White Organic Light Emitting Devices Based on Multiple Emissive Nanolayers
Corresponding Author: M. V. Madhava Rao
Nano-Micro Letters,
Vol. 2 No. 4 (2010), Article Number: 242-246
Abstract
In this paper, a white organic light-emitting device (WOLEDs) with multiple-emissive-layer structure has been fabricated. The device has a simple structure of indium tin oxide (ITO)/NPB (20 nm)//DPVBi(20 nm)/CDBP:xIr(btp)2acac(10 nm)/Alq3 (25 nm)/BCP (5 nm)/CsF (1 nm)/Al (150 nm) (x= 0.15, 2.5 and 3.0 wt%), where NPB and BCP are used as the hole-injecting layer, electron transporting and hole blocking layer, respectively. White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration. The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m2 at 14 V. The Commission International de I’Eclairage (CIE)(1931) coordinates of white emission are well within the white zone, which moves from (0.35,0.33) to (0.26,0.30) when the applied voltage is varied from 5 V to 14 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987). doi:10.1063/1.98799
- C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55, 1489 (1989). doi:10.1063/1.101586
- X. Mo, T. Mizokuro, C. Heck, N. Tanigaki and T. Hiraga, Nano-Micro Lett. 1, 19 (2009).
- M. V. Madhava Rao, T. S. Huang, Y. Su, M. Tu, C. Huang and S. Wu, Nano-Micro Lett. 2, 49 (2010).
- M. V. Madhava Rao, Y. Su, T. S. Huang, M. Tu, S. Wu and C. Huang, J. Electrochem. Soc. 157, H 832 (2010).
- M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998). doi:10.1038/25954
- B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004). doi:10.1002/adma.200400684
- R. S. Deshpande, V. Bulovic and S. R. Forrest, Appl. Phys. Lett. 75, 888 (1999). doi:10.1063/1.124250
- C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989). doi:10.1063/1.343409
- J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997). doi:10.1063/1.118664
- C. H. Chuen and Y. T. Tao, Appl. Phys. Lett. 81, 4499 (2002). doi:10.1063/1.1528736
- S. Tokito and T. Iijima, Appl. Phys. Lett. 83, 2459 (2003). doi:10.1063/1.1611620
- R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature 397, 121 (1999). doi:10.1038/16393
- J. Kido and Y. Lizumi, Appl. Phys. Lett. 73, 2721 (1998). doi:10.1063/1.122570
- F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel and J. Salbeck, Adv. Mater. 12, 130 (2000). doi:10.1002/(SICI)1521-4095(200001)12:2<130::AIDADMA130>3.0.CO;2-P
- M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu and G. Barbarella, Appl. Phys. Lett. 82, 334 (2003). doi:10.1063/1.1531217
- F. Li, G. Cheng, Y. Zhao, J. Feng and S. Liu, Appl. Phys. Lett. 83, 4716 (2003). doi:10.1063/1.1632545
- G. W. Kang, Y. J. Ahn, J. T. Lim and C. H. Lee, Synth. Met. 137, 1029 (2003). doi:10.1016/S0379-6779(02)00889-5
- C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223
- T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Appl. Phys. Lett. 81, 3329 (2002). doi:10.1063/1.1516629
- S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996). doi:10.1063/1.117151
- B. W. D’Andrage, J. Brooks, V. Adamovich, M. E. Thompson and S. R. Forrest, Adv. Mater. 14, 1031 (2002).
- Y. S. Huang and J. H. Jou, Appl. Phys. Lett. 80, 2782 (2002). doi:10.1063/1.1413220
- Y. Z. Wang, R. G. Sun, F. Meghdadi, G. Leising and A. J. Epstei, Appl. Phys. Lett. 74, 3313 (1999).
- C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223
- K. O. Cheon and J. Shinar, Appl. Phys. Lett. 81, 1738 (2002). doi:10.1063/1.1498500
- G. Lei, L. Wang and Y. Qiu, Appl. Phys. Lett. 88, 103508 (2006). doi:10.1063/1.2185255
- X. M. Yu, H. S. Kwok, W. Y. Wong and G. J. Zhou, Chem. Mater. 18, 5097 (2006). doi:10.1021/cm061030p
- Y. Shao and Y. Yang, Appl. Phys. Lett. 86, 073510 (2005). doi:10.1063/1.1866216
References
C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987). doi:10.1063/1.98799
C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55, 1489 (1989). doi:10.1063/1.101586
X. Mo, T. Mizokuro, C. Heck, N. Tanigaki and T. Hiraga, Nano-Micro Lett. 1, 19 (2009).
M. V. Madhava Rao, T. S. Huang, Y. Su, M. Tu, C. Huang and S. Wu, Nano-Micro Lett. 2, 49 (2010).
M. V. Madhava Rao, Y. Su, T. S. Huang, M. Tu, S. Wu and C. Huang, J. Electrochem. Soc. 157, H 832 (2010).
M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998). doi:10.1038/25954
B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004). doi:10.1002/adma.200400684
R. S. Deshpande, V. Bulovic and S. R. Forrest, Appl. Phys. Lett. 75, 888 (1999). doi:10.1063/1.124250
C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989). doi:10.1063/1.343409
J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997). doi:10.1063/1.118664
C. H. Chuen and Y. T. Tao, Appl. Phys. Lett. 81, 4499 (2002). doi:10.1063/1.1528736
S. Tokito and T. Iijima, Appl. Phys. Lett. 83, 2459 (2003). doi:10.1063/1.1611620
R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature 397, 121 (1999). doi:10.1038/16393
J. Kido and Y. Lizumi, Appl. Phys. Lett. 73, 2721 (1998). doi:10.1063/1.122570
F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel and J. Salbeck, Adv. Mater. 12, 130 (2000). doi:10.1002/(SICI)1521-4095(200001)12:2<130::AIDADMA130>3.0.CO;2-P
M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu and G. Barbarella, Appl. Phys. Lett. 82, 334 (2003). doi:10.1063/1.1531217
F. Li, G. Cheng, Y. Zhao, J. Feng and S. Liu, Appl. Phys. Lett. 83, 4716 (2003). doi:10.1063/1.1632545
G. W. Kang, Y. J. Ahn, J. T. Lim and C. H. Lee, Synth. Met. 137, 1029 (2003). doi:10.1016/S0379-6779(02)00889-5
C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223
T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Appl. Phys. Lett. 81, 3329 (2002). doi:10.1063/1.1516629
S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996). doi:10.1063/1.117151
B. W. D’Andrage, J. Brooks, V. Adamovich, M. E. Thompson and S. R. Forrest, Adv. Mater. 14, 1031 (2002).
Y. S. Huang and J. H. Jou, Appl. Phys. Lett. 80, 2782 (2002). doi:10.1063/1.1413220
Y. Z. Wang, R. G. Sun, F. Meghdadi, G. Leising and A. J. Epstei, Appl. Phys. Lett. 74, 3313 (1999).
C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223
K. O. Cheon and J. Shinar, Appl. Phys. Lett. 81, 1738 (2002). doi:10.1063/1.1498500
G. Lei, L. Wang and Y. Qiu, Appl. Phys. Lett. 88, 103508 (2006). doi:10.1063/1.2185255
X. M. Yu, H. S. Kwok, W. Y. Wong and G. J. Zhou, Chem. Mater. 18, 5097 (2006). doi:10.1021/cm061030p
Y. Shao and Y. Yang, Appl. Phys. Lett. 86, 073510 (2005). doi:10.1063/1.1866216