Bio-Inspired Microwave Modulator for High-Temperature Electromagnetic Protection, Infrared Stealth and Operating Temperature Monitoring
Corresponding Author: Tongmin Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 28
Abstract
High-temperature electromagnetic (EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range. In this work, a novel microwave modulator is fabricated by introducing carbonyl iron particles (CIP)/resin into channels of carbonized wood (C-wood). Innovatively, the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and dielectric losses, but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2–18.0 GHz achieving modulation of reflected wave radiation direction. Accordingly, CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298–673 K. Besides, CIP/C-wood microwave modulator shows stable and low thermal conductivities, as well as monotonic electrical conductivity-temperature characteristics, therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges. This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions.
Highlights:
1 A multifunctional microwave modulator is developed for electromagnetic protection, infrared stealth and operating temperature monitoring over wide temperature ranges for the first time.
2 Microwave modulator achieves the integration of two electromagnetic protection mechanisms, microwave absorption and radiation deflection.
3 Microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz with a thickness of only 1.5 mm in the temperature range 298–673 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91–107 (2021). https://doi.org/10.1007/s40820-021-00624-4
- C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181–209 (2021). https://doi.org/10.1007/s40820-021-00707-2
- F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
- Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. NANO 13, 1830005 (2018). https://doi.org/10.1142/S1793292018300050
- J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
- M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7, 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
- Q. Zhou, X. Yin, F. Ye, Z. Tang, R. Mo et al., High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceram. Int. 45, 6514–6522 (2019). https://doi.org/10.1016/j.ceramint.2018.12.142
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- S. Sun, Q. He, S. Xiao, Q. Xu, X. Li et al., Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). https://doi.org/10.1038/nmat3292
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102–115 (2021). https://doi.org/10.1007/s40820-021-00635-1
- J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175–190 (2021). https://doi.org/10.1007/s40820-021-00704-5
- G.Y. Yoo, S. Lee, M. Ko, H. Kim, K.N. Lee et al., Diphylleia grayi-inspired intelligent hydrochromic adhesive film. ACS Appl. Mater. Interfaces 12, 49982–49991 (2020). https://doi.org/10.1021/acsami.0c13185
- H.E. Hinton, G.M. Jarman, Physiological colour change in the elytra of the hercules beetle, dynastes hercules. J. Insect Physiol. 19, 533–549 (1973). https://doi.org/10.1016/0022-1910(73)90064-4
- J.P. Vigneron, J.M. Pasteels, D.M. Windsor, Z. Vértesy, M. Rassart et al., Switchable reflector in the panamanian tortoise beetle charidotella egregia (chrysomelidae: Cassidinae). Phys. Rev. E 76, 031907 (2007). https://doi.org/10.1103/PhysRevE.76.031907
- H.E. Hinton, G.M. Jarman, Physiological colour change in the hercules beetle. Nature 238, 160–161 (1972). https://doi.org/10.1038/238160a0
- N. Yu, P. Genevet, A. Kats Mikhail, F. Aieta, J.P. Tetienne et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). https://doi.org/10.1126/science.1210713
- M. Rassart, J.F. Colomer, T. Tabarrant, J.P. Vigneron, Diffractive hygrochromic effect in the cuticle of the hercules beetledynastes hercules. New J. Phys. 10, 033014 (2008). https://doi.org/10.1088/1367-2630/10/3/033014
- C. Roux Pertus, E. Oliviero, V. Viguier, F. Fernandez, F. Maillot et al., Multiscale characterization of the hierarchical structure of dynastes hercules elytra. Micron 101, 16–24 (2017). https://doi.org/10.1016/j.micron.2017.05.001
- H. Song, S. Xu, Y. Li, J. Dai, A. Gong et al., Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018). https://doi.org/10.1002/aenm.201701203
- D. Huang, J. Wu, C. Chen, X. Fu, A.H. Brozena et al., Precision imprinted nanostructural wood. Adv. Mater. 31, 1903270 (2019). https://doi.org/10.1002/adma.201903270
- W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32, 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
- X. Shu, H. Ren, Y. Jiang, J. Zhou, Y. Wang et al., Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites. J. Mater. Chem. C 8, 2913–2926 (2020). https://doi.org/10.1039/C9TC05658K
- Y. Liu, Y. Chen, H. Zhao, C. Teng, Characterization, dielectric properties, and mechanical properties of cyanate epoxy composites modified by KH550-ALOOH@GO. J. Mater. Sci. Mater. Electron. 32, 8890–8902 (2021). https://doi.org/10.1007/s10854-021-05561-x
- W. Wu, H. Huang, Silicone rubber composites fabricated using KH550-modified poplar leaves graphene. Bull. Mater. Sci. 43, 16–21 (2019). https://doi.org/10.1007/s12034-019-1985-z
- C.H. Peng, P. Shiu Chen, C.C. Chang, High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40, 47–55 (2014). https://doi.org/10.1016/j.ceramint.2013.05.101
- W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61, 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
- M. Li, X.W. Yin, G.P. Zheng, M. Chen, M.J. Tao et al., High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 50, 1478–1487 (2015). https://doi.org/10.1007/s10853-014-8709-y
- Y. Wang, F. Luo, P. Wei, W.C. Zhou, D.M. Zhu, Enhanced dielectric properties and high-temperature microwave absorption performance of Zn-doped Al2O3 ceramic. J. Electron. Mater. 44, 2353–2358 (2015). https://doi.org/10.1007/s11664-015-3787-4
- J. Su, W. Zhou, Y. Liu, Y. Qing, F. Luo et al., High-temperature dielectric and microwave absorption property of plasma sprayed Ti3SiC2/cordierite coatings. J. Mater. Sci. Mater. Electron. 27, 2460–2466 (2016). https://doi.org/10.1007/s10854-015-4046-4
- Y. Mu, W.C. Zhou, Y. Hu, H.Y. Wang, F. Luo et al., Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC–Al2O3 composites modified by thermal cross-linking procedure. J. Eur. Ceram. Soc. 35, 2991–3003 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.04.016
- H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin et al., Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun. 163, 1–6 (2013). https://doi.org/10.1016/j.ssc.2013.03.004
- X. Yuan, L. Cheng, S. Guo, L. Zhang, High-temperature microwave absorbing properties of ordered mesoporous inter-filled SiC/SiO2 composites. Ceram. Int. 43, 282–288 (2017). https://doi.org/10.1016/j.ceramint.2016.09.151
- H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou et al., Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2, 214–219 (2014). https://doi.org/10.1002/adom.201300439
- H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi et al., NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 7, 7073–7077 (2015). https://doi.org/10.1021/acsami.5b01122
- J. Yuan, H.J. Yang, Z.L. Hou, W.L. Song, H. Xu et al., Ni-decorated SiC powders: enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol. 237, 309–313 (2013). https://doi.org/10.1016/j.powtec.2012.12.020
- X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater. Des. 92, 563–570 (2016). https://doi.org/10.1016/j.matdes.2015.12.090
- L. Kong, X.W. Yin, M.K. Han, L.T. Zhang, L.F. Cheng, Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceram. Int. 41, 4906–4915 (2015). https://doi.org/10.1016/j.ceramint.2014.12.052
- B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10547 (2014). https://doi.org/10.1039/C4TA01715C
- H. Wang, D. Zhu, W. Zhou, F. Luo, Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature. J. Alloys Compd. 648, 313–319 (2015). https://doi.org/10.1016/j.jallcom.2015.07.006
- M. Han, X. Yin, W. Duan, S. Ren, L. Zhang et al., Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.003
- Y. Li, M.S. Cao, D.W. Wang, J. Yuan, High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 77184–77191 (2015). https://doi.org/10.1039/C5RA15458H
- Y. Li, X. Fang, M. Cao, Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 6, 24837 (2016). https://doi.org/10.1038/srep24837
- L. Kong, X. Yin, Q. Li, F. Ye, Y. Liu et al., High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J. Am. Ceram. Soc. 96, 2211–2217 (2013). https://doi.org/10.1111/jace.12321
- Z. Hou, X. Yin, H. Xu, H. Wei, M. Li et al., Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 11, 5364–5372 (2019). https://doi.org/10.1021/acsami.8b20023
- Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704–16712 (2021). https://doi.org/10.1021/acsami.1c02906
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30, 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105 (2006). https://doi.org/10.1063/1.2165276
- J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012). https://doi.org/10.1002/smll.201102245
- Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
- A. Kazemi Moridani, R. Zando, W. Xie, I. Howell, J.J. Watkins et al., Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater. 5, 1600993 (2017). https://doi.org/10.1002/adom.201600993
- X. Li, W.B. You, C.Y. Xu, L. Wang, L.T. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157–170 (2021). https://doi.org/10.1007/s40820-021-00680-w
- X.Y. Wu, T.X. Tu, Y. Dai, P.P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148–162 (2021). https://doi.org/10.1007/s40820-021-00665-9
- X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135–165 (2021). https://doi.org/10.1007/s40820-021-00658-8
- P. He, M.S. Cao, W.Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115–134 (2021). https://doi.org/10.1007/s40820-021-00645-z
- Y. Shi, D. Li, Y. Wei, C. Gong, J. Zhang, Magnetic TiN composites for efficient microwave absorption: nanoribbons vs nanoparticles. Compos. Commun. 28, 100919 (2021). https://doi.org/10.1016/j.coco.2021.100919
References
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91–107 (2021). https://doi.org/10.1007/s40820-021-00624-4
C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181–209 (2021). https://doi.org/10.1007/s40820-021-00707-2
F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. NANO 13, 1830005 (2018). https://doi.org/10.1142/S1793292018300050
J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7, 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
Q. Zhou, X. Yin, F. Ye, Z. Tang, R. Mo et al., High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceram. Int. 45, 6514–6522 (2019). https://doi.org/10.1016/j.ceramint.2018.12.142
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
S. Sun, Q. He, S. Xiao, Q. Xu, X. Li et al., Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). https://doi.org/10.1038/nmat3292
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102–115 (2021). https://doi.org/10.1007/s40820-021-00635-1
J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175–190 (2021). https://doi.org/10.1007/s40820-021-00704-5
G.Y. Yoo, S. Lee, M. Ko, H. Kim, K.N. Lee et al., Diphylleia grayi-inspired intelligent hydrochromic adhesive film. ACS Appl. Mater. Interfaces 12, 49982–49991 (2020). https://doi.org/10.1021/acsami.0c13185
H.E. Hinton, G.M. Jarman, Physiological colour change in the elytra of the hercules beetle, dynastes hercules. J. Insect Physiol. 19, 533–549 (1973). https://doi.org/10.1016/0022-1910(73)90064-4
J.P. Vigneron, J.M. Pasteels, D.M. Windsor, Z. Vértesy, M. Rassart et al., Switchable reflector in the panamanian tortoise beetle charidotella egregia (chrysomelidae: Cassidinae). Phys. Rev. E 76, 031907 (2007). https://doi.org/10.1103/PhysRevE.76.031907
H.E. Hinton, G.M. Jarman, Physiological colour change in the hercules beetle. Nature 238, 160–161 (1972). https://doi.org/10.1038/238160a0
N. Yu, P. Genevet, A. Kats Mikhail, F. Aieta, J.P. Tetienne et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). https://doi.org/10.1126/science.1210713
M. Rassart, J.F. Colomer, T. Tabarrant, J.P. Vigneron, Diffractive hygrochromic effect in the cuticle of the hercules beetledynastes hercules. New J. Phys. 10, 033014 (2008). https://doi.org/10.1088/1367-2630/10/3/033014
C. Roux Pertus, E. Oliviero, V. Viguier, F. Fernandez, F. Maillot et al., Multiscale characterization of the hierarchical structure of dynastes hercules elytra. Micron 101, 16–24 (2017). https://doi.org/10.1016/j.micron.2017.05.001
H. Song, S. Xu, Y. Li, J. Dai, A. Gong et al., Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018). https://doi.org/10.1002/aenm.201701203
D. Huang, J. Wu, C. Chen, X. Fu, A.H. Brozena et al., Precision imprinted nanostructural wood. Adv. Mater. 31, 1903270 (2019). https://doi.org/10.1002/adma.201903270
W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32, 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
X. Shu, H. Ren, Y. Jiang, J. Zhou, Y. Wang et al., Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites. J. Mater. Chem. C 8, 2913–2926 (2020). https://doi.org/10.1039/C9TC05658K
Y. Liu, Y. Chen, H. Zhao, C. Teng, Characterization, dielectric properties, and mechanical properties of cyanate epoxy composites modified by KH550-ALOOH@GO. J. Mater. Sci. Mater. Electron. 32, 8890–8902 (2021). https://doi.org/10.1007/s10854-021-05561-x
W. Wu, H. Huang, Silicone rubber composites fabricated using KH550-modified poplar leaves graphene. Bull. Mater. Sci. 43, 16–21 (2019). https://doi.org/10.1007/s12034-019-1985-z
C.H. Peng, P. Shiu Chen, C.C. Chang, High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40, 47–55 (2014). https://doi.org/10.1016/j.ceramint.2013.05.101
W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 61, 201–204 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.048
M. Li, X.W. Yin, G.P. Zheng, M. Chen, M.J. Tao et al., High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 50, 1478–1487 (2015). https://doi.org/10.1007/s10853-014-8709-y
Y. Wang, F. Luo, P. Wei, W.C. Zhou, D.M. Zhu, Enhanced dielectric properties and high-temperature microwave absorption performance of Zn-doped Al2O3 ceramic. J. Electron. Mater. 44, 2353–2358 (2015). https://doi.org/10.1007/s11664-015-3787-4
J. Su, W. Zhou, Y. Liu, Y. Qing, F. Luo et al., High-temperature dielectric and microwave absorption property of plasma sprayed Ti3SiC2/cordierite coatings. J. Mater. Sci. Mater. Electron. 27, 2460–2466 (2016). https://doi.org/10.1007/s10854-015-4046-4
Y. Mu, W.C. Zhou, Y. Hu, H.Y. Wang, F. Luo et al., Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC–Al2O3 composites modified by thermal cross-linking procedure. J. Eur. Ceram. Soc. 35, 2991–3003 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.04.016
H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin et al., Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun. 163, 1–6 (2013). https://doi.org/10.1016/j.ssc.2013.03.004
X. Yuan, L. Cheng, S. Guo, L. Zhang, High-temperature microwave absorbing properties of ordered mesoporous inter-filled SiC/SiO2 composites. Ceram. Int. 43, 282–288 (2017). https://doi.org/10.1016/j.ceramint.2016.09.151
H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou et al., Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2, 214–219 (2014). https://doi.org/10.1002/adom.201300439
H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi et al., NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 7, 7073–7077 (2015). https://doi.org/10.1021/acsami.5b01122
J. Yuan, H.J. Yang, Z.L. Hou, W.L. Song, H. Xu et al., Ni-decorated SiC powders: enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol. 237, 309–313 (2013). https://doi.org/10.1016/j.powtec.2012.12.020
X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater. Des. 92, 563–570 (2016). https://doi.org/10.1016/j.matdes.2015.12.090
L. Kong, X.W. Yin, M.K. Han, L.T. Zhang, L.F. Cheng, Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceram. Int. 41, 4906–4915 (2015). https://doi.org/10.1016/j.ceramint.2014.12.052
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10547 (2014). https://doi.org/10.1039/C4TA01715C
H. Wang, D. Zhu, W. Zhou, F. Luo, Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature. J. Alloys Compd. 648, 313–319 (2015). https://doi.org/10.1016/j.jallcom.2015.07.006
M. Han, X. Yin, W. Duan, S. Ren, L. Zhang et al., Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.003
Y. Li, M.S. Cao, D.W. Wang, J. Yuan, High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 77184–77191 (2015). https://doi.org/10.1039/C5RA15458H
Y. Li, X. Fang, M. Cao, Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 6, 24837 (2016). https://doi.org/10.1038/srep24837
L. Kong, X. Yin, Q. Li, F. Ye, Y. Liu et al., High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J. Am. Ceram. Soc. 96, 2211–2217 (2013). https://doi.org/10.1111/jace.12321
Z. Hou, X. Yin, H. Xu, H. Wei, M. Li et al., Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 11, 5364–5372 (2019). https://doi.org/10.1021/acsami.8b20023
Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704–16712 (2021). https://doi.org/10.1021/acsami.1c02906
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30, 2002595 (2020). https://doi.org/10.1002/adfm.202002595
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105 (2006). https://doi.org/10.1063/1.2165276
J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012). https://doi.org/10.1002/smll.201102245
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
A. Kazemi Moridani, R. Zando, W. Xie, I. Howell, J.J. Watkins et al., Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater. 5, 1600993 (2017). https://doi.org/10.1002/adom.201600993
X. Li, W.B. You, C.Y. Xu, L. Wang, L.T. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157–170 (2021). https://doi.org/10.1007/s40820-021-00680-w
X.Y. Wu, T.X. Tu, Y. Dai, P.P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148–162 (2021). https://doi.org/10.1007/s40820-021-00665-9
X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135–165 (2021). https://doi.org/10.1007/s40820-021-00658-8
P. He, M.S. Cao, W.Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115–134 (2021). https://doi.org/10.1007/s40820-021-00645-z
Y. Shi, D. Li, Y. Wei, C. Gong, J. Zhang, Magnetic TiN composites for efficient microwave absorption: nanoribbons vs nanoparticles. Compos. Commun. 28, 100919 (2021). https://doi.org/10.1016/j.coco.2021.100919