Microwave Absorption of Crystalline Fe/MnO@C Nanocapsules Embedded in Amorphous Carbon
Corresponding Author: Yuping Duan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 57
Abstract
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix (FMCA) was synthesized successfully with a novel confinement strategy. The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz. The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon. The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties. Meanwhile, adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network. The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption. The optimal reflection loss (RL) is up to − 45 dB, and the effective bandwidth (RL < − 10 dB) is 5.0 GHz with 2.0 mm thickness. The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber, but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
Highlights:
1 The crystalline Fe/MnO@C core–shell nanocapsules embedded in porous amorphous carbon matrix (FMCA) was prepared by a novel confinement strategy of modified arc-discharge method.
2 The heterogeneous crystalline–amorphous nanocrystals disperse evenly and exhibit improvement of static magnetization and excellent electromagnetic absorption properties.
3 The adding MnO2 confines degree of graphitization and contributes to form amorphous carbon. Dielectric loss and microwave absorption are achieved adjustable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.P. Li, Z.M. Deng, Y. Li, H.B. Zhang, S. Zhao, Y. Zhang, X.Y. Wu, Z.Z. Yu, Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073
- D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng, S. Liang, H. Wang, M.S. Cao, Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- Y. Song, L.H. He, X.F. Zhang, F. Liu, N. Tian, Y.S. Tang, J. Kong, Highly efficient electromagnetic wave absorbing metal-free and carbon-rich ceramics derived from hyperbranched polycarbosilazanes. J. Phys. Chem. C 121(44), 24774–24785 (2017). https://doi.org/10.1021/acs.jpcc.7b07646
- D.W. Hu, J. Cao, W. Li, C. Zhang, T.L. Wu et al., Optically transparent broadband microwave absorption metamaterial by standing up closed ring resonators. Adv. Opt. Mater. 5(13), 1700109 (2017). https://doi.org/10.1002/adom.201700109
- B. Zhao, X. Zhang, J.S. Deng, Z.Y. Bai, L.Y. Liang, Y. Li, R. Zhang, A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Phys. Chem. Chem. Phys. 20(45), 28623–28633 (2018). https://doi.org/10.1039/C8CP06047A
- X.F. Zhang, J.J. Guo, P.F. Guan, C.J. Liu, H. Huang et al., Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 4, 1924 (2013). https://doi.org/10.1038/ncomms2929
- H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross stacking aligned carbon nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Zheng, H.B. Zeng, Z.C. Xu, A voltage boosting strategy enabling a low frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du, Thermal conversion of an Fe3O4@ metal-organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7(30), 12932–12942 (2015). https://doi.org/10.1039/C5NR031
- W. Zhou, L. Guo, Iron triad (Fe Co, Ni) nanomaterials: structural design, functionalization and their applications. Chem. Soc. Rev. 44(19), 6697–6707 (2015). https://doi.org/10.1039/C5CS00033E
- J. Guo, H.X. Song, H. Liu, C.J. Luo, Y.R. Ren et al., Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 5(22), 5334–5344 (2017). https://doi.org/10.1039/C7TC01502J
- F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111(6), 4 (2012). https://doi.org/10.1063/1.3688435
- H. Zhou, J.C. Wang, J.D. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24), 12502–12511 (2013). https://doi.org/10.1039/C3NR04379G
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679–21685 (2012). https://doi.org/10.1039/C2JM34273A
- T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J. Mater. Chem. A 1(32), 9138–9149 (2013). https://doi.org/10.1039/C3TA11611E
- M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403–16409 (2014). https://doi.org/10.1039/C4TA03033H
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo et al., Reduced graphene oxide decorated with in situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
- C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). https://doi.org/10.1063/1.3555436
- H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- R. Qiang, Y.C. Du, Y. Wang, N. Wang, C.H. Tian et al., Rational design of yolk-shell C@ C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
- C. Zhou, S. Geng, X.W. Xu, T.H. Wang, L.Q. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- X.S. Qi, J.L. Xu, W. Zhong, Y.W. Du, Synthesis of high purity chain-like carbon nanospheres in ultrahigh yield, and their microwave absorption properties. RSC Adv. 5(21), 16010–16016 (2015). https://doi.org/10.1039/C4RA09321F
- S. Qiu, H.L. Lyu, J.R. Liu, N.N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8(31), 20258–20266 (2016). https://doi.org/10.1021/acsami.6b03159
- Y.X. Li, R.G. Liu, X.Y. Pang, X.N. Zhao, Y.H. Zhang, G.W. Qin, X.F. Zhang, Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 126, 372–381 (2018). https://doi.org/10.1016/j.carbon.2017.10.040
- T. Wang, H.D. Wang, X. Chi, R. Li, J.B. Wang, Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312–318 (2014). https://doi.org/10.1016/j.carbon.2014.03.037
- X.C. Zhao, Z.M. Zhang, L.Y. Wang, K. Xi, Q.Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
- G.M. Li, L.C. Wang, W.X. Li, Y. Xu, Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents. Microporous Mesoporous Mater. 211, 97–104 (2015). https://doi.org/10.1016/j.micromeso.2015.02.054
- B. Zhong, C.J. Wang, G.W. Wen, Y.L. Yu, L. Xia, Facile fabrication of boron and nitrogen co-doped carbon@ Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Compos. Part B 132, 141–150 (2018). https://doi.org/10.1016/j.compositesb.2017.09.001
- Y.J. Qi, W.Z. Wang, X.G. Liu, G.M. Shi, Y. Qi, Nanocrystalline graphite embedded in carbonized hydrochars: an alternative matrix material for microwave absorption. Mater. Lett. 234, 249–252 (2019). https://doi.org/10.1016/j.matlet.2018.09.063
- Y. Sun, J.W. Zhang, Y. Zong, X. Deng, H.Y. Zhao et al., crystalline–amorphous permalloy@ iron oxide core-shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl. Mater. Interfaces 11(6), 6374–6383 (2019). https://doi.org/10.1021/acsami.8b18875
- S.S. Dai, B. Quan, X.H. Liang, J. Lu, Z.H. Yang, G.B. Ji, Y.W. Du, Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure. Nanotechnology 29(19), 195603 (2018). https://doi.org/10.1088/1361-6528/aab1c2
- J. Mei, L. Zhang, Anchoring high-dispersed MnO2 nanowires on nitrogen doped graphene as electrode materials for supercapacitors. Electrochim. Acta 173, 338–344 (2015). https://doi.org/10.1016/j.electacta.2015.05.064
- N. Soin, S.C. Ray, S. Sarma, D. Mazumder, S. Sharma et al., Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes. J. Phys. Chem. C 121(26), 14073–14082 (2017). https://doi.org/10.1021/acs.jpcc.7b01645
- S.P. Li, Y. Huang, D. Ling, N. Zhang, M. Zong, X.L. Qin, P.B. Liu, Enhanced microwave absorption with carbon-encapsulated Fe-Co particles on reduced graphene oxide nanosheets with nanoscale-holes in the basal plane. J. Colloid Interface Sci. 544, 188–197 (2019). https://doi.org/10.1016/j.jcis.2019.02.035
- Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
- J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
- X.F. Liu, C.C. Hao, L.H. He, C. Yang, Y.B. Chen, C.B. Jiang, R.H. Yu, Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultra-broadband and efficient low-frequency microwave absorption. Nano Res. 11(8), 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
- Z.C. Wu, W. Hu, T. Huang, P. Lan, K. Tian, F.F. Xie, L. Lei, Hierarchically porous carbons with controlled structures for efficient microwave absorption. J. Mater. Chem. C 6(32), 8839–8845 (2018). https://doi.org/10.1039/C8TC01813H
- H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015). https://doi.org/10.1039/C5TC01716E
- P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- Y. Cheng, Y. Zhao, H.Q. Zhao, H.L. Lu, X.D. Qi et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174
- Q. Liao, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang et al., Highly cuboid-shaped hetero-bimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10(34), 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
- W. Feng, Y.M. Wang, J.C. Chen, B.Q. Li, L.X. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6(1), 10–18 (2018). https://doi.org/10.1039/C7TC03784H
- C. Chen, S.Z. Bao, B.S. Zhang, Y. Chen, W. Chen, C.Y. Wang, Coupling Fe@Fe3O4 nanoparticles with multiple-walled carbon nanotubes with width band electromagnetic absorption performance. Appl. Surf. Sci. 467, 836–843 (2019). https://doi.org/10.1016/j.apsusc.2018.10.148
- R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang et al., Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106
- W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, Y.Q. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3(7), 2862–2864 (2011). https://doi.org/10.1039/C1NR10274E
- T. Kim, J. Lee, K. Lee, B. Park, B.M. Juan, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019). https://doi.org/10.1016/j.cej.2018.12.172
- H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
- J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018). https://doi.org/10.1016/j.cej.2018.04.006
- X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). https://doi.org/10.1016/j.cej.2017.09.101
- B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17(4), 2531–2539 (2015). https://doi.org/10.1039/C4CP05031B
- M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
- F. Bødker, S. Mørup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72(2), 282 (1994). https://doi.org/10.1103/PhysRevLett.72.282
- M. Javid, Y.L. Zhou, D.X. Wang, D. Li, G.M. Shi et al., Magnetic behavior, electromagnetic multiresonances, and microwave absorption of the interfacial engineered Fe@ FeSi/SiO2 nanocomposite. ACS Appl. Nano Mater. 1(3), 1309–1320 (2018). https://doi.org/10.1021/acsanm.8b00055
- D.R. Li, B.S. Zhang, W. Liu, X.H. Liang, G.B. Ji, Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. Dalton Trans. 46(43), 14926–14933 (2017). https://doi.org/10.1039/C7DT02840G
- L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101(10), 103916 (2007). https://doi.org/10.1063/1.2733610
- W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, Y. Cheng, B. Quan, Y.W. Du, Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, G.B. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon 125, 630–639 (2017). https://doi.org/10.1016/j.carbon.2017.09.101
- Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
- F. Ye, Q. Song, Z.C. Zhang, W. Liu, S.Y. Zhang et al., Direct growth of edge rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
References
X.P. Li, Z.M. Deng, Y. Li, H.B. Zhang, S. Zhao, Y. Zhang, X.Y. Wu, Z.Z. Yu, Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073
D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng, S. Liang, H. Wang, M.S. Cao, Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
Y. Song, L.H. He, X.F. Zhang, F. Liu, N. Tian, Y.S. Tang, J. Kong, Highly efficient electromagnetic wave absorbing metal-free and carbon-rich ceramics derived from hyperbranched polycarbosilazanes. J. Phys. Chem. C 121(44), 24774–24785 (2017). https://doi.org/10.1021/acs.jpcc.7b07646
D.W. Hu, J. Cao, W. Li, C. Zhang, T.L. Wu et al., Optically transparent broadband microwave absorption metamaterial by standing up closed ring resonators. Adv. Opt. Mater. 5(13), 1700109 (2017). https://doi.org/10.1002/adom.201700109
B. Zhao, X. Zhang, J.S. Deng, Z.Y. Bai, L.Y. Liang, Y. Li, R. Zhang, A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Phys. Chem. Chem. Phys. 20(45), 28623–28633 (2018). https://doi.org/10.1039/C8CP06047A
X.F. Zhang, J.J. Guo, P.F. Guan, C.J. Liu, H. Huang et al., Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 4, 1924 (2013). https://doi.org/10.1038/ncomms2929
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross stacking aligned carbon nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Zheng, H.B. Zeng, Z.C. Xu, A voltage boosting strategy enabling a low frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du, Thermal conversion of an Fe3O4@ metal-organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7(30), 12932–12942 (2015). https://doi.org/10.1039/C5NR031
W. Zhou, L. Guo, Iron triad (Fe Co, Ni) nanomaterials: structural design, functionalization and their applications. Chem. Soc. Rev. 44(19), 6697–6707 (2015). https://doi.org/10.1039/C5CS00033E
J. Guo, H.X. Song, H. Liu, C.J. Luo, Y.R. Ren et al., Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 5(22), 5334–5344 (2017). https://doi.org/10.1039/C7TC01502J
F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111(6), 4 (2012). https://doi.org/10.1063/1.3688435
H. Zhou, J.C. Wang, J.D. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24), 12502–12511 (2013). https://doi.org/10.1039/C3NR04379G
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
H.L. Yu, T.S. Wang, B. Wen, M.M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679–21685 (2012). https://doi.org/10.1039/C2JM34273A
T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J. Mater. Chem. A 1(32), 9138–9149 (2013). https://doi.org/10.1039/C3TA11611E
M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403–16409 (2014). https://doi.org/10.1039/C4TA03033H
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo et al., Reduced graphene oxide decorated with in situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). https://doi.org/10.1063/1.3555436
H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
R. Qiang, Y.C. Du, Y. Wang, N. Wang, C.H. Tian et al., Rational design of yolk-shell C@ C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
C. Zhou, S. Geng, X.W. Xu, T.H. Wang, L.Q. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
X.S. Qi, J.L. Xu, W. Zhong, Y.W. Du, Synthesis of high purity chain-like carbon nanospheres in ultrahigh yield, and their microwave absorption properties. RSC Adv. 5(21), 16010–16016 (2015). https://doi.org/10.1039/C4RA09321F
S. Qiu, H.L. Lyu, J.R. Liu, N.N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8(31), 20258–20266 (2016). https://doi.org/10.1021/acsami.6b03159
Y.X. Li, R.G. Liu, X.Y. Pang, X.N. Zhao, Y.H. Zhang, G.W. Qin, X.F. Zhang, Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 126, 372–381 (2018). https://doi.org/10.1016/j.carbon.2017.10.040
T. Wang, H.D. Wang, X. Chi, R. Li, J.B. Wang, Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312–318 (2014). https://doi.org/10.1016/j.carbon.2014.03.037
X.C. Zhao, Z.M. Zhang, L.Y. Wang, K. Xi, Q.Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
G.M. Li, L.C. Wang, W.X. Li, Y. Xu, Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents. Microporous Mesoporous Mater. 211, 97–104 (2015). https://doi.org/10.1016/j.micromeso.2015.02.054
B. Zhong, C.J. Wang, G.W. Wen, Y.L. Yu, L. Xia, Facile fabrication of boron and nitrogen co-doped carbon@ Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Compos. Part B 132, 141–150 (2018). https://doi.org/10.1016/j.compositesb.2017.09.001
Y.J. Qi, W.Z. Wang, X.G. Liu, G.M. Shi, Y. Qi, Nanocrystalline graphite embedded in carbonized hydrochars: an alternative matrix material for microwave absorption. Mater. Lett. 234, 249–252 (2019). https://doi.org/10.1016/j.matlet.2018.09.063
Y. Sun, J.W. Zhang, Y. Zong, X. Deng, H.Y. Zhao et al., crystalline–amorphous permalloy@ iron oxide core-shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl. Mater. Interfaces 11(6), 6374–6383 (2019). https://doi.org/10.1021/acsami.8b18875
S.S. Dai, B. Quan, X.H. Liang, J. Lu, Z.H. Yang, G.B. Ji, Y.W. Du, Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure. Nanotechnology 29(19), 195603 (2018). https://doi.org/10.1088/1361-6528/aab1c2
J. Mei, L. Zhang, Anchoring high-dispersed MnO2 nanowires on nitrogen doped graphene as electrode materials for supercapacitors. Electrochim. Acta 173, 338–344 (2015). https://doi.org/10.1016/j.electacta.2015.05.064
N. Soin, S.C. Ray, S. Sarma, D. Mazumder, S. Sharma et al., Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes. J. Phys. Chem. C 121(26), 14073–14082 (2017). https://doi.org/10.1021/acs.jpcc.7b01645
S.P. Li, Y. Huang, D. Ling, N. Zhang, M. Zong, X.L. Qin, P.B. Liu, Enhanced microwave absorption with carbon-encapsulated Fe-Co particles on reduced graphene oxide nanosheets with nanoscale-holes in the basal plane. J. Colloid Interface Sci. 544, 188–197 (2019). https://doi.org/10.1016/j.jcis.2019.02.035
Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
X.F. Liu, C.C. Hao, L.H. He, C. Yang, Y.B. Chen, C.B. Jiang, R.H. Yu, Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultra-broadband and efficient low-frequency microwave absorption. Nano Res. 11(8), 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
Z.C. Wu, W. Hu, T. Huang, P. Lan, K. Tian, F.F. Xie, L. Lei, Hierarchically porous carbons with controlled structures for efficient microwave absorption. J. Mater. Chem. C 6(32), 8839–8845 (2018). https://doi.org/10.1039/C8TC01813H
H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015). https://doi.org/10.1039/C5TC01716E
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
Y. Cheng, Y. Zhao, H.Q. Zhao, H.L. Lu, X.D. Qi et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174
Q. Liao, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang et al., Highly cuboid-shaped hetero-bimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10(34), 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
W. Feng, Y.M. Wang, J.C. Chen, B.Q. Li, L.X. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6(1), 10–18 (2018). https://doi.org/10.1039/C7TC03784H
C. Chen, S.Z. Bao, B.S. Zhang, Y. Chen, W. Chen, C.Y. Wang, Coupling Fe@Fe3O4 nanoparticles with multiple-walled carbon nanotubes with width band electromagnetic absorption performance. Appl. Surf. Sci. 467, 836–843 (2019). https://doi.org/10.1016/j.apsusc.2018.10.148
R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang et al., Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106
W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, Y.Q. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3(7), 2862–2864 (2011). https://doi.org/10.1039/C1NR10274E
T. Kim, J. Lee, K. Lee, B. Park, B.M. Juan, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019). https://doi.org/10.1016/j.cej.2018.12.172
H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018). https://doi.org/10.1016/j.cej.2018.04.006
X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). https://doi.org/10.1016/j.cej.2017.09.101
B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17(4), 2531–2539 (2015). https://doi.org/10.1039/C4CP05031B
M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248
F. Bødker, S. Mørup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72(2), 282 (1994). https://doi.org/10.1103/PhysRevLett.72.282
M. Javid, Y.L. Zhou, D.X. Wang, D. Li, G.M. Shi et al., Magnetic behavior, electromagnetic multiresonances, and microwave absorption of the interfacial engineered Fe@ FeSi/SiO2 nanocomposite. ACS Appl. Nano Mater. 1(3), 1309–1320 (2018). https://doi.org/10.1021/acsanm.8b00055
D.R. Li, B.S. Zhang, W. Liu, X.H. Liang, G.B. Ji, Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. Dalton Trans. 46(43), 14926–14933 (2017). https://doi.org/10.1039/C7DT02840G
L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101(10), 103916 (2007). https://doi.org/10.1063/1.2733610
W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, Y. Cheng, B. Quan, Y.W. Du, Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, G.B. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon 125, 630–639 (2017). https://doi.org/10.1016/j.carbon.2017.09.101
Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
F. Ye, Q. Song, Z.C. Zhang, W. Liu, S.Y. Zhang et al., Direct growth of edge rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205