A Novel Photothermal Nanocrystals of Cu7S4 Hollow Structure for Efficient Ablation of Cancer Cells
Corresponding Author: Junqing Hu
Nano-Micro Letters,
Vol. 6 No. 2 (2014), Article Number: 169-177
Abstract
Cu2-xS nanocrystals (NCs), characterized by low cost, low toxicity, high stability and high photothermal conversion efficiency, provide promising platforms as photothermal agents. Herein, a novel two-step synthesis has been developed for Cu7S4 nanocrystals with hollow structure using the as-prepared copper nanoparticles as starting a solid precursor followed by hot-injection of sulfide source.The Cu7S4 NCs exhibit intense absorption band at Near-infrared (NIR) wavelengths due to localized surface plasmon resonance (LSPR) mode, which can effectively convert 980 nm-laser energy into heat.Moreover, the localized high temperature created by Cu7S4 NCs under NIR irradiation could result in efficient photothermal ablation (PTA) of cancer cells in vivo, demonstrating a novel and promising photothermal nanomaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Yu, D. Javier, M. A. Yaseen, N. Nitin, R. Richards-Kortum, B. Anvari and M. S. Wong, “Selfassembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules”, J. Am. Chem. Soc. 132(6), 1929–1938 (2010). http://dx.doi.org/10.1021/ja908139y
- J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh and S. Haam, “Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 50(2), 441–444 (2011). http://dx.doi.org/10.1002/anie.201005075
- X. Wang, C. Wang, L. Cheng, S.-T. Lee and Z. Liu, “Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy”, J. Am. Chem. Soc. 134(17), 7414–7422 (2012). http://dx.doi.org/10.1021/ja300140c
- V. S. Thakare, M. Das, A. K. Jain, S. Patil and S. Jain, “Carbon nanotubes in cancer theragnosis”, Nanomedicine 5(8), 1277–1301 (2010). http://dx.doi.org/10.2217/nnm.10.95
- F. Zhou, S. Wu, S. Song, W. R. Chen, D. E. Resasco and D. Xing, “Antitumor immunologically modified carbon nanotubes for photothermal therapy”, Biomaterials 33(11), 3235–3242 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.12.029
- J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, V. Daniel and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy”, J. Am. Chem. Soc. 133(17), 6825–6831 (2011). http://dx.doi.org/10.1021/ja2010175
- M. Li, X. Yang, J. Ren, K. Qu and X. Qu, “Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease”, Adv. Mater. 24(13), 1722–1728 (2012). http://dx.doi.org/10.1002/adma.201104864
- K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles”, Adv. Mater. 24(14), 1868–1872 (2012). http://dx.doi.org/10.1002/adma.201104964
- K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang and Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials. 33(7), 2206–2214 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.11.064
- B. Jang, J. Y. Park, C. H. Tung, I. H. Kim and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo”, ACS Nano. 5(2), 1086–1094 (2011). http://dx.doi.org/10.1021/nn102722z
- C. G. Wang, J. Chen, T. Talavage and J. Irudayaraj, “Gold nanorod/Fe3O4nanoparticle nano-pearlnecklaces for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009). http://dx.doi.org/10.1002/anie.200805282
- Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu and C. Chen, “Mesoporous silicacoated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment”, Adv. Mater. 24(11), 1418–1423 (2012). http://dx.doi.org/10.1002/adma.201104714
- H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, “Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light”, Adv. Mater. 24(6), 755–761 (2012). http://dx.doi.org/10.1002/adma.201103343
- H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu and F. Tang, “Multifunctional gold nanoshells on silica nanorattles: aplatform for the combination of photothermal therapy and chemotherapy with low systemic toxicity”, Angew. Chem. Int. Ed. 50(4), 891–895 (2011). http://dx.doi.org/10.1002/anie.201002820
- Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho and P. K. Brown, “Gold nanocages: from synthesis to theranostic applications”, Acc. Chem. Res. 44(10), 914–924 (2011). http://dx.doi.org/10.1021/ar200061q
- J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment”, Small 6(7), 811–817 (2010). http://dx.doi.org/10.1002/smll.200902216
- H. Yuan, A. M. Fales and T. Vo-Dinh, “TAT peptidefunctionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance”, J. Am. Chem. Soc. 134 (28), 11358–11361 (2012). http://dx.doi.org/10.1021/ja304180y
- X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties”, Nat. Nanotechnol.. 6(1), 28–32 (2011). http://dx.doi.org/10.1038/nnano.2010.235
- Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, “Hydrophilic Cu9S5nanocrystals: aphotothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo”, ACS Nano 5(12), 9761–9771 (2011). http://dx.doi.org/10.1021/nn203293t
- G. Song, Q. Wang, Y. Wang, G. Lv, C. Li, R. Zou, Z. Chen, Z. Qin, K. Huo, R. Hu and J. Hu, “A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment”, Adv. Funct. Mater. 23(35), 4281–4292 (2013). http://dx.doi.org/10.1002/adfm.201203317
- Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells”, Adv. Mater. 23(31), 3542–3547 (2011). http://dx.doi.org/10.1002/adma.201101295
- Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han and X. Liu, “Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dualmodal imaging and photothermal therapy”, J. Am. Chem. Soc. 135(23), 8571–8577 (2013). http://dx.doi.org/10.1021/ja4013497
- C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy”, Nano Lett. 11(6), 2560–2566 (2011). http://dx.doi.org/10.1021/nl201400z
- M. Zhou, R. Zhang, M. A. Huang, W. Lu, S. L. Song, M. P. Melancon, M. Tian, D. Liang and C. Li, “A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy”, J. Am. Chem. Soc. 132(43), 15351–15358 (2010). http://dx.doi.org/10.1021/ja106855m
- M. Shi, H. S. Kwon, Z. Peng, A. Elder and H. Yang, “Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles”, ACS Nano. 6(3), 2157–2164 (2012). http://dx.doi.org/10.1021/nn300445d
- Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science 304, 711–714 (2004). http://dx.doi.org/10.1126/science.1096566
- W. Li, A. Shavel, R. Guzman, J. Rubio-Garcia, C. Flox, J. Fan, D. Cadavid, M. Ibá≈nez, J. Arbiol, J. R. Morante and A. Cabot, “Morphology evolution of Cu2-xS nanoparticles: from spheres to dodecahedrons”, Chem. Commun. 47(37), 10332–10334 (2011). http://dx.doi.org/10.1039/c1cc13803k
- C. M. Hessel, M. R. Rasch, J. L. Hueso, B. W. Goodfellow, V. A. Akhavan, P. Puvanakrishnan, J. W. Tunnel and B. A. Korgel, “Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging”, Small 6(18), 2026–2034 (2010). http://dx.doi.org/10.1002/smll.201000825
- Z. Chen, Q. Wang, H. Wang, L. Zhang, G. Song, L. Song, J. Hu, H. Wang, J. Liu, M. Zhu and D. Zhao, “Ultrathin PEGylated W18O49nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo”, Adv. Mater. 25(14), 2095–2100 (2013). http://dx.doi.org/10.1002/adma.201204616
References
J. Yu, D. Javier, M. A. Yaseen, N. Nitin, R. Richards-Kortum, B. Anvari and M. S. Wong, “Selfassembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules”, J. Am. Chem. Soc. 132(6), 1929–1938 (2010). http://dx.doi.org/10.1021/ja908139y
J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh and S. Haam, “Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 50(2), 441–444 (2011). http://dx.doi.org/10.1002/anie.201005075
X. Wang, C. Wang, L. Cheng, S.-T. Lee and Z. Liu, “Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy”, J. Am. Chem. Soc. 134(17), 7414–7422 (2012). http://dx.doi.org/10.1021/ja300140c
V. S. Thakare, M. Das, A. K. Jain, S. Patil and S. Jain, “Carbon nanotubes in cancer theragnosis”, Nanomedicine 5(8), 1277–1301 (2010). http://dx.doi.org/10.2217/nnm.10.95
F. Zhou, S. Wu, S. Song, W. R. Chen, D. E. Resasco and D. Xing, “Antitumor immunologically modified carbon nanotubes for photothermal therapy”, Biomaterials 33(11), 3235–3242 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.12.029
J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, V. Daniel and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy”, J. Am. Chem. Soc. 133(17), 6825–6831 (2011). http://dx.doi.org/10.1021/ja2010175
M. Li, X. Yang, J. Ren, K. Qu and X. Qu, “Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease”, Adv. Mater. 24(13), 1722–1728 (2012). http://dx.doi.org/10.1002/adma.201104864
K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles”, Adv. Mater. 24(14), 1868–1872 (2012). http://dx.doi.org/10.1002/adma.201104964
K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang and Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials. 33(7), 2206–2214 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.11.064
B. Jang, J. Y. Park, C. H. Tung, I. H. Kim and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo”, ACS Nano. 5(2), 1086–1094 (2011). http://dx.doi.org/10.1021/nn102722z
C. G. Wang, J. Chen, T. Talavage and J. Irudayaraj, “Gold nanorod/Fe3O4nanoparticle nano-pearlnecklaces for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells”, Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009). http://dx.doi.org/10.1002/anie.200805282
Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu and C. Chen, “Mesoporous silicacoated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment”, Adv. Mater. 24(11), 1418–1423 (2012). http://dx.doi.org/10.1002/adma.201104714
H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, “Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light”, Adv. Mater. 24(6), 755–761 (2012). http://dx.doi.org/10.1002/adma.201103343
H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu and F. Tang, “Multifunctional gold nanoshells on silica nanorattles: aplatform for the combination of photothermal therapy and chemotherapy with low systemic toxicity”, Angew. Chem. Int. Ed. 50(4), 891–895 (2011). http://dx.doi.org/10.1002/anie.201002820
Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho and P. K. Brown, “Gold nanocages: from synthesis to theranostic applications”, Acc. Chem. Res. 44(10), 914–924 (2011). http://dx.doi.org/10.1021/ar200061q
J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment”, Small 6(7), 811–817 (2010). http://dx.doi.org/10.1002/smll.200902216
H. Yuan, A. M. Fales and T. Vo-Dinh, “TAT peptidefunctionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance”, J. Am. Chem. Soc. 134 (28), 11358–11361 (2012). http://dx.doi.org/10.1021/ja304180y
X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties”, Nat. Nanotechnol.. 6(1), 28–32 (2011). http://dx.doi.org/10.1038/nnano.2010.235
Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, “Hydrophilic Cu9S5nanocrystals: aphotothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo”, ACS Nano 5(12), 9761–9771 (2011). http://dx.doi.org/10.1021/nn203293t
G. Song, Q. Wang, Y. Wang, G. Lv, C. Li, R. Zou, Z. Chen, Z. Qin, K. Huo, R. Hu and J. Hu, “A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment”, Adv. Funct. Mater. 23(35), 4281–4292 (2013). http://dx.doi.org/10.1002/adfm.201203317
Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells”, Adv. Mater. 23(31), 3542–3547 (2011). http://dx.doi.org/10.1002/adma.201101295
Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han and X. Liu, “Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dualmodal imaging and photothermal therapy”, J. Am. Chem. Soc. 135(23), 8571–8577 (2013). http://dx.doi.org/10.1021/ja4013497
C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell and B. A. Korgel, “Copper selenide nanocrystals for photothermal therapy”, Nano Lett. 11(6), 2560–2566 (2011). http://dx.doi.org/10.1021/nl201400z
M. Zhou, R. Zhang, M. A. Huang, W. Lu, S. L. Song, M. P. Melancon, M. Tian, D. Liang and C. Li, “A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy”, J. Am. Chem. Soc. 132(43), 15351–15358 (2010). http://dx.doi.org/10.1021/ja106855m
M. Shi, H. S. Kwon, Z. Peng, A. Elder and H. Yang, “Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles”, ACS Nano. 6(3), 2157–2164 (2012). http://dx.doi.org/10.1021/nn300445d
Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science 304, 711–714 (2004). http://dx.doi.org/10.1126/science.1096566
W. Li, A. Shavel, R. Guzman, J. Rubio-Garcia, C. Flox, J. Fan, D. Cadavid, M. Ibá≈nez, J. Arbiol, J. R. Morante and A. Cabot, “Morphology evolution of Cu2-xS nanoparticles: from spheres to dodecahedrons”, Chem. Commun. 47(37), 10332–10334 (2011). http://dx.doi.org/10.1039/c1cc13803k
C. M. Hessel, M. R. Rasch, J. L. Hueso, B. W. Goodfellow, V. A. Akhavan, P. Puvanakrishnan, J. W. Tunnel and B. A. Korgel, “Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging”, Small 6(18), 2026–2034 (2010). http://dx.doi.org/10.1002/smll.201000825
Z. Chen, Q. Wang, H. Wang, L. Zhang, G. Song, L. Song, J. Hu, H. Wang, J. Liu, M. Zhu and D. Zhao, “Ultrathin PEGylated W18O49nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo”, Adv. Mater. 25(14), 2095–2100 (2013). http://dx.doi.org/10.1002/adma.201204616