Giant Magneto-impedance Effect in Composite Wires with Different Core Layer
Corresponding Author: Z. J. Zhao
Nano-Micro Letters,
Vol. 5 No. 2 (2013), Article Number: 140-144
Abstract
Composite structure materials were potential sensing elements for magnetic sensors due to Giant magnetoimpedance (GMI) effect. Two kinds of composite wires with different magnetic/non-magnetic structures were fabricated by using electroless deposition methods and the magnetoimpedance properties were investigated. The maximum GMI ratio of 114% was acquired at 60 MHz in the composite wires with a ferromagnetic core, whereas, 116% of maximum GMI ratio was found in the composite wires with a conductive core at low frequency of 600 kHz. These results exhibit that the GMI ratio reaches the maximum when magnetoresistance ratio ΔR/R and magnetoinductance ratio ΔX/X make the comparative contributions to the total magnetoimpedance (MI). The obvious GMI effect obtained in the composite wires with conductive core frequency may provide a candidate for applications in magnetic sensors, especially at low frequencies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Mohri, T. Kohhzawa, K. Kawashima, H. Yoshida and L. V. Panina, “Magneto inductive effect (MI effect) in amorphous wires”, IEEE Trans. Magn. 28(5), 3150–3152 (1992). http://dx.doi.org/10.1109/20.179741
- L. Kraus, Z. Frait, K. R. Pirota and H. Chiriac, “Giant magneto-impedance in glass-covered amorphous microwires”, J. Magn. Magn. Mater. 254–255, 399–403 (2003). http://dx.doi.org/10.1016/S0304-8853(02)00931-9
- A. Radkovskaya, A. A. Rakhmanov, N. Perov, P. Sheverdyaeva and A. S. Antonov, “The thermal and stress effect on GMI in amorphous wires”, J. Magn. Magn. Mater. 249(1), 113–116 (2002). http://dx.doi.org/10.1016/S0304-8853(02)00516-4
- F. Alves, L. A. Rached, J. Moutoussamy and C. Coillot, “Trilayer GMI sensors based on fast stressannealing of FeSiBCuNb ribbons”, Sensor Actuat APhys. 142(2), 459–463 (2008). http://dx.doi.org/10.1016/j.sna.2007.06.004
- S. N. Kane, F. Alves, Z. Gercsi, F. Mazaleyrat, S. Gupte, H. Chiriac and M. Vazquez, “Study of magnetoimpedance effect in Co-Fe-Si-B glasscovered microwires”, Sensor Actuat A-Phys. 129(1), 216–219 (2006). http://dx.doi.org/10.1016/j.sna.2005.11.044
- A. García-Arribas, J. M. Barandiarán and D. de Cos, “Finite element method calculations of GMI in thin films and sandwiched structures: size and edge effects”, J. Magn. Magn. Mater. 320(14), e4–e7 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.005
- D. X. Chen, J. L. Munoz, A. Hernando and M. Vazquez, “Magnetoimpedance of metallic ferromagnetic wires”, Phys. Rev. B. 57(17), 10699–10704 (1998). http://dx.doi.org/10.1103/PhysRevB.57.10699
- B. Dufay, S. Saez, C. Dolabdjian, A. Yelon and D. Menard, “Development of a high sensitivity giant magneto-impedance magnetometer: comparison with a commercial flux-gate”, IEEE Trans. Magn. 49(1), 85–88 (2013). http://dx.doi.org/10.1109/TMAG.2012.2219579
- M. Ipatov, V. Zhukova, A. Zhukov and J. Gonzalez, “Magnetoimpedance sensitive to dc bias current in amorphous microwires”, Appl. Phys. Lett. 97(25), 252507 (2010). http://dx.doi.org/10.1063/1.3529946
- A. Mishra, T. Sahoo, V. Srinivas and A. Thakur, “Investigation of magneto-impedance effect on electrodeposited NiFe/Cu wire using inductance spectroscopy”, Physica B. 406(3), 645–651 (2011). http://dx.doi.org/10.1016/j.physb.2010.11.070
- V. E. Makhotkin, B. P. Shurukhin, V. A. Lopatin, P. Y. Marchukov and Y. K. Levin, “Magnetic field sensors based on amorphous ribbons”, Sensor Actuat A-Phys. 27(1), 759–762 (1991). http://dx.doi.org/10.1016/0924-4247(91)87083-F
- L. Chen, Y. Zhou, C. Lei, Z. M. Zhou and W. Ding, “Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film”, J. Magn. Magn. Mater. 322(19), 2834–2839 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.04.038
- L. Jiang, L. S. Tan, J. Z. Ruan, W. Z. Yuan, X. P. Li and Z. J. Zhao, “Intermittent deposition and interface formation on the microstructure and magnetic properties of NiFe/Cu composite wires”, Physica B. 403(18), 3054–3058 (2008). http://dx.doi.org/10.1016/j.physb.2008.03.017
- N. Feldstein and J. A. Weiner, “Technique for controlling thio compound concentration in electroless plating baths”, Anal Chem. 43(8), 1133–1134 (1971). http://dx.doi.org/10.1021/ac60303a030
- J. Wang, L. Y. Zhang, P. Liu, T. M. Lan, J. Zhang, L. M. Wei, C. H. Jiang and Y. F. Zhang, “Preparation and growth mechanism of nickel nanowires under applied magnetic field”, Nano-Micro Lett. 2(2), 134–138 (2010). http://dx.doi.org:10.5101/nml.v2i2.p134-138
- R. L. Wang, Z. J. Zhao, L. P. Liu, W. Z. Yuan and X. L. Yang, “Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit”, J. Magn. Magn. Mater. 285(1–2), 55–59 (2005). http://dx.doi.org/10.1016/j.jmmm.2004.07.014
- L. Y. Shi, J. Z. Ruan, J. Zhang, Z. J. Zhao, H. B. Gao and U. Hartmann, “Enhancement of giant magneto-impedance effect in Ni80Fe20/SiO2/Cucomposite wires”, Physica B: Condensed Matter. 404(20), 3766–3770 (2009). http://dx.doi.org/10.1016/j.physb.2009.06.139
- R. Valenzuela, “Low-frequency magnetoimpedance: domain wall magnetization processes”, Physica B: Condensed Matter. 299(3), 280–285 (2001). http://dx.doi.org/10.1016/S0921-4526(01)00479-3
- K. Narita, N. Teshima, T. Agano and H. Funahashi, “Magnetic properties of 6.5-percent Si-Fe filament formed by a modified taylor”, IEEE Trans. Magn. 16(3), 517–520 (1980). http://dx.doi.org/10.1109/TMAG.1980.1060640
References
K. Mohri, T. Kohhzawa, K. Kawashima, H. Yoshida and L. V. Panina, “Magneto inductive effect (MI effect) in amorphous wires”, IEEE Trans. Magn. 28(5), 3150–3152 (1992). http://dx.doi.org/10.1109/20.179741
L. Kraus, Z. Frait, K. R. Pirota and H. Chiriac, “Giant magneto-impedance in glass-covered amorphous microwires”, J. Magn. Magn. Mater. 254–255, 399–403 (2003). http://dx.doi.org/10.1016/S0304-8853(02)00931-9
A. Radkovskaya, A. A. Rakhmanov, N. Perov, P. Sheverdyaeva and A. S. Antonov, “The thermal and stress effect on GMI in amorphous wires”, J. Magn. Magn. Mater. 249(1), 113–116 (2002). http://dx.doi.org/10.1016/S0304-8853(02)00516-4
F. Alves, L. A. Rached, J. Moutoussamy and C. Coillot, “Trilayer GMI sensors based on fast stressannealing of FeSiBCuNb ribbons”, Sensor Actuat APhys. 142(2), 459–463 (2008). http://dx.doi.org/10.1016/j.sna.2007.06.004
S. N. Kane, F. Alves, Z. Gercsi, F. Mazaleyrat, S. Gupte, H. Chiriac and M. Vazquez, “Study of magnetoimpedance effect in Co-Fe-Si-B glasscovered microwires”, Sensor Actuat A-Phys. 129(1), 216–219 (2006). http://dx.doi.org/10.1016/j.sna.2005.11.044
A. García-Arribas, J. M. Barandiarán and D. de Cos, “Finite element method calculations of GMI in thin films and sandwiched structures: size and edge effects”, J. Magn. Magn. Mater. 320(14), e4–e7 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.005
D. X. Chen, J. L. Munoz, A. Hernando and M. Vazquez, “Magnetoimpedance of metallic ferromagnetic wires”, Phys. Rev. B. 57(17), 10699–10704 (1998). http://dx.doi.org/10.1103/PhysRevB.57.10699
B. Dufay, S. Saez, C. Dolabdjian, A. Yelon and D. Menard, “Development of a high sensitivity giant magneto-impedance magnetometer: comparison with a commercial flux-gate”, IEEE Trans. Magn. 49(1), 85–88 (2013). http://dx.doi.org/10.1109/TMAG.2012.2219579
M. Ipatov, V. Zhukova, A. Zhukov and J. Gonzalez, “Magnetoimpedance sensitive to dc bias current in amorphous microwires”, Appl. Phys. Lett. 97(25), 252507 (2010). http://dx.doi.org/10.1063/1.3529946
A. Mishra, T. Sahoo, V. Srinivas and A. Thakur, “Investigation of magneto-impedance effect on electrodeposited NiFe/Cu wire using inductance spectroscopy”, Physica B. 406(3), 645–651 (2011). http://dx.doi.org/10.1016/j.physb.2010.11.070
V. E. Makhotkin, B. P. Shurukhin, V. A. Lopatin, P. Y. Marchukov and Y. K. Levin, “Magnetic field sensors based on amorphous ribbons”, Sensor Actuat A-Phys. 27(1), 759–762 (1991). http://dx.doi.org/10.1016/0924-4247(91)87083-F
L. Chen, Y. Zhou, C. Lei, Z. M. Zhou and W. Ding, “Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film”, J. Magn. Magn. Mater. 322(19), 2834–2839 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.04.038
L. Jiang, L. S. Tan, J. Z. Ruan, W. Z. Yuan, X. P. Li and Z. J. Zhao, “Intermittent deposition and interface formation on the microstructure and magnetic properties of NiFe/Cu composite wires”, Physica B. 403(18), 3054–3058 (2008). http://dx.doi.org/10.1016/j.physb.2008.03.017
N. Feldstein and J. A. Weiner, “Technique for controlling thio compound concentration in electroless plating baths”, Anal Chem. 43(8), 1133–1134 (1971). http://dx.doi.org/10.1021/ac60303a030
J. Wang, L. Y. Zhang, P. Liu, T. M. Lan, J. Zhang, L. M. Wei, C. H. Jiang and Y. F. Zhang, “Preparation and growth mechanism of nickel nanowires under applied magnetic field”, Nano-Micro Lett. 2(2), 134–138 (2010). http://dx.doi.org:10.5101/nml.v2i2.p134-138
R. L. Wang, Z. J. Zhao, L. P. Liu, W. Z. Yuan and X. L. Yang, “Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit”, J. Magn. Magn. Mater. 285(1–2), 55–59 (2005). http://dx.doi.org/10.1016/j.jmmm.2004.07.014
L. Y. Shi, J. Z. Ruan, J. Zhang, Z. J. Zhao, H. B. Gao and U. Hartmann, “Enhancement of giant magneto-impedance effect in Ni80Fe20/SiO2/Cucomposite wires”, Physica B: Condensed Matter. 404(20), 3766–3770 (2009). http://dx.doi.org/10.1016/j.physb.2009.06.139
R. Valenzuela, “Low-frequency magnetoimpedance: domain wall magnetization processes”, Physica B: Condensed Matter. 299(3), 280–285 (2001). http://dx.doi.org/10.1016/S0921-4526(01)00479-3
K. Narita, N. Teshima, T. Agano and H. Funahashi, “Magnetic properties of 6.5-percent Si-Fe filament formed by a modified taylor”, IEEE Trans. Magn. 16(3), 517–520 (1980). http://dx.doi.org/10.1109/TMAG.1980.1060640