A Novel Immunosensor Based on Au Nanoparticles and Polyaniline/Multiwall Carbon Nanotubes/Chitosan Nanocomposite Film Functionalized Interface
Corresponding Author: Xiangyou Wang
Nano-Micro Letters,
Vol. 5 No. 3 (2013), Article Number: 191-201
Abstract
A novel multilayer film based on Au nanoparticles (AuNPs) and polyaniline/carboxylated multiwall carbon nanotubes-chitosan nanocomposite (PANI/MWCNTs/CS) was exploited to fabricate a highly sensitive immunosensor for detecting chlorpyrifos. PANI-coated MWCNTs were prepared by in situ chemical polymerization and carboxylated MWCNTs played an important role in obtaining the thin and uniform coating of PANI resulting in the improved immunosensor response. AuNPs were used as a linker to immobilize chlorpyrifos antibody. The performance of the immunosensor was characterized by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), respectively. All variables involved in the preparation process and analytical performance of the immunosensor were optimized. Under optimal conditions (antibody concentration: 5 μg/ml, working buffer pH: 6.5, incubation time: 40 min, incubation temperature: 25°C), the immunosensor exhibited a wide linear range from 0.1 to 40×10−6 mg/ml and from 40×10−6 mg/ml to 500×10−6 mg/ml, and with a detection limit of 0.06×10−6 mg/ml, which provided a valuable tool for the chlorpyrifos detection in real samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Akoto, H. Andoh, G. Darko, K. Eshun and P. Osei-Fosu, “Health risk assessment of pesticides residue in maize and cowpea from Ejura, Ghana”, Chemosphere 92(1), 67–73 (2013). http://dx.doi.org//10.1016/j.chemosphere.2013.02.057
- J. Ticha, J. Hajslova, M. Jech, J. Honzicek, O. Lacina, J. Kohoutkova, V. Kocourek, M. Lansky, J. Kloutvorova and V. Falta, “Changes of pesticide residues in apples during cold storage”, Food Control. 19(3), 247–256 (2008). http://dx.doi.org//10.1016/j.foodcont.2007.03.011
- X. Guardino, J. Obiols, M. G. Rosell, A. Farran and C. Serra, “Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, high-performance liquid chromatography and capillary electrophoresis”, J. Chromatogr. A 823(1–2), 91–96 (1998). http://dx.doi.org//10.1016/S0021-9673 (98)00272-6 http://dx.doi.org//10.1016/S0021-9673(98)00272-6
- G. Jeanty, C. Ghommidh and J. L. Marty, “Automated detection of chlorpyrifos and its metabolites by a continuous flow system-based enzyme sensor”, Anal. Chim. Acta 436(1), 119–128 (2001). http://dx.doi.org//10.1016/S0003-2670(01)00898-4
- Y. A. Kim, E. H. Lee, K. O. Kim, Y. T. Lee, B. D. Hammock and H. S. Lee, “Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos”, Anal. Chim. Acta 693(1–2), 106–113 (2011). http://dx.doi.org//10.1016/j.aca.2011.03.011
- F. J. Santos and M. T. Galceran, “Modern developments in gas chromatography-mass spectrometry-based environmental analysis”, J. Chromatogr. A 1000(1–2), 125–151 (2003). http://dx.doi.org//10.1016/S0021-9673(03)00305-4
- C. Blasco, G. Font and Y. Picó, “Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain)”, Food Control. 17(11), 841–846 (2006). http://dx.doi.org//10.1016/j.foodcont.2005.05.013
- J. Hernández-Borges, R. Corbella-Tena, M. A. Rodríguez-Delgado, F. J. García-Montelongo and J. Havel, “Content of aliphatic hydrocarbons in limpets as a new way for classification of species using artificial neural networks”, Chemosphere 54(8), 1059–1069 (2004). http://dx.doi.org//10.1016/j.chemosphere.2003.09.042
- H. S. Yin, S. Y. Ai, J. Xu, W. J. Shi and L. S. Zhu, “Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim”, J. Electroanal. Chem. 637(1-2), 21–27 (2009). http://dx.doi.org//10.1016/j.jelechem.2009.09.025
- J. L. Marty, D. Garcia and R. Rouillon, “Biosensor: potential in pesticide detection”, Trends Anal. Chem. 14(7), 329–333 (1995). http://dx.doi.org//10.1016/0165-9936(95)97060-E
- X. S. Jiang, D. Y. Li, X. Xu, Y. B. Ying, Y. B. Li, Z. Z. Ye and J. P. Wang, “Immunosensors for detection of pesticide residues”, Biosens. Bioelectron. 23(11), 1577–1587 (2008). http://dx.doi.org//10.1016/j.bios.2008.01.035
- K. Omidfar, H. Zarei, F. Gholizadeh and B. Larijani, “A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles”, Anal. Biochem. 421(2), 649–656 (2012). http://dx.doi.org//10.1016/j.ab.2011.12.022
- K. Omidfar, A. Dehdast, H. Zarei, B. K. Sourkohi and B. Larijani, “Development of urinary albumin immunosensor based on colloidal AuNP and PVA”, Biosens. Bioelectron. 26(10), 4177–4183 (2011). http://dx.doi.org//10.1016/j.bios.2011.04.022
- A. L. Sun, G. R. Chen, Q. L Sheng and J. B. Zheng, “Sensitive label-free electrochemical immunoassay based on a redox matrix of gold nanoparticles/Azure I/multi-wall carbon nanotubes composite”, Biochem. Eng. J. 57, 1–6 (2011). http://dx.doi.org//10.1016/j.bej.2011.06.008
- J. F. Wang, R. Yuan, Y. Q. Chai, S. R. Cao, S. Guan, P. Fu and L. G. Min, “A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin”, Biochem. Eng. 51(3), 95–101 (2010). http://dx.doi.org//10.1016/j.bej.2010.05.005
- K. J. Huang, D. J. Niu, W. Z. Xie and W. Wang, “A disposable electrochemical immunosensor for carcinoembryonic antigen based nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode”, Anal. Chim. Acta 659(1-2), 102–108 (2010). http://dx.doi.org//10.1016/j.aca.2009.11.023
- D. P. Tang, R. Yuan, Y. Q. Chai, X. Zhong, Y. Liu and J. Y. Dai, “Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes”, Biochem. Eng. J. 22(1), 43–49 (2004). http://dx.doi.org//10.1016/j.bej.2004.08.002
- F. R. R. Teles and L. P. Fonseca, “Applications of polymers for biomolecule immobilization in electrochemical biosensors”, Mater. Sci. Eng. C 28(8), 1530–1543 (2008). http://dx.doi.org//10.1016/j.msec.2008.04.010
- J. H. Kim, J. H. Cho and G. S. Cha, “Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal gener-ator”, Biosens. Bioelectron. 14(12), 907–915 (2000). http://dx.doi.org//10.1016/S0956-5663(99)00063-9
- C. Dhand, M. Das, M. Datta and B. D. Malhotra, “Recent advances in polyaniline based biosensors”, Biosens. Bioelectron. 26(6), 2811–2821 (2011). http://dx.doi.org//10.1016/j.bios.2010.10.017
- J. W. Schultze and H. Karabalut, “Application potential of conducting polymers”, Electrochim. Acta 50(7–8), 1739–1745 (2005). http://dx.doi.org//10.1016/j.electacta.2004.10.023
- G. A. Rivas, M. D. Rubianes, M. C. Rodríguez, N. F. Ferreyra, G. L. Luque, M. L. Pedano, S. A. Miscoria and C. Parrado, “Carbon nanotubes for electrochemical biosensing”, Talanta. 74(3), 291–307 (2007). http://dx.doi.org//10.1016/j.talanta.2007.10.013
- J. Wang and Y. H. Lin, “Functionalized carbon nanotubes and nanofibers for biosensing applications”, Trends Anal. Chem. 27(7), 619–626 (2008). http://dx.doi.org//10.1016/j.trac.2008.05.009
- W. Jiang, R. Yuan, Y. Q. Chai and B. Yin, “Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of a-fetoprotein”, Anal. Biochem. 407(1), 65–71 (2010). http://dx.doi.org//10.1016/j.ab.2010.07.028
- J. Yun, J. S. Im, H. I. Kim and Y. S. Lee, “Effect of oxyfluorination on gas sensing behavior of polyaniline-coated multi-walled carbon nanotubes”, Appl. Surf. Sci. 258(8), 3462–3468 (2012). http://dx.doi.org//10.1016/j.apsusc.2011.11.098
- Y. Jiang, H. Zhao, N. N. Zhu, Y. Q. Lin, P. Yu and L. Q. Mao, “A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles”, Angew. Chem. Int. Ed. 47(45), 8601–8604 (2008). http://dx.doi.org//10.1002/anie.200804066
- M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang and M. S. Dresselhaus, “Stacking nature of graphene layers in carbon nanotubes and nanofibres”, J. Phys. Chem. Solids 58(11), 1707–1712 (1997). http://dx.doi.org//10.1016/S0022-3697(97)00055-3
- H. K. Chaudhari and D. S. Kelkar, “Investigation of structure and electrical conductivity in doped polyaniline”, Polym. Int. 42(4), 380–384 (1997). http://dx.doi.org//10.1016/j.jpcs.2006.01.100
- S. W. Phang, M. Tadokoro, J. Watanabe and N. Kuramoto, “Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes”, Synth. Met. 158(6), 251–258 (2008). http://dx.doi.org//10.1016/j.synthmet.2008.01.012
- N. Li, H. W. Zhao, R. Yuan, K. F. Peng and Y. Q. Chai, “An amperometric immunosensor with a DNA polyion complex membrane/gold nanoparticles-backbone for antibody immobilisation”, Electrochim. Acta 54(2), 235–241 (2008). http://dx.doi.org//10.1016/j.electacta.2008.08.015
- Q. Zhu, R. Yuan, Y. Q. Chai, N. Wang, Y. Zhuo, Y. Zhang and X. L. Li, “A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin-silver complex film”, Electrochim. Acta 51(18), 3763–3768 (2006). http://dx.doi.org//10.1016/j.electacta.2005.10.039
- X. D. Hua, G. L. Qian, J. F. Yang, B. S. Hu, J. Q. Fan, N. Qin, G. Li, Y. Y. Wang and F. Q. Liu, “Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples”, Biosens. Bioelectron. 26(1), 189–194 (2010). http://dx.doi.org//10.1016/j.bios.2010.06.005
- E. Mauriz, A. Calle, L. M. Lechug, J. Quintana, A. Montoya and J. J. Manclus, “Real-time detection of chlorpyrifos at part per trillion levels in ground surface and drinking water samples by a portable surface plasmon resonance immunosensor”, Anal. Chim. Acta 561(1-2), 40–47 (2006). http://dx.doi.org//10.1016/j.aca.2005.12.069
- B. Kuswandi, C. I. Fikriyah and A. A. Gani, “An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue”, Talanta. 74(4), 613–618 (2008). http://dx.doi.org//10.1016/j.talanta.2007.06.042
- L. G. Zamfir, L. Rotariua and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetra?uoroborate/multiwalled carbon nanotubes gel”, Biosens. Bioelectron. 26(8), 3692–3695 (2011). http://dx.doi.org//10.1016/j.bios.2011.02.001
- N. Prabhakar, K. Arora, S. P. Singh, M. K. Pandey, H. Singh and B. D. Malhotra, “Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor”, Anal. Chim. Acta 589(1), 6–13 (2007). http://dx.doi.org//10.1016/j.aca.2007.01.084
- N. Prabhakar, G. Sumana, K. Arora, H. Singh and B. D. Malhotra, “Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate”, Electrochim. Acta 53(12), 4344–4350 (2008). http://dx.doi.org//10.1016/j.electacta.2007.12.062
- L. Rotariu, L. G. Zamfir and C. Bala, “A rational design of the multiwalled carbon nanotube-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors”, Anal. Chim. Acta 748, 81–88 (2012). http://dx.doi.org//10.1016/j.aca.2012.08.045
- T. Liu, H. C. Su, X. J. Qu, P. Ju, L. Cui and S. Y. Ai, “Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduce d graphene oxide-gold nanocom posites modified electrode for amperometric detection of organophosphorus and carbamate pesticides”, Sens. Actuators B Chem. 160(1), 1255–1261 (2011). http://dx.doi.org//10.1016/j.snb.2011.09.059
References
O. Akoto, H. Andoh, G. Darko, K. Eshun and P. Osei-Fosu, “Health risk assessment of pesticides residue in maize and cowpea from Ejura, Ghana”, Chemosphere 92(1), 67–73 (2013). http://dx.doi.org//10.1016/j.chemosphere.2013.02.057
J. Ticha, J. Hajslova, M. Jech, J. Honzicek, O. Lacina, J. Kohoutkova, V. Kocourek, M. Lansky, J. Kloutvorova and V. Falta, “Changes of pesticide residues in apples during cold storage”, Food Control. 19(3), 247–256 (2008). http://dx.doi.org//10.1016/j.foodcont.2007.03.011
X. Guardino, J. Obiols, M. G. Rosell, A. Farran and C. Serra, “Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, high-performance liquid chromatography and capillary electrophoresis”, J. Chromatogr. A 823(1–2), 91–96 (1998). http://dx.doi.org//10.1016/S0021-9673 (98)00272-6 http://dx.doi.org//10.1016/S0021-9673(98)00272-6
G. Jeanty, C. Ghommidh and J. L. Marty, “Automated detection of chlorpyrifos and its metabolites by a continuous flow system-based enzyme sensor”, Anal. Chim. Acta 436(1), 119–128 (2001). http://dx.doi.org//10.1016/S0003-2670(01)00898-4
Y. A. Kim, E. H. Lee, K. O. Kim, Y. T. Lee, B. D. Hammock and H. S. Lee, “Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos”, Anal. Chim. Acta 693(1–2), 106–113 (2011). http://dx.doi.org//10.1016/j.aca.2011.03.011
F. J. Santos and M. T. Galceran, “Modern developments in gas chromatography-mass spectrometry-based environmental analysis”, J. Chromatogr. A 1000(1–2), 125–151 (2003). http://dx.doi.org//10.1016/S0021-9673(03)00305-4
C. Blasco, G. Font and Y. Picó, “Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain)”, Food Control. 17(11), 841–846 (2006). http://dx.doi.org//10.1016/j.foodcont.2005.05.013
J. Hernández-Borges, R. Corbella-Tena, M. A. Rodríguez-Delgado, F. J. García-Montelongo and J. Havel, “Content of aliphatic hydrocarbons in limpets as a new way for classification of species using artificial neural networks”, Chemosphere 54(8), 1059–1069 (2004). http://dx.doi.org//10.1016/j.chemosphere.2003.09.042
H. S. Yin, S. Y. Ai, J. Xu, W. J. Shi and L. S. Zhu, “Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim”, J. Electroanal. Chem. 637(1-2), 21–27 (2009). http://dx.doi.org//10.1016/j.jelechem.2009.09.025
J. L. Marty, D. Garcia and R. Rouillon, “Biosensor: potential in pesticide detection”, Trends Anal. Chem. 14(7), 329–333 (1995). http://dx.doi.org//10.1016/0165-9936(95)97060-E
X. S. Jiang, D. Y. Li, X. Xu, Y. B. Ying, Y. B. Li, Z. Z. Ye and J. P. Wang, “Immunosensors for detection of pesticide residues”, Biosens. Bioelectron. 23(11), 1577–1587 (2008). http://dx.doi.org//10.1016/j.bios.2008.01.035
K. Omidfar, H. Zarei, F. Gholizadeh and B. Larijani, “A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles”, Anal. Biochem. 421(2), 649–656 (2012). http://dx.doi.org//10.1016/j.ab.2011.12.022
K. Omidfar, A. Dehdast, H. Zarei, B. K. Sourkohi and B. Larijani, “Development of urinary albumin immunosensor based on colloidal AuNP and PVA”, Biosens. Bioelectron. 26(10), 4177–4183 (2011). http://dx.doi.org//10.1016/j.bios.2011.04.022
A. L. Sun, G. R. Chen, Q. L Sheng and J. B. Zheng, “Sensitive label-free electrochemical immunoassay based on a redox matrix of gold nanoparticles/Azure I/multi-wall carbon nanotubes composite”, Biochem. Eng. J. 57, 1–6 (2011). http://dx.doi.org//10.1016/j.bej.2011.06.008
J. F. Wang, R. Yuan, Y. Q. Chai, S. R. Cao, S. Guan, P. Fu and L. G. Min, “A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin”, Biochem. Eng. 51(3), 95–101 (2010). http://dx.doi.org//10.1016/j.bej.2010.05.005
K. J. Huang, D. J. Niu, W. Z. Xie and W. Wang, “A disposable electrochemical immunosensor for carcinoembryonic antigen based nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode”, Anal. Chim. Acta 659(1-2), 102–108 (2010). http://dx.doi.org//10.1016/j.aca.2009.11.023
D. P. Tang, R. Yuan, Y. Q. Chai, X. Zhong, Y. Liu and J. Y. Dai, “Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes”, Biochem. Eng. J. 22(1), 43–49 (2004). http://dx.doi.org//10.1016/j.bej.2004.08.002
F. R. R. Teles and L. P. Fonseca, “Applications of polymers for biomolecule immobilization in electrochemical biosensors”, Mater. Sci. Eng. C 28(8), 1530–1543 (2008). http://dx.doi.org//10.1016/j.msec.2008.04.010
J. H. Kim, J. H. Cho and G. S. Cha, “Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal gener-ator”, Biosens. Bioelectron. 14(12), 907–915 (2000). http://dx.doi.org//10.1016/S0956-5663(99)00063-9
C. Dhand, M. Das, M. Datta and B. D. Malhotra, “Recent advances in polyaniline based biosensors”, Biosens. Bioelectron. 26(6), 2811–2821 (2011). http://dx.doi.org//10.1016/j.bios.2010.10.017
J. W. Schultze and H. Karabalut, “Application potential of conducting polymers”, Electrochim. Acta 50(7–8), 1739–1745 (2005). http://dx.doi.org//10.1016/j.electacta.2004.10.023
G. A. Rivas, M. D. Rubianes, M. C. Rodríguez, N. F. Ferreyra, G. L. Luque, M. L. Pedano, S. A. Miscoria and C. Parrado, “Carbon nanotubes for electrochemical biosensing”, Talanta. 74(3), 291–307 (2007). http://dx.doi.org//10.1016/j.talanta.2007.10.013
J. Wang and Y. H. Lin, “Functionalized carbon nanotubes and nanofibers for biosensing applications”, Trends Anal. Chem. 27(7), 619–626 (2008). http://dx.doi.org//10.1016/j.trac.2008.05.009
W. Jiang, R. Yuan, Y. Q. Chai and B. Yin, “Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of a-fetoprotein”, Anal. Biochem. 407(1), 65–71 (2010). http://dx.doi.org//10.1016/j.ab.2010.07.028
J. Yun, J. S. Im, H. I. Kim and Y. S. Lee, “Effect of oxyfluorination on gas sensing behavior of polyaniline-coated multi-walled carbon nanotubes”, Appl. Surf. Sci. 258(8), 3462–3468 (2012). http://dx.doi.org//10.1016/j.apsusc.2011.11.098
Y. Jiang, H. Zhao, N. N. Zhu, Y. Q. Lin, P. Yu and L. Q. Mao, “A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles”, Angew. Chem. Int. Ed. 47(45), 8601–8604 (2008). http://dx.doi.org//10.1002/anie.200804066
M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang and M. S. Dresselhaus, “Stacking nature of graphene layers in carbon nanotubes and nanofibres”, J. Phys. Chem. Solids 58(11), 1707–1712 (1997). http://dx.doi.org//10.1016/S0022-3697(97)00055-3
H. K. Chaudhari and D. S. Kelkar, “Investigation of structure and electrical conductivity in doped polyaniline”, Polym. Int. 42(4), 380–384 (1997). http://dx.doi.org//10.1016/j.jpcs.2006.01.100
S. W. Phang, M. Tadokoro, J. Watanabe and N. Kuramoto, “Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes”, Synth. Met. 158(6), 251–258 (2008). http://dx.doi.org//10.1016/j.synthmet.2008.01.012
N. Li, H. W. Zhao, R. Yuan, K. F. Peng and Y. Q. Chai, “An amperometric immunosensor with a DNA polyion complex membrane/gold nanoparticles-backbone for antibody immobilisation”, Electrochim. Acta 54(2), 235–241 (2008). http://dx.doi.org//10.1016/j.electacta.2008.08.015
Q. Zhu, R. Yuan, Y. Q. Chai, N. Wang, Y. Zhuo, Y. Zhang and X. L. Li, “A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin-silver complex film”, Electrochim. Acta 51(18), 3763–3768 (2006). http://dx.doi.org//10.1016/j.electacta.2005.10.039
X. D. Hua, G. L. Qian, J. F. Yang, B. S. Hu, J. Q. Fan, N. Qin, G. Li, Y. Y. Wang and F. Q. Liu, “Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples”, Biosens. Bioelectron. 26(1), 189–194 (2010). http://dx.doi.org//10.1016/j.bios.2010.06.005
E. Mauriz, A. Calle, L. M. Lechug, J. Quintana, A. Montoya and J. J. Manclus, “Real-time detection of chlorpyrifos at part per trillion levels in ground surface and drinking water samples by a portable surface plasmon resonance immunosensor”, Anal. Chim. Acta 561(1-2), 40–47 (2006). http://dx.doi.org//10.1016/j.aca.2005.12.069
B. Kuswandi, C. I. Fikriyah and A. A. Gani, “An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue”, Talanta. 74(4), 613–618 (2008). http://dx.doi.org//10.1016/j.talanta.2007.06.042
L. G. Zamfir, L. Rotariua and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetra?uoroborate/multiwalled carbon nanotubes gel”, Biosens. Bioelectron. 26(8), 3692–3695 (2011). http://dx.doi.org//10.1016/j.bios.2011.02.001
N. Prabhakar, K. Arora, S. P. Singh, M. K. Pandey, H. Singh and B. D. Malhotra, “Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor”, Anal. Chim. Acta 589(1), 6–13 (2007). http://dx.doi.org//10.1016/j.aca.2007.01.084
N. Prabhakar, G. Sumana, K. Arora, H. Singh and B. D. Malhotra, “Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate”, Electrochim. Acta 53(12), 4344–4350 (2008). http://dx.doi.org//10.1016/j.electacta.2007.12.062
L. Rotariu, L. G. Zamfir and C. Bala, “A rational design of the multiwalled carbon nanotube-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors”, Anal. Chim. Acta 748, 81–88 (2012). http://dx.doi.org//10.1016/j.aca.2012.08.045
T. Liu, H. C. Su, X. J. Qu, P. Ju, L. Cui and S. Y. Ai, “Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduce d graphene oxide-gold nanocom posites modified electrode for amperometric detection of organophosphorus and carbamate pesticides”, Sens. Actuators B Chem. 160(1), 1255–1261 (2011). http://dx.doi.org//10.1016/j.snb.2011.09.059