Alignment of Nanoscale Single-Walled Carbon Nanotubes Strands
Corresponding Author: Sai Li
Nano-Micro Letters,
Vol. 3 No. 3 (2011), Article Number: 146-152
Abstract
Depositing single-walled carbon nanotubes (SWNTs) with controllable density, pattern and orientation on electrodes presents a challenge in today’s research. Here, we report a novel solvent evaporation method to align SWNTs in patterns havingnanoscale width and micronscale length. SWNTs suspension has been introduced dropwise onto photoresist resin microchannels; and the capillary force can stretch and align SWNTs into strands with nanoscale width in the microchannels. Then these narrow and long aligned SWNTs patterns were successfully transferred to a pair of gold electrodes with different gaps to fabricate carbon nanotube field-effect transistor (CNTFET). Moreover, the electrical performance of the CNTFET show that the SWNTs strands can bridge different gaps and fabricate good electrical performance CNTFET with ON/OFF ratio around 106. This result suggests a promising and simple strategy for assembling well-aligned SWNTs into CNTFET device with good electrical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima and T. Ichihashi, Nature 363, 603 (1993). http://dx.doi.org/10.1038/363603a0
- D. S. Bethune, C. H. Klang, M. S. d. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363, 605 (1993). http://dx.doi.org/10.1038/363605a0
- P. Avouris and R. Martel, Mrs. Bulletin. 35, 306 (2010). http://dx.doi.org/10.1557/mrs2010.553
- P. Sharma and P. Ahuja, Mater. Res. Bull. 43, 2517 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.10.012
- P. Avouris, R. Martel, V. Derycke and J. Appenzeller, Physica. B. 323, 6 (2002). http://dx.doi.org/10.1016/S0921-4526(02)00870-0
- Martin-Fernandez, M. Sansa, M. J. Esplandiu and P. Godignon, Microelectron. Eng. 87, 1554 (2010). http://dx.doi.org/10.1016/j.mee.2009.11.026
- H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Science 293, 76 (2001). http://dx.doi.org/10.1126/science.1061797
- T. Druzhinina, S. Hoeppener and U. S. Schubert, Adv. Mater. 23, 953 (2011). http://dx.doi.org/10.1002/adma.201003509
- S. Han, X. L. Liu and C. W. Zhou, J. Am. Chem. Soc. 127, 5294 (2005). http://dx.doi.org/10.1021/ja042544x
- B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath and P. M. Ajayan, Nature 416, 495 (2002). http://dx.doi.org/10.1038/416495a
- W. Salalha and E. Zussman, Phys. Fluids. 17, 063301 (2005). http://dx.doi.org/10.1063/1.1925047
- J. S. Shim, Y. H. Yun, W. Cho, V. Shanov, M. J. Schulz and C. H. Ahn, Langmuir 26, 11642 (2010). http://dx.doi.org/10.1021/la101079b
- X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo and H. J. Dai, J. Am. Chem. Soc. 129, 4890 (2007). http://dx.doi.org/10.1021/ja071114e
- J. S. Shim, Y. H. Yun, M. J. Rust, J. Do, V. Shanov, M. J. Schulz and C. H. Ahn, Nanotechnology 20, 325607 (2009). http://dx.doi.org/10.1088/0957-4484/20/32/325607
- C. X. Chen, Z. Y. Hou, X. Liu, J. P. Miao and Y. F. Zhang, Appl. Phys. Lett. 366, 474 (2007). http://dx.doi.org/10.1016/j.physleta.2007.02.089
- P. Avouris, M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green and M. C. Hersam, Acs. Nano. 2, 2445 (2008). http://dx.doi.org/10.1021/nn800708w
- J. Xu, J. F. Xia, S. W. Hong, Z. Q. Lin, F. Qiu and Y. L. Yang, Phys. Rev. Lett. 96, 66104 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.066104
- L. V. Govor, G. Reiter, G. H. Bauer and J. Parisi, Appl. Phys. Lett. 84, 4774 (2004). http://dx.doi.org/10.1063/1.1759378
- C. A. P. Petit and J. D. Carbeck, Nano. Lett. 3, 1141 (2003). http://dx.doi.org/10.1021/nl034341x
- H. Ko, S. Peleshanko and V. V. Tsukruk, J. Phys. Chem. B. 108, 4385 (2004). http://dx.doi.org/10.1021/jp031229e
- J. U. Park, M. A. Meitl, S. H. Hur, M. L. Usrey, M. S. Strano, P. J. A. Kenis and J. A. Rogers, Angew. Chem. Int. Edit. 45, 581 (2006). http://dx.doi.org/10.1002/anie.200501799
- S. Li, Y. Yan, N. Liu, M. B. Chan-Park and Q. Zhang, Small 3, 616 (2007). http://dx.doi.org/10.1002/smll.200600525
- J. Q. Li and Q. Zhang, Nanotechnology 16, 1415 (2005). http://dx.doi.org/10.1088/0957-4484/16/8/074
- F. S. Kim, C. Q. Ren and S. A. Jenekhe, Chem. Mater. 23, 682 (2011). http://dx.doi.org/10.1021/cm102772x
- C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K. L. Wang, K. Galatsis and C. W. Zhou, Acs. Nano. 5, 4169 (2011). http://dx.doi.org/10.1021/nn200919v
- M. T. Martinez, Y. C. Tseng, J. P. Salvador and M. P. Marco, Acs. Nano. 4, 1473 (2010). http://dx.doi.org/10.1021/nn901547b
- J. M. Schnorr and T. M. Swager, Chem. Mater. 23, 646 (2011). http://dx.doi.org/10.1021/cm102406h
References
S. Iijima and T. Ichihashi, Nature 363, 603 (1993). http://dx.doi.org/10.1038/363603a0
D. S. Bethune, C. H. Klang, M. S. d. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363, 605 (1993). http://dx.doi.org/10.1038/363605a0
P. Avouris and R. Martel, Mrs. Bulletin. 35, 306 (2010). http://dx.doi.org/10.1557/mrs2010.553
P. Sharma and P. Ahuja, Mater. Res. Bull. 43, 2517 (2008). http://dx.doi.org/10.1016/j.materresbull.2007.10.012
P. Avouris, R. Martel, V. Derycke and J. Appenzeller, Physica. B. 323, 6 (2002). http://dx.doi.org/10.1016/S0921-4526(02)00870-0
Martin-Fernandez, M. Sansa, M. J. Esplandiu and P. Godignon, Microelectron. Eng. 87, 1554 (2010). http://dx.doi.org/10.1016/j.mee.2009.11.026
H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Science 293, 76 (2001). http://dx.doi.org/10.1126/science.1061797
T. Druzhinina, S. Hoeppener and U. S. Schubert, Adv. Mater. 23, 953 (2011). http://dx.doi.org/10.1002/adma.201003509
S. Han, X. L. Liu and C. W. Zhou, J. Am. Chem. Soc. 127, 5294 (2005). http://dx.doi.org/10.1021/ja042544x
B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath and P. M. Ajayan, Nature 416, 495 (2002). http://dx.doi.org/10.1038/416495a
W. Salalha and E. Zussman, Phys. Fluids. 17, 063301 (2005). http://dx.doi.org/10.1063/1.1925047
J. S. Shim, Y. H. Yun, W. Cho, V. Shanov, M. J. Schulz and C. H. Ahn, Langmuir 26, 11642 (2010). http://dx.doi.org/10.1021/la101079b
X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo and H. J. Dai, J. Am. Chem. Soc. 129, 4890 (2007). http://dx.doi.org/10.1021/ja071114e
J. S. Shim, Y. H. Yun, M. J. Rust, J. Do, V. Shanov, M. J. Schulz and C. H. Ahn, Nanotechnology 20, 325607 (2009). http://dx.doi.org/10.1088/0957-4484/20/32/325607
C. X. Chen, Z. Y. Hou, X. Liu, J. P. Miao and Y. F. Zhang, Appl. Phys. Lett. 366, 474 (2007). http://dx.doi.org/10.1016/j.physleta.2007.02.089
P. Avouris, M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green and M. C. Hersam, Acs. Nano. 2, 2445 (2008). http://dx.doi.org/10.1021/nn800708w
J. Xu, J. F. Xia, S. W. Hong, Z. Q. Lin, F. Qiu and Y. L. Yang, Phys. Rev. Lett. 96, 66104 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.066104
L. V. Govor, G. Reiter, G. H. Bauer and J. Parisi, Appl. Phys. Lett. 84, 4774 (2004). http://dx.doi.org/10.1063/1.1759378
C. A. P. Petit and J. D. Carbeck, Nano. Lett. 3, 1141 (2003). http://dx.doi.org/10.1021/nl034341x
H. Ko, S. Peleshanko and V. V. Tsukruk, J. Phys. Chem. B. 108, 4385 (2004). http://dx.doi.org/10.1021/jp031229e
J. U. Park, M. A. Meitl, S. H. Hur, M. L. Usrey, M. S. Strano, P. J. A. Kenis and J. A. Rogers, Angew. Chem. Int. Edit. 45, 581 (2006). http://dx.doi.org/10.1002/anie.200501799
S. Li, Y. Yan, N. Liu, M. B. Chan-Park and Q. Zhang, Small 3, 616 (2007). http://dx.doi.org/10.1002/smll.200600525
J. Q. Li and Q. Zhang, Nanotechnology 16, 1415 (2005). http://dx.doi.org/10.1088/0957-4484/16/8/074
F. S. Kim, C. Q. Ren and S. A. Jenekhe, Chem. Mater. 23, 682 (2011). http://dx.doi.org/10.1021/cm102772x
C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K. L. Wang, K. Galatsis and C. W. Zhou, Acs. Nano. 5, 4169 (2011). http://dx.doi.org/10.1021/nn200919v
M. T. Martinez, Y. C. Tseng, J. P. Salvador and M. P. Marco, Acs. Nano. 4, 1473 (2010). http://dx.doi.org/10.1021/nn901547b
J. M. Schnorr and T. M. Swager, Chem. Mater. 23, 646 (2011). http://dx.doi.org/10.1021/cm102406h