Modulating Electromagnetic Genes Through Bi-Phase High-Entropy Engineering Toward Temperature-Stable Ultra-Broadband Megahertz Electromagnetic Wave Absorption
Corresponding Author: Tongmin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 164
Abstract
Magnetic absorbers with high permeability have significant advantages in low-frequency and broadband electromagnetic wave (EMW) absorption. However, the insufficient magnetic loss and inherent high conductivity of existing magnetic absorbers limit the further expansion of EMW absorption bandwidth. Herein, the spinel (FeCoNiCrCu)3O4 high-entropy oxides (HEO) are successfully constructed on the surface of FeCoNiCr0.4Cu0.2 high-entropy alloys (HEA) through low-temperature oxygen bath treatment. On the one hand, HEO and HEA have different magnetocrystalline anisotropies, which is conducive to achieving continuous natural resonance to improve magnetic loss. On the other hand, HEO with low conductivity can serve as an impedance matching layer, achieving magneto-electric co-modulation. When the thickness is 5 mm, the minimum reflection loss (RL) value and absorption bandwidth (RL < − 5 dB) of bi-phase high-entropy composites (BPHEC) can reach − 12.8 dB and 633 MHz, respectively. The RCS reduction value of multilayer sample with impedance gradient characteristic can reach 18.34 dB m2. In addition, the BPHEC also exhibits temperature-stable EMW absorption performance, high Curie temperature, and oxidation resistance. The absorption bandwidth maintains between 593 and 691 MHz from − 50 to 150 °C. This work offers a new and tunable strategy toward modulating the electromagnetic genes for temperature-stable ultra-broadband megahertz EMW absorption.
Highlights:
1 The bi-phase FeCoNiCr0.4Cu0.2/(FeCoNiCrCu)3O4 high-entropy composites are innovatively constructed for the first time by low-temperature oxygen bath strategy.
2 The bi-phase high-entropy composites (BPHEC) can precisely regulate the electromagnetic genes, realizing the ideal ultra-broadband and temperature-stable electromagnetic wave absorption.
3 Simultaneously, the formation mechanism of BPHEC during low-temperature oxygen bath and the regulation mechanism of electromagnetic genes are elucidated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32, 2203161 (2022). https://doi.org/10.1002/adfm.202203161
- Y. Guo, Y. Duan, X. Liu, J. Tian, N. Wen et al., Construction of rGO/MOF-derived CNTs aerogel with multiple losses for multi-functional efficient electromagnetic wave absorber. Carbon 230, 119591 (2024). https://doi.org/10.1016/j.carbon.2024.119591
- X. Liu, Y. Duan, X. Yang, L. Huang, M. Gao et al., Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 872, 159602 (2021). https://doi.org/10.1016/j.jallcom.2021.159602
- B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
- T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022). https://doi.org/10.1002/adfm.202204370
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- J. Yang, Z. Liu, H. Zhou, L. Jia, A. Wu et al., Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Interfaces 14, 12375–12384 (2022). https://doi.org/10.1021/acsami.1c25079
- Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704–16712 (2021). https://doi.org/10.1021/acsami.1c02906
- Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17, 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
- H. Lv, X. Zhou, G. Wu, U.I. Kara, X. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9, 19710–19718 (2021). https://doi.org/10.1039/d1ta02785a
- Y. Ma, Q. Wang, X. Zhou, J. Hao, B. Gault et al., A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates. Adv. Mater. 33, e2006723 (2021). https://doi.org/10.1002/adma.202006723
- Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18, e2107265 (2022). https://doi.org/10.1002/smll.202107265
- Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021). https://doi.org/10.1016/j.jmst.2020.09.049
- J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025
- C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013). https://doi.org/10.1016/j.pmatsci.2012.10.001
- X. Liu, Y. Duan, Y. Guo, Z. Li, J. Ma et al., In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption. Chem. Eng. J. 462, 142200 (2023). https://doi.org/10.1016/j.cej.2023.142200
- Y. Duan, Z. Li, X. Liu, H. Pang, L. Huang et al., Optimized microwave absorption properties of FeCoCrAlGdx high-entropy alloys by inhibiting nanograin coarsening. J. Alloys Compd. 921, 166088 (2022). https://doi.org/10.1016/j.jallcom.2022.166088
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
- X. Liu, Y. Duan, Z. Li, H. Pang, L. Huang et al., FeCoNiCr0.4CuX high-entropy alloys with strong intergranular magnetic coupling for stable megahertz electromagnetic absorption in a wide temperature spectrum. ACS Appl. Mater. Interfaces 14, 7012–7021 (2022). https://doi.org/10.1021/acsami.1c22670
- X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
- Z. He, L. Shi, R. Sun, L. Ding, M. He et al., Low-temperature oxidation induced phase evolution with gradient magnetic heterointerfaces for superior electromagnetic wave absorption. Nano-Micro Lett. 17, 7 (2024). https://doi.org/10.1007/s40820-024-01516-z
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
- T. Wang, W. Zhao, Y. Miao, A. Cui, C. Gao et al., Enhancing defect-induced dipole polarization strategy of SiC@MoO3 nanocomposite towards electromagnetic wave absorption. Nano-Micro Lett. 16, 273 (2024). https://doi.org/10.1007/s40820-024-01478-2
- J. Yu, H. Luo, Z. Wang, S. Lv, F. Chen et al., Construction of multi-interface magnetic FeMnC modified carbon/graphene aerogels for broadband microwave absorption. J. Alloys Compd. 1002, 175499 (2024). https://doi.org/10.1016/j.jallcom.2024.175499
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F– regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- G. Dai, R. Deng, T. Zhang, Y. Yu, L. Song, Quantitative evaluation of loss capability for in situ conductive phase enhanced microwave absorption of high-entropy transition metal oxides. Adv. Funct. Mater. 32, 2205325 (2022). https://doi.org/10.1002/adfm.202205325
- B. Song, Y. Yang, M. Rabbani, T.T. Yang, K. He et al., In situ oxidation studies of high-entropy alloy nanops. ACS Nano 14, 15131–15143 (2020). https://doi.org/10.1021/acsnano.0c05250
- D. Liu, C. Wu, M. Yan, J. Wang, Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294–303 (2018). https://doi.org/10.1016/j.actamat.2018.01.001
- H. Wang, X. Xiao, S. Zhai, C. Xue, G. Zheng et al., Spontaneous orientation polarization of anisotropic equivalent dipoles harnessed by entropy engineering for ultra-thin electromagnetic wave absorber. Nano-Micro Lett. 17, 19 (2024). https://doi.org/10.1007/s40820-024-01507-0
- W.-M. Wang, B.-H. Liu, C.-Y. He, P. Zhao, S.-J. Zhao et al., High-entropy engineering for broadband infrared radiation. Adv. Funct. Mater. 33, 2303197 (2023). https://doi.org/10.1002/adfm.202303197
- V.S.R. Raju, Ultra-high frequency electromagnetic waves absorption of NiCoCuZn ferrites. IEEE Trans. Magn. 58, 2800907 (2022). https://doi.org/10.1109/TMAG.2022.3178293
- V.S.R. Raju, EM wave absorption of NiCuCoZn ferrites for use in ultra-high-frequency applications. J. Mater. Sci. Mater. Electron. 33, 13198–13206 (2022). https://doi.org/10.1007/s10854-022-08259-w
- E.A. Gorbachev, L.A. Trusov, A.E. Sleptsova, E.S. Kozlyakova, L.N. Alyabyeva et al., Hexaferrite materials displaying ultra-high coercivity and sub-terahertz ferromagnetic resonance frequencies. Mater. Today 32, 13–18 (2020). https://doi.org/10.1016/j.mattod.2019.05.020
- Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu et al., Design and analysis of negative permittivity behaviors in Barium titanate/nickel metacomposites. Acta Mater. 185, 412–419 (2020). https://doi.org/10.1016/j.actamat.2019.12.034
- B. Li, Z. Ma, J. Xu, X. Zhang, Y. Chen et al., Regulation of impedance matching and dielectric loss properties of N-doped carbon hollow nanospheres modified with atomically dispersed cobalt sites for microwave energy attenuation. Small 19, e2301226 (2023). https://doi.org/10.1002/smll.202301226
- Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
- Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu et al., Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 166, 34–46 (2023). https://doi.org/10.1016/j.jmst.2023.04.045
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17, 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
- S. Lv, H. Luo, Z. Wang, J. Yu, Y. Cheng et al., Size regulated N-doped carbon encapsulated NiFe alloys/Ni phosphide composites derived from bimetallic Prussian blue analogues for effective microwave absorption. Carbon 218, 118668 (2024). https://doi.org/10.1016/j.carbon.2023.118668
- Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17, 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
- K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Anntenas. Propag. 48, 1230–1234 (2000). https://doi.org/10.1109/8.884491
- L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, e1902730 (2019). https://doi.org/10.1002/smll.201902730
- T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1-y Nby)2AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz. Small 19, e2300119 (2023). https://doi.org/10.1002/smll.202300119
- G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
- G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013). https://doi.org/10.1016/j.actamat.2012.10.040
- S. Yan, S. Liu, J. He, H. Luo, L. He et al., Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 452, 349–353 (2018). https://doi.org/10.1016/j.jmmm.2017.12.108
- P. Yin, Y. Deng, L. Zhang, W. Wu, J. Wang et al., One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band. Ceram. Int. 44, 20896–20905 (2018). https://doi.org/10.1016/j.ceramint.2018.08.096
- P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang et al., Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption. J. Mater. Sci. Mater. Electron. 32, 25698–25710 (2021). https://doi.org/10.1007/s10854-020-04285-8
- L. He, L. Deng, Y. Li, H. Luo, J. He et al., Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Appl. Phys. A 125, 130 (2019). https://doi.org/10.1007/s00339-019-2422-2
- P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang et al., Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. Powder Technol. 356, 325–334 (2019). https://doi.org/10.1016/j.powtec.2019.08.033
References
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32, 2203161 (2022). https://doi.org/10.1002/adfm.202203161
Y. Guo, Y. Duan, X. Liu, J. Tian, N. Wen et al., Construction of rGO/MOF-derived CNTs aerogel with multiple losses for multi-functional efficient electromagnetic wave absorber. Carbon 230, 119591 (2024). https://doi.org/10.1016/j.carbon.2024.119591
X. Liu, Y. Duan, X. Yang, L. Huang, M. Gao et al., Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 872, 159602 (2021). https://doi.org/10.1016/j.jallcom.2021.159602
B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14, 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022). https://doi.org/10.1002/adfm.202204370
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
J. Yang, Z. Liu, H. Zhou, L. Jia, A. Wu et al., Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Interfaces 14, 12375–12384 (2022). https://doi.org/10.1021/acsami.1c25079
Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704–16712 (2021). https://doi.org/10.1021/acsami.1c02906
Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17, 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
H. Lv, X. Zhou, G. Wu, U.I. Kara, X. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9, 19710–19718 (2021). https://doi.org/10.1039/d1ta02785a
Y. Ma, Q. Wang, X. Zhou, J. Hao, B. Gault et al., A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates. Adv. Mater. 33, e2006723 (2021). https://doi.org/10.1002/adma.202006723
Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18, e2107265 (2022). https://doi.org/10.1002/smll.202107265
Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021). https://doi.org/10.1016/j.jmst.2020.09.049
J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025
C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013). https://doi.org/10.1016/j.pmatsci.2012.10.001
X. Liu, Y. Duan, Y. Guo, Z. Li, J. Ma et al., In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption. Chem. Eng. J. 462, 142200 (2023). https://doi.org/10.1016/j.cej.2023.142200
Y. Duan, Z. Li, X. Liu, H. Pang, L. Huang et al., Optimized microwave absorption properties of FeCoCrAlGdx high-entropy alloys by inhibiting nanograin coarsening. J. Alloys Compd. 921, 166088 (2022). https://doi.org/10.1016/j.jallcom.2022.166088
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
X. Liu, Y. Duan, Z. Li, H. Pang, L. Huang et al., FeCoNiCr0.4CuX high-entropy alloys with strong intergranular magnetic coupling for stable megahertz electromagnetic absorption in a wide temperature spectrum. ACS Appl. Mater. Interfaces 14, 7012–7021 (2022). https://doi.org/10.1021/acsami.1c22670
X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
Z. He, L. Shi, R. Sun, L. Ding, M. He et al., Low-temperature oxidation induced phase evolution with gradient magnetic heterointerfaces for superior electromagnetic wave absorption. Nano-Micro Lett. 17, 7 (2024). https://doi.org/10.1007/s40820-024-01516-z
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
T. Wang, W. Zhao, Y. Miao, A. Cui, C. Gao et al., Enhancing defect-induced dipole polarization strategy of SiC@MoO3 nanocomposite towards electromagnetic wave absorption. Nano-Micro Lett. 16, 273 (2024). https://doi.org/10.1007/s40820-024-01478-2
J. Yu, H. Luo, Z. Wang, S. Lv, F. Chen et al., Construction of multi-interface magnetic FeMnC modified carbon/graphene aerogels for broadband microwave absorption. J. Alloys Compd. 1002, 175499 (2024). https://doi.org/10.1016/j.jallcom.2024.175499
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F– regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
G. Dai, R. Deng, T. Zhang, Y. Yu, L. Song, Quantitative evaluation of loss capability for in situ conductive phase enhanced microwave absorption of high-entropy transition metal oxides. Adv. Funct. Mater. 32, 2205325 (2022). https://doi.org/10.1002/adfm.202205325
B. Song, Y. Yang, M. Rabbani, T.T. Yang, K. He et al., In situ oxidation studies of high-entropy alloy nanops. ACS Nano 14, 15131–15143 (2020). https://doi.org/10.1021/acsnano.0c05250
D. Liu, C. Wu, M. Yan, J. Wang, Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294–303 (2018). https://doi.org/10.1016/j.actamat.2018.01.001
H. Wang, X. Xiao, S. Zhai, C. Xue, G. Zheng et al., Spontaneous orientation polarization of anisotropic equivalent dipoles harnessed by entropy engineering for ultra-thin electromagnetic wave absorber. Nano-Micro Lett. 17, 19 (2024). https://doi.org/10.1007/s40820-024-01507-0
W.-M. Wang, B.-H. Liu, C.-Y. He, P. Zhao, S.-J. Zhao et al., High-entropy engineering for broadband infrared radiation. Adv. Funct. Mater. 33, 2303197 (2023). https://doi.org/10.1002/adfm.202303197
V.S.R. Raju, Ultra-high frequency electromagnetic waves absorption of NiCoCuZn ferrites. IEEE Trans. Magn. 58, 2800907 (2022). https://doi.org/10.1109/TMAG.2022.3178293
V.S.R. Raju, EM wave absorption of NiCuCoZn ferrites for use in ultra-high-frequency applications. J. Mater. Sci. Mater. Electron. 33, 13198–13206 (2022). https://doi.org/10.1007/s10854-022-08259-w
E.A. Gorbachev, L.A. Trusov, A.E. Sleptsova, E.S. Kozlyakova, L.N. Alyabyeva et al., Hexaferrite materials displaying ultra-high coercivity and sub-terahertz ferromagnetic resonance frequencies. Mater. Today 32, 13–18 (2020). https://doi.org/10.1016/j.mattod.2019.05.020
Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu et al., Design and analysis of negative permittivity behaviors in Barium titanate/nickel metacomposites. Acta Mater. 185, 412–419 (2020). https://doi.org/10.1016/j.actamat.2019.12.034
B. Li, Z. Ma, J. Xu, X. Zhang, Y. Chen et al., Regulation of impedance matching and dielectric loss properties of N-doped carbon hollow nanospheres modified with atomically dispersed cobalt sites for microwave energy attenuation. Small 19, e2301226 (2023). https://doi.org/10.1002/smll.202301226
Y. Tian, D. Zhi, T. Li, J. Li, J. Li et al., Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 464, 142644 (2023). https://doi.org/10.1016/j.cej.2023.142644
Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu et al., Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 166, 34–46 (2023). https://doi.org/10.1016/j.jmst.2023.04.045
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17, 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
S. Lv, H. Luo, Z. Wang, J. Yu, Y. Cheng et al., Size regulated N-doped carbon encapsulated NiFe alloys/Ni phosphide composites derived from bimetallic Prussian blue analogues for effective microwave absorption. Carbon 218, 118668 (2024). https://doi.org/10.1016/j.carbon.2023.118668
Z. Feng, C. Liu, X. Li, G. Luo, N. Zhai et al., Designing electronic structures of multiscale helical converters for tailored ultrabroad electromagnetic absorption. Nano-Micro Lett. 17, 20 (2024). https://doi.org/10.1007/s40820-024-01513-2
K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Anntenas. Propag. 48, 1230–1234 (2000). https://doi.org/10.1109/8.884491
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, e1902730 (2019). https://doi.org/10.1002/smll.201902730
T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1-y Nby)2AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz. Small 19, e2300119 (2023). https://doi.org/10.1002/smll.202300119
G. Wang, C. Li, D. Estevez, P. Xu, M. Peng et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 15, 152 (2023). https://doi.org/10.1007/s40820-023-01123-4
G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013). https://doi.org/10.1016/j.actamat.2012.10.040
S. Yan, S. Liu, J. He, H. Luo, L. He et al., Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 452, 349–353 (2018). https://doi.org/10.1016/j.jmmm.2017.12.108
P. Yin, Y. Deng, L. Zhang, W. Wu, J. Wang et al., One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band. Ceram. Int. 44, 20896–20905 (2018). https://doi.org/10.1016/j.ceramint.2018.08.096
P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang et al., Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption. J. Mater. Sci. Mater. Electron. 32, 25698–25710 (2021). https://doi.org/10.1007/s10854-020-04285-8
L. He, L. Deng, Y. Li, H. Luo, J. He et al., Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Appl. Phys. A 125, 130 (2019). https://doi.org/10.1007/s00339-019-2422-2
P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang et al., Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. Powder Technol. 356, 325–334 (2019). https://doi.org/10.1016/j.powtec.2019.08.033