Fabrication, Characterization and Thermophysical Property Evaluation of SiC Nanofluids for Heat Transfer Applications
Corresponding Author: Muhammet S. Toprak
Nano-Micro Letters,
Vol. 6 No. 2 (2014), Article Number: 178-189
Abstract
Nanofluids (NFs) are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles (NPs) in a base liquid. These fluids have shown potential to improve the heat transfer properties of conventional heat transfer fluids. In this study we report in detail on fabrication, characterization and thermo-physical property evaluation of SiC NFs, prepared using SiC NPs with different crystal structures, for heat transfer applications. For this purpose, a series of SiC NFs containing SiC NPs with different crystal structure (α-SiC and β-SiC) were fabricated in a water (W)/ethylene glycol (EG) mixture (50/50 wt% ratio). Physicochemical properties of NPs/NFs were characterized by using various techniques, such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertransform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Zeta potential analysis. Thermo-physical properties including thermal conductivity (TC) and viscosity for NFs containing SiC particles (α- and β- phase) weremeasured. The results show among all suspensions NFs fabricated with α-SiC particles have more favorable thermo-physical properties compared to the NFs fabricated with β-SiC.The observed difference is attributed to combination of several factors, including crystal structure (β- vs. α-), sample purity, and residual chemicals exhibited on SiCNFs. A TC enhancement of ∼20% while 14% increased viscosity were obtained for NFs containing 9 wt% of particular type of α-SiC NPs indicating promising capability of this kind of NFs for further heat transfer characteristics investigation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. X. Wang and A. S. Mujumdar, “A Review on nanofluids—Part I: Theoretical and numerical investigations”, Braz. J. Chem. Eng. 25(4), 613–630 (2008). http://dx.doi.org/10.1590/S0104-66322008000400001
- S. Senthilraja, M. Karthikeyan and R. Gangadevi, “Nanofluid applications in future automobiles: Comprehensive review of existing data”, Nano-Micro Lett. 2(4), 306–310 (2010). http://dx.doi.org/10.3786/nml.v2i4.p306-310
- K. Y. Leong, R. Saidur, S. N. Kazi and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)”, Appl. Therm. Eng. 30(17–18), 2685–2692 (2010). http://dx.doi.org/10.1016/j.applthermaleng.2010.07.019
- V. Vasu and K. M. Kumar, “Analysis of nanofluids as cutting fluid in grinding EN-31 steel”, Nano-Micro Lett. 3(4), 209–214 (2011). http://dx.doi.org/10.3786/nml.v3i4.p209-214
- C. H. Li and G. P. Peterson,“Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)”, J. Appl. Phys. 99(8), 084314–8 (2006). http://dx.doi.org/10.1063/1.2191571
- H. Zhu, C. Zhang, S. Liu, Y. Tang and Y. Yin, “Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids”, Appl. Phys. Lett. 89(2), 023123–3 (2006). http://dx.doi.org/+10.1063/1.2221905
- S. U. S. Choi, “In development and applications of non-Newtonian flows”, edited by D.A. Siginer et al. New York: ASME 99–105 (1995).
- S. Lee and S. U. S. Choi, “Application of metallic nanoparticle suspension in advanced cooling systems”. Proceedings of Recent Advances in Solids/Structures, vol. 342/MD-vol. 72, ASME, USA, New York 227–234 (1996).
- H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2ultra-fine particles”, Jpn. J. Thermophys. Prop. 7(4), 227–233 (1993). http://dx.doi.org/10.2963/jjtp.7.227
- J. Eastman, S. Choi, S. Li, W. Yu and L. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett. 78(6), 718–720 (2001). http://dx.doi.org/10.1063/1.1341218
- S. U. S. Choi, Z. G. Zhang and W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett. 79(14), 2252–2254 (2001). http://dx.doi.org/10.1063/1.1408272
- H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Appl. Phys. Lett. 83(14), 2931–2933 (2003). http://dx.doi.org/10.1063/1.1602578
- P. Vassallo, R. Kumar and S. DÀmico, “Pool boiling heat transfer experiments in silica-water nano-fluids”, Int. J. Heat Mass Trans. 47(2), 407–411 (2004). http://dx.doi.org/10.1016/S0017-9310(03)00361-2
- P. Keblinski, J. A. Eastman and D. G. Cahill, “Nanofluids for thermal transport”, Mater. Today 8(6), 36–44 (2005). http://dx.doi.org/10.1016/S1369-7021(05)70936-6
- H. T. Zhu, Y. S. Lin and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids”, J. Colloid Interface Sci. 277(1), 100–103 (2004). http://dx.doi.org/10.1016/j.jcis.2004.04.026
- S. U. Shenoy and A. N. Shetty, “Synthesis of copper nanofluids using ascorbic acid reduction method via one step solution phase approach”, J. ASTM Int. 9(5), 1–13 (2012). http://dx.doi.org/10.1520/JAI104416
- G. Paul, J. Philip, B. Raj, P. K. Das and I. Manna, “Synthesis characterization and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process”, Int. J. Heat Mass Tran. 54(15–16), 3783–3788 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
- W. Yu, H. Xie, Y. Li and L. Chen, “Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid”, Particuology 9(2), 187–191 (2011). http://dx.doi.org/10.1016/j.partic.2010.05.014
- B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer 11(2), 151–170 (1998). http://dx.doi.org/10.1080/08916159808946559
- D. Wen and Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications”, Int. J. Heat Fluid Flow 26(6), 855–864 (2005). http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.10.005
- E. Goharshadi, Y. Ding, M. Jorabchi and P. Nancarrow, “Ultrasound-assisted green synthesis of nanocrystallineZnO in the ionic liquid [hmim][NTf2]”, Ultrason. Sonochem. 16(1), 120–123 (2009). http://dx.doi.org/10.1016/j.ultsonch.2008.05.017
- P. Sharma, I. Baek, T. Cho, S. Park and K. B. Lee, “Enhancement of thermal conductivity of ethylene glycol based silver nanofluids”, Powder Technol. 208(1), 7–19 (2011). http://dx.doi.org/10.1016/j.powtec.2010.11.016
- J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley and G. Chen, “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid”, J. Appl. Phys. 103(7), 074301–6 (2008). http://dx.doi.org/10.1063/1.2902483
- H. J. Kim, I. C. Bang and J. Onoe, “Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids”, Opt. Laser Eng. 47(5), 532–538 (2009). http://dx.doi.org/10.1016/j.optlaseng.2008.10.011
- Y. Tan, Y. Zheng, N. Wang and A. Zhang, “Controlling the properties of solvent-free Fe3O4nanofluids by corona structure”, Nano-Micro Lett. 4(4), 208–214 (2012). http://dx.doi.org/10.3786/nml.v4i4.p208-214
- N. Nikkam, M. Saleemi, M. Toprak, S. Li, M. Muahmmed, E. B. Haghighi, R. Khodabandeh, B. Palm, “Novel nanofluids based on mesoporous silica for enhanced heat transfer”, J. Nanopart. Res. 13(11), 6201–6206 (2011). http://dx.doi.org/10.1007/s11051-011-0404-1
- S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME J. Heat Transf. 121(2), 280–289 (1999).
- K. V. Wong and T. Kurma, “Transport properties of alumina nanofluids”, Nanotechnology 19(34), 345702–8 (2008). http://dx.doi.org/10.1115/1.2825978
- A. Amrollahi, A. A. Hamidi and A. M. Rashidi, “The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)”, Nanotechnology 19(31), 315701–8 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315701
- R. A. Andrievski, “Synthesis, structure and properties of nanosized silicon carbide”, Rev.Adv.Mater.Sci. 22, 1–20 (2009).
- H. Xie, J. Wang, T. Xi and Y. Liu, “Thermal conductivity of suspensions containing nanosizedSiC particles”, Int. J. Thermophys. 23(2), 571–580 (2002). http://dx.doi.org/10.1023/A:1015121805842
- S. W. Lee, S. D. Park, S. Kang, I. C. Bang and J. H. Kim, “Investigation of viscosity and thermal conductivity of SiCnanofluids for heat transfer applications”, Int. J. Heat Mass. Tran. 54(1–3), 433–438 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
- D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith and J. M. Lopez-Cepero, “An investigation of silicon carbide-water nanofluid for heat transfer applications”, J. Appl. Phys. 105(6), 064306–064306–6 (2009). http://dx.doi.org/10.1063/1.3082094
- E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, J. L. Routbort, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiCnanofluids”, Nanotechnology 21(21), 215703–10 (2010). http://dx.doi.org/10.1088/0957-4484/21/21/215703
- E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids”, J. Appl. Phys. 109(1), 014914 (2011). http://dx.doi.org/10.1063/1.3524274
- E. B. Haghighi, Z. Anwar, I. Lumbreras, S. A. Mirmohammadi, M. Behi and R. Khodabandeh and B. Palm, “Screening single phase laminar convective heat transfer of nanofluids in a micro-tube”, J. Phys. Conf. Ser. 395(1), 012036–11 (2012). http://dx.doi.org/10.1088/1742-6596/395/1/012036
- R. Cheung, “Silicon carbide microelectromechanical systems for harsh environments”, Imperial College, pp3 (2006).
- T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, “Superconductivity in carrierdoped silicon carbide”, Sci. Technol. Adv. Mater. 9(4), 044204–8 (2008). http://dx.doi.org/10.1088/1468-6996/9/4/044204
- Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng and S. J. Chua, “Photoluminescence studies of SiCnanocrystals embedded in a SiO2 matrix”, Chem. Phys. Lett. 339(5–6), 319–322 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00308-6
- Jingkun Jiang, Günter Oberdörster, Pratim Biswas “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies”, J. Nanopart. Res. 11(1), 77–89 (2009). http://dx.doi.org/10.1007/s11051-008-9446-4
- M. Kosmulski, “pH-dependent surface charging and points of zero charge. IV. Update and new approach”, J.Colloid Interface Sci. 337(2), 439–448 (2009). http://dx.doi.org/10.1016/j.jcis.2009.04.072
- M. Kosmulski, “The significance of the difference in the point of zero charge between rutile and anatase”, Adv. Colloid Interface Sci. 99(3), 255–264 (2002). http://dx.doi.org/10.1016/S0001-8686(02)00080-5
- J. Jiang, G. Oberdörster, A. Elder, R. Gelein, P. Mercer and P. Biswas, “Does nanoparticle activity depend upon size and crystal phase?”, Nanotoxicology 2(1), 33–42 (2008). http://dx.doi.org/10.1080/17435390701882478
- Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin and A. B. Tomson, “Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH”, Langmuir 20(22), 9585–9593 (2004).
- D. E. Giammar, C. J. Maus and L. Y. Xie, “Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles”, Environ. Eng. Sci. 24(1), 85–95 (2007). http://dx.doi.org/10.1089/ees.2007.24.85
- K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul and P. Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties”, Nanoscale Res. Lett. 6(27), 2–8 (2011). http://dx.doi.org/10.1007/s11671-010-9772-1
- K. Kamada, M. Tokutomi, N. Enomoto and H. Junichi, “Incorporation of oxide nanoparticles into barrier-type alumina film via anodic oxidation combined with electrophoretic deposition”, J. Mater. Chem. 15, 3388–3394 (2005). http://dx.doi.org/10.1039/B504364F
- A. Sclafani and J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem. 100 (32), 13655–13661 (1996). http://dx.doi.org/10.1021/jp9533584
- Oman Zuas, Harry Budiman, “Synthesis of nanostructured copper-doped titania and its properties”, Nano-Micro Lett. 5 (1), 26–33 (2013). http://dx.doi.org/10.3786/nml.v5i1.p26-33
- G. A. Waychunas, C. S. Kim and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms”, J. Nanopart. Res. 7(4–5), 409–433 (2005). http://dx.doi.org/10.1007/s11051-005-6931-x
- B. Gilbert and J. F. Banfield, “Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems”, Rev. Mineral. Geochem. 59, 109–155 (2005). http://dx.doi.org/10.2138/rmg.2005.59.6
- E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Nanofluids for heat transfer: an engineering approach” Nanoscale Res. Lett. 6(182), 2–7 (2011). http://dx.doi.org/10.1186/1556-276X-6-182
- C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. A. Mintsa, “Temperature and particle-size dependent viscosity data for waterbased nanofluids — hysteresis phenomenon”, Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007). http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.02.004
- P. K. Namburu, D. P. Kulkarni, A. Dandekar and D. K. Das, “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids”, Micro NanoLett. 2(3), 67–71 (2007). http://dx.doi.org/10.1049/mnl:20070037
- M. Kole and T. K. Dey, “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Exp. Therm. Fluid Sci. 34(6), 677–683 (2010). http://dx.doi.org/10.1016/j.expthermflusci.2009.12.009
References
Q. X. Wang and A. S. Mujumdar, “A Review on nanofluids—Part I: Theoretical and numerical investigations”, Braz. J. Chem. Eng. 25(4), 613–630 (2008). http://dx.doi.org/10.1590/S0104-66322008000400001
S. Senthilraja, M. Karthikeyan and R. Gangadevi, “Nanofluid applications in future automobiles: Comprehensive review of existing data”, Nano-Micro Lett. 2(4), 306–310 (2010). http://dx.doi.org/10.3786/nml.v2i4.p306-310
K. Y. Leong, R. Saidur, S. N. Kazi and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)”, Appl. Therm. Eng. 30(17–18), 2685–2692 (2010). http://dx.doi.org/10.1016/j.applthermaleng.2010.07.019
V. Vasu and K. M. Kumar, “Analysis of nanofluids as cutting fluid in grinding EN-31 steel”, Nano-Micro Lett. 3(4), 209–214 (2011). http://dx.doi.org/10.3786/nml.v3i4.p209-214
C. H. Li and G. P. Peterson,“Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)”, J. Appl. Phys. 99(8), 084314–8 (2006). http://dx.doi.org/10.1063/1.2191571
H. Zhu, C. Zhang, S. Liu, Y. Tang and Y. Yin, “Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids”, Appl. Phys. Lett. 89(2), 023123–3 (2006). http://dx.doi.org/+10.1063/1.2221905
S. U. S. Choi, “In development and applications of non-Newtonian flows”, edited by D.A. Siginer et al. New York: ASME 99–105 (1995).
S. Lee and S. U. S. Choi, “Application of metallic nanoparticle suspension in advanced cooling systems”. Proceedings of Recent Advances in Solids/Structures, vol. 342/MD-vol. 72, ASME, USA, New York 227–234 (1996).
H. Masuda, A. Ebata, K. Teramae and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2ultra-fine particles”, Jpn. J. Thermophys. Prop. 7(4), 227–233 (1993). http://dx.doi.org/10.2963/jjtp.7.227
J. Eastman, S. Choi, S. Li, W. Yu and L. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett. 78(6), 718–720 (2001). http://dx.doi.org/10.1063/1.1341218
S. U. S. Choi, Z. G. Zhang and W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett. 79(14), 2252–2254 (2001). http://dx.doi.org/10.1063/1.1408272
H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Appl. Phys. Lett. 83(14), 2931–2933 (2003). http://dx.doi.org/10.1063/1.1602578
P. Vassallo, R. Kumar and S. DÀmico, “Pool boiling heat transfer experiments in silica-water nano-fluids”, Int. J. Heat Mass Trans. 47(2), 407–411 (2004). http://dx.doi.org/10.1016/S0017-9310(03)00361-2
P. Keblinski, J. A. Eastman and D. G. Cahill, “Nanofluids for thermal transport”, Mater. Today 8(6), 36–44 (2005). http://dx.doi.org/10.1016/S1369-7021(05)70936-6
H. T. Zhu, Y. S. Lin and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids”, J. Colloid Interface Sci. 277(1), 100–103 (2004). http://dx.doi.org/10.1016/j.jcis.2004.04.026
S. U. Shenoy and A. N. Shetty, “Synthesis of copper nanofluids using ascorbic acid reduction method via one step solution phase approach”, J. ASTM Int. 9(5), 1–13 (2012). http://dx.doi.org/10.1520/JAI104416
G. Paul, J. Philip, B. Raj, P. K. Das and I. Manna, “Synthesis characterization and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process”, Int. J. Heat Mass Tran. 54(15–16), 3783–3788 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
W. Yu, H. Xie, Y. Li and L. Chen, “Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid”, Particuology 9(2), 187–191 (2011). http://dx.doi.org/10.1016/j.partic.2010.05.014
B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer 11(2), 151–170 (1998). http://dx.doi.org/10.1080/08916159808946559
D. Wen and Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications”, Int. J. Heat Fluid Flow 26(6), 855–864 (2005). http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.10.005
E. Goharshadi, Y. Ding, M. Jorabchi and P. Nancarrow, “Ultrasound-assisted green synthesis of nanocrystallineZnO in the ionic liquid [hmim][NTf2]”, Ultrason. Sonochem. 16(1), 120–123 (2009). http://dx.doi.org/10.1016/j.ultsonch.2008.05.017
P. Sharma, I. Baek, T. Cho, S. Park and K. B. Lee, “Enhancement of thermal conductivity of ethylene glycol based silver nanofluids”, Powder Technol. 208(1), 7–19 (2011). http://dx.doi.org/10.1016/j.powtec.2010.11.016
J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley and G. Chen, “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid”, J. Appl. Phys. 103(7), 074301–6 (2008). http://dx.doi.org/10.1063/1.2902483
H. J. Kim, I. C. Bang and J. Onoe, “Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids”, Opt. Laser Eng. 47(5), 532–538 (2009). http://dx.doi.org/10.1016/j.optlaseng.2008.10.011
Y. Tan, Y. Zheng, N. Wang and A. Zhang, “Controlling the properties of solvent-free Fe3O4nanofluids by corona structure”, Nano-Micro Lett. 4(4), 208–214 (2012). http://dx.doi.org/10.3786/nml.v4i4.p208-214
N. Nikkam, M. Saleemi, M. Toprak, S. Li, M. Muahmmed, E. B. Haghighi, R. Khodabandeh, B. Palm, “Novel nanofluids based on mesoporous silica for enhanced heat transfer”, J. Nanopart. Res. 13(11), 6201–6206 (2011). http://dx.doi.org/10.1007/s11051-011-0404-1
S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME J. Heat Transf. 121(2), 280–289 (1999).
K. V. Wong and T. Kurma, “Transport properties of alumina nanofluids”, Nanotechnology 19(34), 345702–8 (2008). http://dx.doi.org/10.1115/1.2825978
A. Amrollahi, A. A. Hamidi and A. M. Rashidi, “The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)”, Nanotechnology 19(31), 315701–8 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315701
R. A. Andrievski, “Synthesis, structure and properties of nanosized silicon carbide”, Rev.Adv.Mater.Sci. 22, 1–20 (2009).
H. Xie, J. Wang, T. Xi and Y. Liu, “Thermal conductivity of suspensions containing nanosizedSiC particles”, Int. J. Thermophys. 23(2), 571–580 (2002). http://dx.doi.org/10.1023/A:1015121805842
S. W. Lee, S. D. Park, S. Kang, I. C. Bang and J. H. Kim, “Investigation of viscosity and thermal conductivity of SiCnanofluids for heat transfer applications”, Int. J. Heat Mass. Tran. 54(1–3), 433–438 (2011). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith and J. M. Lopez-Cepero, “An investigation of silicon carbide-water nanofluid for heat transfer applications”, J. Appl. Phys. 105(6), 064306–064306–6 (2009). http://dx.doi.org/10.1063/1.3082094
E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, J. L. Routbort, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiCnanofluids”, Nanotechnology 21(21), 215703–10 (2010). http://dx.doi.org/10.1088/0957-4484/21/21/215703
E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids”, J. Appl. Phys. 109(1), 014914 (2011). http://dx.doi.org/10.1063/1.3524274
E. B. Haghighi, Z. Anwar, I. Lumbreras, S. A. Mirmohammadi, M. Behi and R. Khodabandeh and B. Palm, “Screening single phase laminar convective heat transfer of nanofluids in a micro-tube”, J. Phys. Conf. Ser. 395(1), 012036–11 (2012). http://dx.doi.org/10.1088/1742-6596/395/1/012036
R. Cheung, “Silicon carbide microelectromechanical systems for harsh environments”, Imperial College, pp3 (2006).
T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, “Superconductivity in carrierdoped silicon carbide”, Sci. Technol. Adv. Mater. 9(4), 044204–8 (2008). http://dx.doi.org/10.1088/1468-6996/9/4/044204
Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng and S. J. Chua, “Photoluminescence studies of SiCnanocrystals embedded in a SiO2 matrix”, Chem. Phys. Lett. 339(5–6), 319–322 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00308-6
Jingkun Jiang, Günter Oberdörster, Pratim Biswas “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies”, J. Nanopart. Res. 11(1), 77–89 (2009). http://dx.doi.org/10.1007/s11051-008-9446-4
M. Kosmulski, “pH-dependent surface charging and points of zero charge. IV. Update and new approach”, J.Colloid Interface Sci. 337(2), 439–448 (2009). http://dx.doi.org/10.1016/j.jcis.2009.04.072
M. Kosmulski, “The significance of the difference in the point of zero charge between rutile and anatase”, Adv. Colloid Interface Sci. 99(3), 255–264 (2002). http://dx.doi.org/10.1016/S0001-8686(02)00080-5
J. Jiang, G. Oberdörster, A. Elder, R. Gelein, P. Mercer and P. Biswas, “Does nanoparticle activity depend upon size and crystal phase?”, Nanotoxicology 2(1), 33–42 (2008). http://dx.doi.org/10.1080/17435390701882478
Y. Gao, R. Wahi, A. T. Kan, J. C. Falkner, V. L. Colvin and A. B. Tomson, “Adsorption of cadmium on anatase nanoparticles effect of crystal size and pH”, Langmuir 20(22), 9585–9593 (2004).
D. E. Giammar, C. J. Maus and L. Y. Xie, “Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles”, Environ. Eng. Sci. 24(1), 85–95 (2007). http://dx.doi.org/10.1089/ees.2007.24.85
K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul and P. Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties”, Nanoscale Res. Lett. 6(27), 2–8 (2011). http://dx.doi.org/10.1007/s11671-010-9772-1
K. Kamada, M. Tokutomi, N. Enomoto and H. Junichi, “Incorporation of oxide nanoparticles into barrier-type alumina film via anodic oxidation combined with electrophoretic deposition”, J. Mater. Chem. 15, 3388–3394 (2005). http://dx.doi.org/10.1039/B504364F
A. Sclafani and J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem. 100 (32), 13655–13661 (1996). http://dx.doi.org/10.1021/jp9533584
Oman Zuas, Harry Budiman, “Synthesis of nanostructured copper-doped titania and its properties”, Nano-Micro Lett. 5 (1), 26–33 (2013). http://dx.doi.org/10.3786/nml.v5i1.p26-33
G. A. Waychunas, C. S. Kim and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms”, J. Nanopart. Res. 7(4–5), 409–433 (2005). http://dx.doi.org/10.1007/s11051-005-6931-x
B. Gilbert and J. F. Banfield, “Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems”, Rev. Mineral. Geochem. 59, 109–155 (2005). http://dx.doi.org/10.2138/rmg.2005.59.6
E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Nanofluids for heat transfer: an engineering approach” Nanoscale Res. Lett. 6(182), 2–7 (2011). http://dx.doi.org/10.1186/1556-276X-6-182
C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. A. Mintsa, “Temperature and particle-size dependent viscosity data for waterbased nanofluids — hysteresis phenomenon”, Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007). http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.02.004
P. K. Namburu, D. P. Kulkarni, A. Dandekar and D. K. Das, “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids”, Micro NanoLett. 2(3), 67–71 (2007). http://dx.doi.org/10.1049/mnl:20070037
M. Kole and T. K. Dey, “Viscosity of alumina nanoparticles dispersed in car engine coolant”, Exp. Therm. Fluid Sci. 34(6), 677–683 (2010). http://dx.doi.org/10.1016/j.expthermflusci.2009.12.009