Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects
Corresponding Author: Peiyi Wu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 15
Abstract
Complex multiscale assemblies of metal–organic frameworks are essential in the construction of large-scale optical platforms but often restricted by their bulk nature and conventional techniques. The integration of nanomaterials and 3D printing technologies allows the fabrication of multiscale functional architectures. Our study reports a unique method of controlled 3D assembly purely relying on the post-printing treatment of printed constructs. By immersing a 3D-printed patterned construct consisting of organic ligand in a solution of lanthanide ions, in situ growth of lanthanide metal–organic frameworks (LnMOFs) can rapidly occur, resulting in macroscopic assemblies and tunable fluorescence properties. This phenomenon, caused by coordination and chelation of lanthanide ions, also renders a sub-millimeter resolution and high shape fidelity. As a proof of concept, a type of 3D assembled LnMOFs-based optical sensing platform has demonstrated the feasibility in response to small molecules such as acetone. It is anticipated that the facile printing and design approach developed in this work can be applied to fabricate bespoke multiscale architectures of functional materials with controlled assembly, bringing a realistic and economic prospect.
Article Highlights:
1 Controlled 3D assembly of luminescent lanthanide metal–organic frameworks (LnMOFs) through additive manufacturing followed by posting-printing treatment, enabling the multiscale integration in a precisely controlled and facile manner.
2 3D-printed LnMOFs objects with tunable fluorescence properties are caused by coordination and chelation of lanthanide ions, rendering a sub-millimeter resolution and high shape fidelity.
3 A type of 3D assembled LnMOFs-based optical sensing platform showing response to small molecules such as acetone is presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout et al., Mixed matrix formulations with mof molecular sieving for key energy-intensive separations. Nat. Mater. 17(3), 283–289 (2018). https://doi.org/10.1038/s41563-017-0013-1
- S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018). https://doi.org/10.1002/adma.201704303
- X.-J. Hong, C.-L. Song, Y. Yang, H.-C. Tan, G.-H. Li, Y.-P. Cai, H. Wang, Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
- Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
- A. Schoedel, M. Li, D. Li, M. O’Keeffe, O.M. Yaghi, Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116(19), 12466–12535 (2016). https://doi.org/10.1021/acs.chemrev.6b00346
- Z. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43(16), 5815–5840 (2014). https://doi.org/10.1039/C4CS00010B
- Y. Cui, J. Zhang, H. He, G. Qian, Photonic functional metal–organic frameworks. Chem. Soc. Rev. 47(15), 5740–5785 (2018). https://doi.org/10.1039/C7CS00879A
- J. Dong, D. Zhao, Y. Lu, W.-Y. Sun, Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 7(40), 22744–22767 (2019). https://doi.org/10.1039/C9TA07022B
- Y. Su, J. Yu, Y. Li, S.F.Z. Phua, G. Liu et al., Versatile bimetallic lanthanide metal–organic frameworks for tunable emission and efficient fluorescence sensing. Commun. Chem. 1(1), 12 (2018). https://doi.org/10.1038/s42004-018-0016-0
- R. Boroujerdi, A. Abdelkader, R. Paul, State of the art in alcohol sensing with 2d materials. Nano-Micro Lett. 12(1), 33 (2020). https://doi.org/10.1007/s40820-019-0363-0
- X. Yang, X. Lin, Y. Zhao, Y.S. Zhao, D. Yan, Lanthanide metal–organic framework microrods: colored optical waveguides and chiral polarized emission. Angew. Chem. Int. Ed. 56(27), 7853–7857 (2017). https://doi.org/10.1002/anie.201703917
- L.L. da Luz, R. Milani, J.F. Felix, I.R.B. Ribeiro, M. Talhavini et al., Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7(49), 27115–27123 (2015). https://doi.org/10.1021/acsami.5b06301
- Y.-M. Wang, X.-T. Tian, H. Zhang, Z.-R. Yang, X.-B. Yin, Anticounterfeiting quick response code with emission color of invisible metal–organic frameworks as encoding information. ACS Appl. Mater. Interfaces 10(26), 22445–22452 (2018). https://doi.org/10.1021/acsami.8b06901
- F. Chen, Y.-M. Wang, W. Guo, X.-B. Yin, Color-tunable lanthanide metal–organic framework gels. Chem. Sci. 10(6), 1644–1650 (2019). https://doi.org/10.1039/C8SC04732D
- M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar mxene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
- B. Elder, R. Neupane, E. Tokita, U. Ghosh, S. Hales, Y.L. Kong, Nanomaterial patterning in 3d printing. Adv. Mater. 32(17), 1907142 (2020). https://doi.org/10.1002/adma.201907142
- S. Deng, J. Wu, M.D. Dickey, Q. Zhao, T. Xie, Rapid open-air digital light 3d printing of thermoplastic polymer. Adv. Mater. 31(39), 1903970 (2019). https://doi.org/10.1002/adma.201903970
- H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: Synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- J. Gong, C.C.L. Schuurmans, A.M. van Genderen, X. Cao, W. Li et al., Complexation-induced resolution enhancement of 3d-printed hydrogel constructs. Nat. Commun. 11(1), 1267 (2020). https://doi.org/10.1038/s41467-020-14997-4
- K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef, S.K. Nune, R.L. Erikson, Chemically active, porous 3d-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10(17), 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
- P. Pei, Z. Tian, Y. Zhu, 3d printed mesoporous bioactive glass/metal–organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
- M. Bible, M. Sefa, J.A. Fedchak, J. Scherschligt, B. Natarajan, Z. Ahmed, M.R. Hartings, 3d-printed acrylonitrile butadiene styrene-metal organic framework composite materials and their gas storage properties. 3D Print. Addit. Manuf. 5(1), 63–72 (2018). https://doi.org/10.1089/3dp.2017.0067
- A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UIO-66 polymer composites. Chem. Commun. 55(15), 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
- H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3d-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9(41), 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
- J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi, J.F.M. Denayer, 3d-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2(8), 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
- O. Halevi, J.M.R. Tan, P.S. Lee, S. Magdassi, Hydrolytically stable mof in 3d-printed structures. Adv. Sustain. Syst. 2(2), 1700150 (2018). https://doi.org/10.1002/adsu.201700150
- N. Maldonado, V.G. Vegas, O. Halevi, J.I. Martínez, P.S. Lee et al., 3d printing of a thermo- and solvatochromic composite material based on a Cu(ii)–thymine coordination polymer with moisture sensing capabilities. Adv. Funct. Mater. 29(15), 1808424 (2019). https://doi.org/10.1002/adfm.201808424
- H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy, A.A. Rownaghi, F. Rezaei, Adsorption of ethane and ethylene over 3d-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6(11), 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
- S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, Cellomof: Nanocellulose enabled 3d printing of metal–organic frameworks. Adv. Funct. Mater. 29(2), 1805372 (2019). https://doi.org/10.1002/adfm.201805372
- H. Zhu, Q. Zhang, S. Zhu, Alginate hydrogel: a shapeable and versatile platform for in situ preparation of metal–organic framework–polymer composites. ACS Appl. Mater. Interfaces 8(27), 17395–17401 (2016). https://doi.org/10.1021/acsami.6b04505
- Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li, Q. Meng, R. Zhang, Renewable metal–organic-frameworks-coated 3d printing film for removal of malachite green. RSC Adv. 7(79), 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
- Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with cu-btc metal–organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2015). https://doi.org/10.1038/srep05939
- A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà, G.T. Palomino, F. Maya, Metal–organic framework mixed-matrix coatings on 3d printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
- R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3d-printed metal–organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard Mater. 384, 121418 (2019). https://doi.org/10.1016/j.jhazmat.2019.121418
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3d-printed mof-derived hierarchically porous frameworks for practical high-energy density li–o2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- N. Marets, S. Kanno, S. Ogata, A. Ishii, S. Kawaguchi, M. Hasegawa, Lanthanide-oligomeric brush films: from luminescence properties to structure resolution. ACS Omega 4(13), 15512–15520 (2019). https://doi.org/10.1021/acsomega.9b01775
- J.-F. Feng, S.-Y. Gao, T.-F. Liu, J. Shi, R. Cao, Preparation of dual-emitting ln@uio-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing. ACS Appl. Mater. Interfaces 10(6), 6014–6023 (2018). https://doi.org/10.1021/acsami.7b17947
- Z. Wang, D. Ananias, A. Carné-Sánchez, C.D.S. Brites, I. Imaz et al., Lanthanide–organic framework nanothermometers prepared by spray-drying. Adv. Funct. Mater. 25(19), 2824–2830 (2015). https://doi.org/10.1002/adfm.201500518
- Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012). https://doi.org/10.1021/cr200101d
- Z. Lin, M. Wu, H. He, Q. Liang, C. Hu et al., 3d printing of mechanically stable calcium-free alginate-based scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization. Adv. Funct. Mater. 29(9), 1808439 (2019). https://doi.org/10.1002/adfm.201808439
- L. Hou, P. Wu, Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr. Polym. 205, 420–426 (2019). https://doi.org/10.1016/j.carbpol.2018.10.091
- T. Ahlfeld, V. Guduric, S. Duin, A.R. Akkineni, K. Schütz et al., Methylcellulose—a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity. Biomater. Sci. 8(8), 2102–2110 (2020). https://doi.org/10.1039/D0BM00027B
- J. Dong, Y. Ozaki, K. Nakashima, Infrared, raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 30(4), 1111–1117 (1997). https://doi.org/10.1021/ma960693x
- M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3d and 4d printing: a survey. Adv. Sci. 7(12), 1902307 (2020). https://doi.org/10.1002/advs.201902307
- S. Hong, D. Sycks, H.F. Chan, S. Lin, G.P. Lopez et al., 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27(27), 4035–4040 (2015). https://doi.org/10.1002/adma.201501099
- K. Tian, J. Bae, S.E. Bakarich, C. Yang, R.D. Gately et al., 3d printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Adv. Mater. 29(10), 1604827 (2017). https://doi.org/10.1002/adma.201604827
- A.G. Vega-Poot, G. Rodríguez-Gattorno, O.E. Soberanis-Domínguez, R.T. Patiño-Díaz, M. Espinosa-Pesqueira, G. Oskam, The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions. Nanoscale 2(12), 2710–2717 (2010). https://doi.org/10.1039/C0NR00439A
- J.-L. Zhuang, D. Ceglarek, S. Pethuraj, A. Terfort, Rapid room-temperature synthesis of metal–organic framework hkust-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 21(8), 1442–1447 (2011). https://doi.org/10.1002/adfm.201002529
- J. Li, J. He, Y. Huang, D. Li, X. Chen, Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr. Polym. 123, 208–216 (2015). https://doi.org/10.1016/j.carbpol.2015.01.040
- M. Fertah, A. Belfkira, E.M. Dahmane, M. Taourirte, F. Brouillette, Extraction and characterization of sodium alginate from moroccan laminaria digitata brown seaweed. Arab. J. Chem. 10, 3707–3714 (2017). https://doi.org/10.1016/j.arabjc.2014.05.003
- M.O. Rodrigues, F.A.A. Paz, R.O. Freire, G.F. de Sá, A. Galembeck et al., Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. J. Phys. Chem. B 113(36), 12181–12188 (2009). https://doi.org/10.1021/jp9022629
- C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.-Y. Sun et al., Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5(21), 10418–10422 (2013). https://doi.org/10.1021/am403966x
- M.X. Wang, C.H. Yang, Z.Q. Liu, J. Zhou, F. Xu et al., Tough photoluminescent hydrogels doped with lanthanide. Macromol. Rapid Commun. 36(5), 465–471 (2015). https://doi.org/10.1002/marc.201400630
- C. He, T. Ye, W. Teng, Z. Fang, W.-S. Ruan et al., Bioinspired shear-flow-driven layer-by-layer in situ self-assembly. ACS Nano 13(2), 1910–1922 (2019). https://doi.org/10.1021/acsnano.8b08151
- B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E.B. Lobkovsky, Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 19(13), 1693–1696 (2007). https://doi.org/10.1002/adma.200601838
References
G. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout et al., Mixed matrix formulations with mof molecular sieving for key energy-intensive separations. Nat. Mater. 17(3), 283–289 (2018). https://doi.org/10.1038/s41563-017-0013-1
S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018). https://doi.org/10.1002/adma.201704303
X.-J. Hong, C.-L. Song, Y. Yang, H.-C. Tan, G.-H. Li, Y.-P. Cai, H. Wang, Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
A. Schoedel, M. Li, D. Li, M. O’Keeffe, O.M. Yaghi, Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116(19), 12466–12535 (2016). https://doi.org/10.1021/acs.chemrev.6b00346
Z. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43(16), 5815–5840 (2014). https://doi.org/10.1039/C4CS00010B
Y. Cui, J. Zhang, H. He, G. Qian, Photonic functional metal–organic frameworks. Chem. Soc. Rev. 47(15), 5740–5785 (2018). https://doi.org/10.1039/C7CS00879A
J. Dong, D. Zhao, Y. Lu, W.-Y. Sun, Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 7(40), 22744–22767 (2019). https://doi.org/10.1039/C9TA07022B
Y. Su, J. Yu, Y. Li, S.F.Z. Phua, G. Liu et al., Versatile bimetallic lanthanide metal–organic frameworks for tunable emission and efficient fluorescence sensing. Commun. Chem. 1(1), 12 (2018). https://doi.org/10.1038/s42004-018-0016-0
R. Boroujerdi, A. Abdelkader, R. Paul, State of the art in alcohol sensing with 2d materials. Nano-Micro Lett. 12(1), 33 (2020). https://doi.org/10.1007/s40820-019-0363-0
X. Yang, X. Lin, Y. Zhao, Y.S. Zhao, D. Yan, Lanthanide metal–organic framework microrods: colored optical waveguides and chiral polarized emission. Angew. Chem. Int. Ed. 56(27), 7853–7857 (2017). https://doi.org/10.1002/anie.201703917
L.L. da Luz, R. Milani, J.F. Felix, I.R.B. Ribeiro, M. Talhavini et al., Inkjet printing of lanthanide–organic frameworks for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 7(49), 27115–27123 (2015). https://doi.org/10.1021/acsami.5b06301
Y.-M. Wang, X.-T. Tian, H. Zhang, Z.-R. Yang, X.-B. Yin, Anticounterfeiting quick response code with emission color of invisible metal–organic frameworks as encoding information. ACS Appl. Mater. Interfaces 10(26), 22445–22452 (2018). https://doi.org/10.1021/acsami.8b06901
F. Chen, Y.-M. Wang, W. Guo, X.-B. Yin, Color-tunable lanthanide metal–organic framework gels. Chem. Sci. 10(6), 1644–1650 (2019). https://doi.org/10.1039/C8SC04732D
M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar mxene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
B. Elder, R. Neupane, E. Tokita, U. Ghosh, S. Hales, Y.L. Kong, Nanomaterial patterning in 3d printing. Adv. Mater. 32(17), 1907142 (2020). https://doi.org/10.1002/adma.201907142
S. Deng, J. Wu, M.D. Dickey, Q. Zhao, T. Xie, Rapid open-air digital light 3d printing of thermoplastic polymer. Adv. Mater. 31(39), 1903970 (2019). https://doi.org/10.1002/adma.201903970
H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: Synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
J. Gong, C.C.L. Schuurmans, A.M. van Genderen, X. Cao, W. Li et al., Complexation-induced resolution enhancement of 3d-printed hydrogel constructs. Nat. Commun. 11(1), 1267 (2020). https://doi.org/10.1038/s41467-020-14997-4
K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef, S.K. Nune, R.L. Erikson, Chemically active, porous 3d-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10(17), 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
P. Pei, Z. Tian, Y. Zhu, 3d printed mesoporous bioactive glass/metal–organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
M. Bible, M. Sefa, J.A. Fedchak, J. Scherschligt, B. Natarajan, Z. Ahmed, M.R. Hartings, 3d-printed acrylonitrile butadiene styrene-metal organic framework composite materials and their gas storage properties. 3D Print. Addit. Manuf. 5(1), 63–72 (2018). https://doi.org/10.1089/3dp.2017.0067
A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UIO-66 polymer composites. Chem. Commun. 55(15), 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3d-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9(41), 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi, J.F.M. Denayer, 3d-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2(8), 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
O. Halevi, J.M.R. Tan, P.S. Lee, S. Magdassi, Hydrolytically stable mof in 3d-printed structures. Adv. Sustain. Syst. 2(2), 1700150 (2018). https://doi.org/10.1002/adsu.201700150
N. Maldonado, V.G. Vegas, O. Halevi, J.I. Martínez, P.S. Lee et al., 3d printing of a thermo- and solvatochromic composite material based on a Cu(ii)–thymine coordination polymer with moisture sensing capabilities. Adv. Funct. Mater. 29(15), 1808424 (2019). https://doi.org/10.1002/adfm.201808424
H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy, A.A. Rownaghi, F. Rezaei, Adsorption of ethane and ethylene over 3d-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6(11), 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, Cellomof: Nanocellulose enabled 3d printing of metal–organic frameworks. Adv. Funct. Mater. 29(2), 1805372 (2019). https://doi.org/10.1002/adfm.201805372
H. Zhu, Q. Zhang, S. Zhu, Alginate hydrogel: a shapeable and versatile platform for in situ preparation of metal–organic framework–polymer composites. ACS Appl. Mater. Interfaces 8(27), 17395–17401 (2016). https://doi.org/10.1021/acsami.6b04505
Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li, Q. Meng, R. Zhang, Renewable metal–organic-frameworks-coated 3d printing film for removal of malachite green. RSC Adv. 7(79), 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with cu-btc metal–organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2015). https://doi.org/10.1038/srep05939
A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà, G.T. Palomino, F. Maya, Metal–organic framework mixed-matrix coatings on 3d printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3d-printed metal–organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard Mater. 384, 121418 (2019). https://doi.org/10.1016/j.jhazmat.2019.121418
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3d-printed mof-derived hierarchically porous frameworks for practical high-energy density li–o2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
N. Marets, S. Kanno, S. Ogata, A. Ishii, S. Kawaguchi, M. Hasegawa, Lanthanide-oligomeric brush films: from luminescence properties to structure resolution. ACS Omega 4(13), 15512–15520 (2019). https://doi.org/10.1021/acsomega.9b01775
J.-F. Feng, S.-Y. Gao, T.-F. Liu, J. Shi, R. Cao, Preparation of dual-emitting ln@uio-66-hybrid films via electrophoretic deposition for ratiometric temperature sensing. ACS Appl. Mater. Interfaces 10(6), 6014–6023 (2018). https://doi.org/10.1021/acsami.7b17947
Z. Wang, D. Ananias, A. Carné-Sánchez, C.D.S. Brites, I. Imaz et al., Lanthanide–organic framework nanothermometers prepared by spray-drying. Adv. Funct. Mater. 25(19), 2824–2830 (2015). https://doi.org/10.1002/adfm.201500518
Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012). https://doi.org/10.1021/cr200101d
Z. Lin, M. Wu, H. He, Q. Liang, C. Hu et al., 3d printing of mechanically stable calcium-free alginate-based scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization. Adv. Funct. Mater. 29(9), 1808439 (2019). https://doi.org/10.1002/adfm.201808439
L. Hou, P. Wu, Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr. Polym. 205, 420–426 (2019). https://doi.org/10.1016/j.carbpol.2018.10.091
T. Ahlfeld, V. Guduric, S. Duin, A.R. Akkineni, K. Schütz et al., Methylcellulose—a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity. Biomater. Sci. 8(8), 2102–2110 (2020). https://doi.org/10.1039/D0BM00027B
J. Dong, Y. Ozaki, K. Nakashima, Infrared, raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 30(4), 1111–1117 (1997). https://doi.org/10.1021/ma960693x
M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3d and 4d printing: a survey. Adv. Sci. 7(12), 1902307 (2020). https://doi.org/10.1002/advs.201902307
S. Hong, D. Sycks, H.F. Chan, S. Lin, G.P. Lopez et al., 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27(27), 4035–4040 (2015). https://doi.org/10.1002/adma.201501099
K. Tian, J. Bae, S.E. Bakarich, C. Yang, R.D. Gately et al., 3d printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Adv. Mater. 29(10), 1604827 (2017). https://doi.org/10.1002/adma.201604827
A.G. Vega-Poot, G. Rodríguez-Gattorno, O.E. Soberanis-Domínguez, R.T. Patiño-Díaz, M. Espinosa-Pesqueira, G. Oskam, The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions. Nanoscale 2(12), 2710–2717 (2010). https://doi.org/10.1039/C0NR00439A
J.-L. Zhuang, D. Ceglarek, S. Pethuraj, A. Terfort, Rapid room-temperature synthesis of metal–organic framework hkust-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 21(8), 1442–1447 (2011). https://doi.org/10.1002/adfm.201002529
J. Li, J. He, Y. Huang, D. Li, X. Chen, Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr. Polym. 123, 208–216 (2015). https://doi.org/10.1016/j.carbpol.2015.01.040
M. Fertah, A. Belfkira, E.M. Dahmane, M. Taourirte, F. Brouillette, Extraction and characterization of sodium alginate from moroccan laminaria digitata brown seaweed. Arab. J. Chem. 10, 3707–3714 (2017). https://doi.org/10.1016/j.arabjc.2014.05.003
M.O. Rodrigues, F.A.A. Paz, R.O. Freire, G.F. de Sá, A. Galembeck et al., Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. J. Phys. Chem. B 113(36), 12181–12188 (2009). https://doi.org/10.1021/jp9022629
C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.-Y. Sun et al., Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5(21), 10418–10422 (2013). https://doi.org/10.1021/am403966x
M.X. Wang, C.H. Yang, Z.Q. Liu, J. Zhou, F. Xu et al., Tough photoluminescent hydrogels doped with lanthanide. Macromol. Rapid Commun. 36(5), 465–471 (2015). https://doi.org/10.1002/marc.201400630
C. He, T. Ye, W. Teng, Z. Fang, W.-S. Ruan et al., Bioinspired shear-flow-driven layer-by-layer in situ self-assembly. ACS Nano 13(2), 1910–1922 (2019). https://doi.org/10.1021/acsnano.8b08151
B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E.B. Lobkovsky, Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 19(13), 1693–1696 (2007). https://doi.org/10.1002/adma.200601838