Microstructure Design of High-Entropy Alloys Through a Multistage Mechanical Alloying Strategy for Temperature-Stable Megahertz Electromagnetic Absorption
Corresponding Author: Tongmin Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 142
Abstract
Developing megahertz (MHz) electromagnetic wave (EMW) absorption materials with broadband absorption, multi-temperature adaptability, and facile preparation method remains a challenge. Herein, nanocrystalline FeCoNiCr0.4Cu0.2 high-entropy alloy powders (HEAs) with both large aspect ratios and thin intergranular amorphous layers are constructed by a multistage mechanical alloying strategy, aiming to achieve excellent and temperature-stable permeability and EMW absorption. A single-phase face-centered cubic structure with good ductility and high crystallinity is obtained as wet milling precursors, via precisely controlling dry milling time. Then, HEAs are flattened to improve aspect ratios by synergistically regulating wet milling time. FeCoNiCr0.4Cu0.2 HEAs with dry milling 20 h and wet milling 5 h (D20) exhibit higher and more stable permeability because of larger aspect ratios and thinner intergranular amorphous layers. The maximum reflection loss (RL) of D20/SiO2 composites is greater than − 7 dB with 5 mm thickness, and EMW absorption bandwidth (RL < − 7 dB) can maintain between 523 and 600 MHz from − 50 to 150 °C. Furthermore, relying on the “cocktail effect” of HEAs, D20 sample also exhibits excellent corrosion resistance and high Curie temperature. This work provides a facile and tunable strategy to design MHz electromagnetic absorbers with temperature stability, broadband, and resistance to harsh environments.
Highlights:
1 Nanocrystalline high-entropy alloy powders (HEAs) with the unprecedented combination of superior manufacturability, large aspect ratios, and thin intergranular amorphous layers are constructed via a multistage mechanical alloying strategy.
2 FeCoNiCr0.4Cu0.2 HEAs for 20 h of dry milling and 5 h of wet milling (D20) exhibit excellent corrosion resistance, high Curie temperature, and temperature-stable broadband megahertz electromagnetic wave absorption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu et al., Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(36), 40802–40814 (2020). https://doi.org/10.1021/acsami.0c11530
- M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core-shell Fe3O4@C nanops-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
- J. Zhang, Z. Li, X. Qi, X. Gong, R. Xie et al., Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B 222, 109067 (2021). https://doi.org/10.1016/j.compositesb.2021.109067
- C. Li, Z. Li, X. Qi, X. Gong, Y. Chen et al., A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interf. Sci. 605, 13–22 (2022). https://doi.org/10.1016/j.jcis.2021.07.054
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- H. Pang, Y. Duan, X. Dai, L. Huang, X. Yang et al., The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 88, 203–214 (2021). https://doi.org/10.1016/j.jmst.2021.01.072
- X. Liu, Y. Duan, Z. Li, H. Pang, L. Huang et al., FeCoNiCr0.4Cux high-entropy alloys with strong intergranular magnetic coupling for stable megahertz electromagnetic absorption in a wide temperature spectrum. ACS Appl. Mater. Interfaces. 14(5), 7012–7021 (2022). https://doi.org/10.1021/acsami.1c22670
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32(13), 2110496 (2021). https://doi.org/10.1002/adfm.202110496
- M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- J. Yang, Z. Liu, H. Zhou, L. Jia, A. Wu et al., Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Interfaces 14(10), 12375–12384 (2022). https://doi.org/10.1021/acsami.1c25079
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- X. Yang, Y. Duan, S. Li, L. Huang, H. Pang et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 188, 376–384 (2022). https://doi.org/10.1016/j.carbon.2021.12.044
- J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
- H. Lv, X. Zhou, G. Wu, U.I. Kara, X. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9(35), 19710–19718 (2021). https://doi.org/10.1039/d1ta02785a
- X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
- X. Liu, Y. Duan, X. Yang, L. Huang, M. Gao, T. Wang, Enhancement of magnetic properties in FeCoNiCr0.4Cux high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloy. Compd. 872, 159602 (2021). https://doi.org/10.1016/j.jallcom.2021.159602
- Y. Ma, Q. Wang, X. Zhou, J. Hao, B. Gault et al., A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates. Adv. Mater. 33(14), 2006723 (2021). https://doi.org/10.1002/adma.202006723
- Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021). https://doi.org/10.1016/j.jmst.2020.09.049
- B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang et al., Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018). https://doi.org/10.1016/j.matdes.2018.04.018
- G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013). https://doi.org/10.1016/j.actamat.2012.10.040
- H. Li, A. Wang, T. Liu, P. Chen, A. He et al., Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater. Today 42, 49–56 (2021). https://doi.org/10.1016/j.mattod.2020.09.030
- C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
- M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: a review. J. Mater. Res. 34(5), 664–686 (2019). https://doi.org/10.1557/jmr.2019.37
- C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua et al., Recent advances on high-entropy alloys for 3D printing. Adv. Mater. 32(26), 1903855 (2020). https://doi.org/10.1002/adma.201903855
- Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
- Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji et al., High-entropy-alloy nanops with enhanced interband transitions for efficient photothermal conversion. Angew. Chem. Int. Ed. 60(52), 27113–27118 (2021). https://doi.org/10.1002/anie.202112520
- Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
- Y. Duan, L. Song, Y. Cui, H. Pang, X. Zhang et al., FeCoNiCuAl high entropy alloys microwave absorbing materials: exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties. J. Alloy. Compd. 848, 156491 (2020). https://doi.org/10.1016/j.jallcom.2020.156491
- Y. Yang, T. Chen, L. Tan, J.D. Poplawsky, K. An et al., Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595(7866), 245–249 (2021). https://doi.org/10.1038/s41586-021-03607-y
- S. Qin, M. Yang, P. Jiang, J. Wang, X. Wu et al., Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility. Acta Mater. 230, 117847 (2022). https://doi.org/10.1016/j.actamat.2022.117847
- Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
- G. Williamson, W. Hall, X-Ray line broadening fromfiled aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
- A. Hernando, M. Vazquez, T. Kulik, C. Prados, Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials. Phys. Rev. B 51(6), 3581–3586 (1995). https://doi.org/10.1103/physrevb.51.3581
- K. Suzuki, J.M. Cadogan, Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys. Rev. B 58(5), 2730–2739 (1998). https://doi.org/10.1103/PhysRevB.58.2730
- Z. Xie, Z. Wang, Y. Han, F. Han, Influence of Ge on crystallization kinetics, microstructure and high-temperature magnetic properties of Si-rich nanocrystalline FeAlSiBCuNbGe alloy. J. Non-Cryst. Solids 463, 1–5 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.02.015
- Y. Liao, G. He, Y. Duan, Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation. Chem. Eng. J. 425, 130512 (2021). https://doi.org/10.1016/j.cej.2021.130512
- L. Song, Y. Duan, J. Liu, H. Pang, Assembled Ag-doped α-MnO2@δ-MnO2 nanocomposites with minimum lattice mismatch for broadband microwave absorption. Compos. Part B 199, 108318 (2020). https://doi.org/10.1016/j.compositesb.2020.108318
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- X. Kou, Y. Zhao, L. Xu, Z. Kang, Y. Wang et al., Controlled fabrication of core-shell γ-Fe2O3@C-Reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interf. Sci. 615, 685–696 (2022). https://doi.org/10.1016/j.jcis.2022.02.023
- K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antenn. Propag. 48, 8 (2000). https://doi.org/10.1109/8.884491
- L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15(40), 1902730 (2019). https://doi.org/10.1002/smll.201902730
- S. Yan, S. Liu, J. He, H. Luo, L. He et al., Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 452, 349–353 (2018). https://doi.org/10.1016/j.jmmm.2017.12.108
- P. Yin, Y. Deng, L. Zhang, W. Wu, J. Wang et al., One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/Graphene composites in low frequency band. Ceram. Int. 44(17), 20896–20905 (2018). https://doi.org/10.1016/j.ceramint.2018.08.096
- P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang et al., Combination of pumpkin-derived biochar with nickel Ferrite/FeNi3 toward low frequency electromagnetic absorption. J. Mater. Sci. Mater. Electron. 32, 25698–25710 (2020). https://doi.org/10.1007/s10854-020-04285-8
- L. He, L. Deng, Y. Li, H. Luo, J. He et al., Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Appl. Phys. A 125(2), 130 (2019). https://doi.org/10.1007/s00339-019-2422-2
- P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang et al., Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. Powder Technol. 356, 325–334 (2019). https://doi.org/10.1016/j.powtec.2019.08.033
- P. Yin, L. Zhang, Y. Tang, J. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation. J. Alloy. Compd. 881, 160556 (2021). https://doi.org/10.1016/j.jallcom.2021.160556
- Y.A. Shen, H.M. Hsieh, S.H. Chen, J. Li, S.W. Chen et al., Investigation of FeCoNiCu properties: thermal stability, corrosion behavior, wettability with Sn-3.0Ag-0.5Cu and interlayer formation of multi-element intermetallic compound. Appl. Surf. Sci. 546, 148931 (2021). https://doi.org/10.1016/j.apsusc.2021.148931
- X. Qiu, C. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloy. Compd. 553, 216–220 (2013). https://doi.org/10.1016/j.jallcom.2012.11.100
- J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025
References
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu et al., Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(36), 40802–40814 (2020). https://doi.org/10.1021/acsami.0c11530
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30(4), 1907251 (2020). https://doi.org/10.1002/adfm.201907251
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core-shell Fe3O4@C nanops-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
J. Zhang, Z. Li, X. Qi, X. Gong, R. Xie et al., Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B 222, 109067 (2021). https://doi.org/10.1016/j.compositesb.2021.109067
C. Li, Z. Li, X. Qi, X. Gong, Y. Chen et al., A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interf. Sci. 605, 13–22 (2022). https://doi.org/10.1016/j.jcis.2021.07.054
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
H. Pang, Y. Duan, X. Dai, L. Huang, X. Yang et al., The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 88, 203–214 (2021). https://doi.org/10.1016/j.jmst.2021.01.072
X. Liu, Y. Duan, Z. Li, H. Pang, L. Huang et al., FeCoNiCr0.4Cux high-entropy alloys with strong intergranular magnetic coupling for stable megahertz electromagnetic absorption in a wide temperature spectrum. ACS Appl. Mater. Interfaces. 14(5), 7012–7021 (2022). https://doi.org/10.1021/acsami.1c22670
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32(13), 2110496 (2021). https://doi.org/10.1002/adfm.202110496
M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
J. Yang, Z. Liu, H. Zhou, L. Jia, A. Wu et al., Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Interfaces 14(10), 12375–12384 (2022). https://doi.org/10.1021/acsami.1c25079
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
X. Yang, Y. Duan, S. Li, L. Huang, H. Pang et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 188, 376–384 (2022). https://doi.org/10.1016/j.carbon.2021.12.044
J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
H. Lv, X. Zhou, G. Wu, U.I. Kara, X. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9(35), 19710–19718 (2021). https://doi.org/10.1039/d1ta02785a
X. Yang, Y. Duan, S. Li, H. Pang, L. Huang et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 28 (2021). https://doi.org/10.1007/s40820-021-00776-3
X. Liu, Y. Duan, X. Yang, L. Huang, M. Gao, T. Wang, Enhancement of magnetic properties in FeCoNiCr0.4Cux high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloy. Compd. 872, 159602 (2021). https://doi.org/10.1016/j.jallcom.2021.159602
Y. Ma, Q. Wang, X. Zhou, J. Hao, B. Gault et al., A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates. Adv. Mater. 33(14), 2006723 (2021). https://doi.org/10.1002/adma.202006723
Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021). https://doi.org/10.1016/j.jmst.2020.09.049
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang et al., Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018). https://doi.org/10.1016/j.matdes.2018.04.018
G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013). https://doi.org/10.1016/j.actamat.2012.10.040
H. Li, A. Wang, T. Liu, P. Chen, A. He et al., Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater. Today 42, 49–56 (2021). https://doi.org/10.1016/j.mattod.2020.09.030
C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: a review. J. Mater. Res. 34(5), 664–686 (2019). https://doi.org/10.1557/jmr.2019.37
C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua et al., Recent advances on high-entropy alloys for 3D printing. Adv. Mater. 32(26), 1903855 (2020). https://doi.org/10.1002/adma.201903855
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji et al., High-entropy-alloy nanops with enhanced interband transitions for efficient photothermal conversion. Angew. Chem. Int. Ed. 60(52), 27113–27118 (2021). https://doi.org/10.1002/anie.202112520
Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
Y. Duan, L. Song, Y. Cui, H. Pang, X. Zhang et al., FeCoNiCuAl high entropy alloys microwave absorbing materials: exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties. J. Alloy. Compd. 848, 156491 (2020). https://doi.org/10.1016/j.jallcom.2020.156491
Y. Yang, T. Chen, L. Tan, J.D. Poplawsky, K. An et al., Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595(7866), 245–249 (2021). https://doi.org/10.1038/s41586-021-03607-y
S. Qin, M. Yang, P. Jiang, J. Wang, X. Wu et al., Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility. Acta Mater. 230, 117847 (2022). https://doi.org/10.1016/j.actamat.2022.117847
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
G. Williamson, W. Hall, X-Ray line broadening fromfiled aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
A. Hernando, M. Vazquez, T. Kulik, C. Prados, Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials. Phys. Rev. B 51(6), 3581–3586 (1995). https://doi.org/10.1103/physrevb.51.3581
K. Suzuki, J.M. Cadogan, Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys. Rev. B 58(5), 2730–2739 (1998). https://doi.org/10.1103/PhysRevB.58.2730
Z. Xie, Z. Wang, Y. Han, F. Han, Influence of Ge on crystallization kinetics, microstructure and high-temperature magnetic properties of Si-rich nanocrystalline FeAlSiBCuNbGe alloy. J. Non-Cryst. Solids 463, 1–5 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.02.015
Y. Liao, G. He, Y. Duan, Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation. Chem. Eng. J. 425, 130512 (2021). https://doi.org/10.1016/j.cej.2021.130512
L. Song, Y. Duan, J. Liu, H. Pang, Assembled Ag-doped α-MnO2@δ-MnO2 nanocomposites with minimum lattice mismatch for broadband microwave absorption. Compos. Part B 199, 108318 (2020). https://doi.org/10.1016/j.compositesb.2020.108318
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
X. Kou, Y. Zhao, L. Xu, Z. Kang, Y. Wang et al., Controlled fabrication of core-shell γ-Fe2O3@C-Reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interf. Sci. 615, 685–696 (2022). https://doi.org/10.1016/j.jcis.2022.02.023
K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antenn. Propag. 48, 8 (2000). https://doi.org/10.1109/8.884491
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15(40), 1902730 (2019). https://doi.org/10.1002/smll.201902730
S. Yan, S. Liu, J. He, H. Luo, L. He et al., Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 452, 349–353 (2018). https://doi.org/10.1016/j.jmmm.2017.12.108
P. Yin, Y. Deng, L. Zhang, W. Wu, J. Wang et al., One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/Graphene composites in low frequency band. Ceram. Int. 44(17), 20896–20905 (2018). https://doi.org/10.1016/j.ceramint.2018.08.096
P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang et al., Combination of pumpkin-derived biochar with nickel Ferrite/FeNi3 toward low frequency electromagnetic absorption. J. Mater. Sci. Mater. Electron. 32, 25698–25710 (2020). https://doi.org/10.1007/s10854-020-04285-8
L. He, L. Deng, Y. Li, H. Luo, J. He et al., Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Appl. Phys. A 125(2), 130 (2019). https://doi.org/10.1007/s00339-019-2422-2
P. Yin, L. Zhang, J. Wang, X. Feng, K. Wang et al., Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. Powder Technol. 356, 325–334 (2019). https://doi.org/10.1016/j.powtec.2019.08.033
P. Yin, L. Zhang, Y. Tang, J. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation. J. Alloy. Compd. 881, 160556 (2021). https://doi.org/10.1016/j.jallcom.2021.160556
Y.A. Shen, H.M. Hsieh, S.H. Chen, J. Li, S.W. Chen et al., Investigation of FeCoNiCu properties: thermal stability, corrosion behavior, wettability with Sn-3.0Ag-0.5Cu and interlayer formation of multi-element intermetallic compound. Appl. Surf. Sci. 546, 148931 (2021). https://doi.org/10.1016/j.apsusc.2021.148931
X. Qiu, C. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloy. Compd. 553, 216–220 (2013). https://doi.org/10.1016/j.jallcom.2012.11.100
J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025