanjwal, S. Saranc, W.-J. Chungc, H. Kim, Polyurethane nanofibers containing copper nanoparticles as future materials. Appl. Surf. Sci. 257(7), 3020–3026 (2011). doi:10.1016/j.apsusc.2010.10.110
J.-Y. Leng, X.-J. Xu, N. Lv, H.-T. Fan, T. Zhang, Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J. Colloid Interface Sci. 356(1), 54–57 (2011). doi:10.1016/j.jcis.2010.11.079
I.M. Szilágyi, E. Santala, M. Heikkilä, V. Pore, M. Kemell, T. Nikitin, G. Teucher, T. Firkala, L. Khriachtchev, M. Räsänen, M. Ritala, M. Leskelä, Photocatalytic properties of WO3/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition. Chem. Vap. Depos. 19, 149–155 (2013). doi:10.1002/cvde.201207037
G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline wo3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110(47), 23777–23782 (2006). doi:10.1021/jp0635819
S.-J. Choi, S.-J. Kim, W.-T. Koo, H.-J. Cho, I.-D. Kim, Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. Chem. Commun. 2015, 1–4 (2015). doi:10.1039/C4CC09725D
T.-A. Nguyen, T.-S. Jun, M. Rashid, Y.S. Kim, Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 65(17–18), 2823–2825 (2011). doi:10.1016/j.matlet.2011.05.103
X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B-Chem. 193(31), 100–106 (2014). doi:10.1016/j.snb.2013.11.059
X. Yan, G. Liu, Preparation, characterization, and solution viscosity of polystyrene-block-polyisoprene nanofiber fractions. Langmuir 20(11), 4677–4683 (2004). doi:10.1021/la049955b