Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide
Corresponding Author: Mukesh Kumar
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 38
Abstract
Nitrogen dioxide (NO2), a hazardous gas with acidic nature, is continuously being liberated in the atmosphere due to human activity. The NO2 sensors based on traditional materials have limitations of high-temperature requirements, slow recovery, and performance degradation under harsh environmental conditions. These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials. Molybdenum disulfide (MoS2) has emerged as a potential candidate for developing next-generation NO2 gas sensors. MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies, facile integration with other materials and compatibility with internet of things (IoT) devices. The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices (resistor and transistor), layer thickness, morphology control, defect tailoring, heterostructure, metal nanoparticle doping, and through light illumination. Moreover, the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively. Finally, the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2. Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.
Highlights:
1 MoS2 shows enormous potential for gas sensing due to its high surface to volume ratio, position-dependent gas molecules adsorption and easy control on morphology.
2 The recent experimental and theoretical strategies to develop NO2 chemiresistance sensors based on MoS2 are addressed.
3 A detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices, structure, morphology, defects, heterostructures, metal doping, and under light illumination are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.W. Ashenden, T.A. Mansfield, Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273(5658), 142–143 (1978). https://doi.org/10.1038/273142a0
- L. Calderón-Garcidueñas, B. Azzarelli, H. Acuna, R. Garcia, T.M. Gambling et al., Air pollution and brain damage. Toxicol. Pathol. 30(3), 373–389 (2002). https://doi.org/10.1080/01926230252929954
- R.J. van der A, H.J. Eskes, K.F. Boersma, T.P.C. van Noije, M. Van Roozendael et al., Trends, seasonal variability and dominant NOx source derived from a ten-year record of NO2 measured from space. J. Geophys. Res. Atmos. 113(D4), 302 (2008). https://doi.org/10.1029/2007JD009021
- J.G. Speight, Chapter one—inorganic chemicals in the environment, in ed. by J. Speight Environmental Inorganic Chemistry for Engineers (Butterworth-Heinemann, 2017), pp. 1–49. https://doi.org/10.1016/B978-0-12-849891-0.00001-1
- D. Fowler, J.N. Cape, I.D. Leith, I.S. Paterson, J.W. Kinnaird et al., Rainfall acidity in northern Britain. Nature 297(5865), 383–385 (1982). https://doi.org/10.1038/297383a0
- N.M. Elsayed, Toxicity of nitrogen dioxide: an introduction. Toxicology 89(3), 161–174 (1994). https://doi.org/10.1016/0300-483X(94)90096-5
- J.A. Burney, The downstream air pollution impacts of the transition from coal to natural gas in the United States. Nat. Sustain. 3(2), 152–160 (2020). https://doi.org/10.1038/s41893-019-0453-5
- L. Meier, P. Tanskanen, L. Heng, G.H. Lee, F. Fraundorfer et al., PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robots 33(1), 21–39 (2012). https://doi.org/10.1007/s10514-012-9281-4
- C. Li, L. Yu, W. He, Y. Cheng, G. Song, Development of local emissions rate model for light-duty gasoline vehicles: Beijing field data and patterns of emissions rates in EPA simulator. Transp. Res. Record. 2627(1), 67–76 (2017). https://doi.org/10.3141/2627-08
- A. Richter, J.P. Burrows, H. Nüß, C. Granier, U. Niemeier, Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437(7055), 129–132 (2005). https://doi.org/10.1038/nature04092
- R.J. van der A, D.H.M.U. Peters, H. Eskes, K.F. Boersma, M. Van Roozendael et al., Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. 111(D12), D12317 (2006). https://doi.org/10.1029/2005jd006594
- P. Castellanos, K.F. Boersma, Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Sci. Rep. 2(1), 265 (2012). https://doi.org/10.1038/srep00265
- P.K. Hopke, Contemporary threats and air pollution. Atmos. Environ. 43(1), 87–93 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.053
- C. Zhang, C. Liu, Q. Hu, Z. Cai, W. Su et al., Satellite UV–Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005–2017. Light Sci. Appl. 8(1), 100 (2019). https://doi.org/10.1038/s41377-019-0210-6
- R.G. Derwent, K. Nodopt, Long-range transport and deposition of acidic nitrogen species in north-west Europe. Nature 324(6095), 356–358 (1986). https://doi.org/10.1038/324356a0
- J.A. Bernstein, N. Alexis, C. Barnes, I.L. Bernstein, A. Nel et al., Health effects of air pollution. J. Allergy Clin. Immunol. 114(5), 1116–1123 (2004). https://doi.org/10.1016/j.jaci.2004.08.030
- D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- K. Luo, R. Li, W. Li, Z. Wang, X. Ma et al., Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: an exploration of spatial heterogeneity and the district-specific predictors. Sci. Rep. 6(1), 38328 (2016). https://doi.org/10.1038/srep38328
- W.H. Organization, World health statistics 2016: monitoring health for the SDGs sustainable development goals (World Health Organization; 2016)
- W.H. Organization, Guidelines for drinking-water quality (World Health Organization; 1993)
- A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification. Pure Appl. Chem. 63(9), 1247–1250 (1991). https://doi.org/10.1351/pac199163091247
- G.W. Hunter, L.-Y. Chen, P.G. Neudeck, D. Knight, C.-C. Liu et al, Chemical Gas Sensors for Aeronautic and Space Applications 2 (1998)
- J. Guerrero-Ibáñez, S. Zeadally, J. Contreras-Castillo, Sensor technologies for intelligent transportation systems. Sensors 18(4), 1212 (2018). https://doi.org/10.3390/s18041212
- H. Long, L. Chan, A. Harley-Trochimczyk, L.E. Luna, Z. Tang et al., 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interface 4(16), 1700217 (2017). https://doi.org/10.1002/admi.201700217
- B. Zhao, C.Y. Li, L.L. Liu, B. Zhou, Q.K. Zhang et al., Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study. Appl. Surf. Sci. 382, 280–287 (2016). https://doi.org/10.1016/j.apsusc.2016.04.158
- X. Chen, Y. Shen, P. Zhou, X. Zhong, G. Li et al., Bimetallic Au/Pd nanoparticles decorated ZnO nanowires for NO2 detection. Sens. Actuators B Chem. 289, 160–168 (2019). https://doi.org/10.1016/j.snb.2019.03.095
- M. Yin, Y. Wang, L. Yu, H. Wang, Y. Zhu et al., Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. J. Alloys Compd. 829, 154471 (2020). https://doi.org/10.1016/j.jallcom.2020.154471
- Y. Xia, J. Wang, J.-L. Xu, X. Li, D. Xie et al., Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces 8(51), 35454–35463 (2016). https://doi.org/10.1021/acsami.6b12501
- H. Tabata, Y. Sato, K. Oi, O. Kubo, M. Katayama, Bias- and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction. ACS Appl. Mater. Interfaces 10(44), 38387–38393 (2018). https://doi.org/10.1021/acsami.8b14667
- J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han et al., Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3(7), 929–933 (2003). https://doi.org/10.1021/nl034220x
- M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
- B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5(1), 8052 (2015). https://doi.org/10.1038/srep08052
- L. Yu, F. Guo, S. Liu, J. Qi, M. Yin et al., Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties. Mater. Lett. 183, 122–126 (2016). https://doi.org/10.1016/j.matlet.2016.07.086
- H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). https://doi.org/10.1002/smll.201101016
- S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung et al., Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9(9), 9314–9321 (2015). https://doi.org/10.1021/acsnano.5b04504
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- W. Yuan, G. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). https://doi.org/10.1039/C3TA11774J
- C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
- M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang et al., Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96(6), 063110 (2010). https://doi.org/10.1063/1.3318263
- J.H. Choi, J. Lee, M. Byeon, T.E. Hong, H. Park et al., Graphene-based gas sensors with high sensitivity and minimal sensor-to-sensor variation. ACS Appl. Nano Mater. 3(3), 2257–2265 (2020). https://doi.org/10.1021/acsanm.9b02378
- D. Li, R.B. Kaner, Graphene-based materials. Science 320(5880), 1170–1171 (2008). https://doi.org/10.1126/science.1158180
- Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu et al., Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro-Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
- R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). https://doi.org/10.1039/C0NR00323A
- H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin et al., From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
- N. Bertram, J. Cordes, Y.D. Kim, G. Ganteför, S. Gemming et al., Nanoplatelets made from MoS2 and WS2. Chem. Phys. Lett. 418(1), 36–39 (2006). https://doi.org/10.1016/j.cplett.2005.10.046
- B. Dubertret, T. Heine, M. Terrones, The rise of two-dimensional materials. Acc. Chem. Res. 48(1), 1–2 (2015). https://doi.org/10.1021/ar5004434
- Y. Han, M.-Y. Li, G.-S. Jung, M.A. Marsalis, Z. Qin et al., Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17(2), 129–133 (2018). https://doi.org/10.1038/nmat5038
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- C. Mai, A. Barrette, Y. Yu, Y.G. Semenov, K.W. Kim et al., Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14(1), 202–206 (2014). https://doi.org/10.1021/nl403742j
- J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross et al., Valleytronics in 2D materials. Nat. Rev. Mater. 1(11), 16055 (2016). https://doi.org/10.1038/natrevmats.2016.55
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Ann. Rev. Mater. Res. 45(1), 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
- D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102(17), 173107 (2013). https://doi.org/10.1063/1.4803920
- B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44(1), 92–96 (2013). https://doi.org/10.1002/jrs.4147
- S.I. Khondaker, M.R. Islam, Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study. J. Phys. Chem. C 120(25), 13801–13806 (2016). https://doi.org/10.1021/acs.jpcc.6b03247
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
- E.H. Hwang, S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77(11), 115449 (2008). https://doi.org/10.1103/PhysRevB.77.115449
- E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias et al., Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105(26), 266601 (2010). https://doi.org/10.1103/PhysRevLett.105.266601
- S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011). https://doi.org/10.1016/j.carbon.2010.09.004
- G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee et al., Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10(4), 1002–1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
- S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
- J. Ma, M. Zhang, L. Dong, Y. Sun, Y. Su et al., Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 9(7), 075207 (2019). https://doi.org/10.1063/1.5099511
- F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012). https://doi.org/10.1021/jz300358t
- Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu et al., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10), 9110–9117 (2012). https://doi.org/10.1021/nn303352k
- T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3), 261–270 (1992). https://doi.org/10.1016/0039-6028(92)90183-7
- J. Coraux, A.T. N‘Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008). https://doi.org/10.1021/nl0728874
- W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8(5), 163 (2017). https://doi.org/10.3390/mi8050163
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- A. Voshell, M. Terrones, M. Rana, Review of optical properties of two-dimensional transition metal dichalcogenides. SPIE 107540L (2018) https://doi.org/10.1117/12.2323132
- T.C. Berkelbach, D.R. Reichman, Optical and excitonic properties of atomically thin transition-metal dichalcogenides. Annu. Rev. Condens. Matter Phys. 9, 379–396 (2018). https://doi.org/10.1146/annurev-conmatphys-033117-054009
- P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu et al., Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 30(31), 1801729 (2018). https://doi.org/10.1002/adma.201801729
- J. Deng, L. Zong, M. Zhu, F. Liao, Y. Xie et al., MoS2/HfO2/silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 29(46), 1906242 (2019). https://doi.org/10.1002/adfm.201906242
- N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang et al., Light-driven WSe2–ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 7(1), 1901637 (2020). https://doi.org/10.1002/advs.201901637
- K.J. Berean, J.Z. Ou, T. Daeneke, B.J. Carey, E.P. Nguyen et al., 2D MoS2 PDMS nanocomposites for NO2 separation. Small 11(38), 5035–5040 (2015). https://doi.org/10.1002/smll.201501129
- H. Khan, A. Zavabeti, J.Z. Ou, T. Daeneke, Y. Li et al., Two dimensional tungsten oxide nanosheets with unprecedented selectivity and sensitivity to NO2. 2017 IEEE Sensor 1–3 (2017). https://doi.org/10.1109/ICSENS.2017.8234283
- X. Chen, X. Chen, Y. Han, C. Su, M. Zeng et al., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology 30(44), 445503 (2019). https://doi.org/10.1088/1361-6528/ab35ec
- Y. Han, Y. Liu, C. Su, S. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
- Z. Yang, C. Su, S. Wang, Y. Han, X. Chen et al., Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology 31(7), 075501 (2019). https://doi.org/10.1088/1361-6528/ab5271
- R. Guo, Y. Han, C. Su, X. Chen, M. Zeng et al., Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B Chem. 300, 127013 (2019). https://doi.org/10.1016/j.snb.2019.127013
- S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). https://doi.org/10.3390/electronics4030651
- M. Kumar, A.V. Agrawal, M. Moradi, R. Yousefi, Chapter 6 - Nanosensors for gas sensing applications, in eds. by A. Abdeltif, A.A. Assadi, P. Nguyen-Tri, et al., Nanomaterials for Air Remediation (Elsevier, 2020), pp. 107–130. https://doi.org/10.1016/B978-0-12-818821-7.00006-3
- S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
- K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
- H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
- Z. Feng, Y. Xie, J. Chen, Y. Yu, S. Zheng et al., Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 4(2), 025018 (2017). https://doi.org/10.1021/nl301702r
- B. Cho, A.R. Kim, D.J. Kim, H.-S. Chung, S.Y. Choi et al., Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 8(30), 19635–19642 (2016). https://doi.org/10.1021/acsami.6b05943
- K.P. Gattu, K. Ghule, A.A. Kashale, V.B. Patil, D.M. Phase et al., Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Adv. 5(89), 72849–72856 (2015). https://doi.org/10.1039/C5RA13513C
- D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS2 electronics. Acc. Chem. Res. 48(1), 100–110 (2015). https://doi.org/10.1021/ar500274q
- P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190(1), 128–143 (2000). https://doi.org/10.1006/jcat.1999.2743
- W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng et al., Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
- G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
- K. Kalantar-zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016). https://doi.org/10.1021/acssensors.5b00142
- F. Wypych, R. Schöllhorn, 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. (1992). https://doi.org/10.1039/C39920001386
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- W. Zhao, R.M. Ribeiro, G. Eda, Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48(1), 91–99 (2015). https://doi.org/10.1021/ar500303m
- S. Zhang, J. Liu, K.H. Ruiz, R. Tu, M. Yang et al., Morphological evolution of vertically standing molybdenum disulfide nanosheets by chemical vapor deposition. Materials 11(4), 631 (2018). https://doi.org/10.3390/ma11040631
- X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu et al., Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4(1), 1776 (2013). https://doi.org/10.1038/ncomms2803
- B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.-H. Kim et al., Chemical sensing of 2D Graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7(30), 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
- R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014). https://doi.org/10.1021/nn405938z
- K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85(11), 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- A.V. Agrawal, N. Kumar, S. Venkatesan, A. Zakhidov, C. Manspeaker et al., Controlled growth of MoS2 flakes from in-plane to edge-enriched 3d network and their surface-energy studies. ACS Appl. Nano Mater. 1(5), 2356–2367 (2018). https://doi.org/10.1021/acsanm.8b00467
- B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 161403 (2012). https://doi.org/10.1103/PhysRevB.85.161403
- Y.K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song et al., High performance and transparent multilayer MoS2 transistors: tuning Schottky barrier characteristics. AIP Adv. 6(5), 055026 (2016). https://doi.org/10.1063/1.4953062
- S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
- Q. Zhang, W. Bao, A. Gong, T. Gong, D. Ma et al., A highly sensitive, highly transparent, gel-gated MoS2 phototransistor on biodegradable nanopaper. Nanoscale 8(29), 14237–14242 (2016). https://doi.org/10.1039/C6NR01534D
- Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
- J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17(41), 27742–27749 (2015). https://doi.org/10.1039/C5CP04576B
- J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013–4017 (2012). https://doi.org/10.1021/nl301335q
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8(1), 425 (2013). https://doi.org/10.1186/1556-276x-8-425
- H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
- R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
- A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang et al., Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens. 3(5), 998–1004 (2018). https://doi.org/10.1021/acssensors.8b00146
- Y. Zhou, C. Zou, X. Lin, Y. Guo, UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature. Appl. Phys. Lett. 113(8), 082103 (2018)
- J. Guo, R. Wen, J. Zhai, Z.L. Wang, Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Sci. Bull. 64(2), 128–135 (2019). https://doi.org/10.1016/j.scib.2018.12.009
- Y. Xia, C. Hu, S. Guo, L. Zhang, M. Wang et al., Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 3(1), 665–673 (2020). https://doi.org/10.1021/acsanm.9b02180
- J. Lu, J.H. Lu, H. Liu, B. Liu, L. Gong et al., Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 11(15), 1792–1800 (2015). https://doi.org/10.1002/smll.201402591
- A.J. Cohen, P. Mori-Sánchez, W. Yang, Challenges for density functional theory. Chem. Rev. 112(1), 289–320 (2012). https://doi.org/10.1021/cr200107z
- R.O. Jones, Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87(3), 897–923 (2015). https://doi.org/10.1103/RevModPhys.87.897
- MathSciNet
- S. Tang, Z. Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J. Chem. Phys. 134(4), 044710 (2011). https://doi.org/10.1063/1.3541249
- D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi et al., Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7(7), 465–471 (2012). https://doi.org/10.1038/nnano.2012.71
- T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin et al., Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 13(4), 1757–1763 (2013). https://doi.org/10.1021/nl4003443
- L.-L. Li, J. Ji, R. Fei, C.-Z. Wang, Q. Lu et al., A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012). https://doi.org/10.1002/adfm.201200166
- J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622
- S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83(11), 2280–2282 (2003). https://doi.org/10.1063/1.1610251
- O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes. Sens. Actuators B Chem. 93(1), 338–344 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
- S. Wang, D. Huang, S. Xu, W. Jiang, T. Wang et al., Two-dimensional NiO nanosheets with enhanced room temperature NO2 sensing performance via Al doping. Phys. Chem. Chem. Phys. 19(29), 19043–19049 (2017). https://doi.org/10.1039/C7CP03259E
- X. Chen, S. Wang, C. Su, Y. Han, C. Zou et al., Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B Chem. 305, 127393 (2020). https://doi.org/10.1016/j.snb.2019.127393
- N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia et al., Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4(1), 5209 (2014). https://doi.org/10.1038/srep05209
- B. Li, S. Yang, N. Huo, Y. Li, J. Yang et al., Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Adv. 4(50), 26407–26412 (2014). https://doi.org/10.1039/C4RA01632G
- Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng et al., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009). https://doi.org/10.1088/0957-484/20/18/185504
- G. Liu, Y. Lin, Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 74(3), 308–317 (2007). https://doi.org/10.1016/j.talanta.2007.10.014
- G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317–5338 (2012). https://doi.org/10.1021/cr300020c
- D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors 8(3), 1400–1458 (2008). https://doi.org/10.3390/s80314000
- K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012). https://doi.org/10.1021/cr2001178
- C. Zou, J. Hu, Y. Su, F. Shao, Z. Tao et al., Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front. Mater. 6, 195 (2019). https://doi.org/10.3389/fmats.2019.00195
- R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nano Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
- J. Xu, Y.A. Shun, Q. Pan, J. Qin, Sensing characteristics of double layer film of ZnO. Sens. Actuators B Chem. 66(1), 161–163 (2000). https://doi.org/10.1016/S0925-4005(00)00327-0
- J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases. ACS Appl. Mater. Interfaces 11(27), 24172–24183 (2019). https://doi.org/10.1021/acsami.9b07208
- J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19(9), 6313–6329 (2017). https://doi.org/10.1039/C6CP07799D
- M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, 13.08 - Developments in semiconducting oxide-based gas-sensing materials, in by eds. S. Hashmi, G.F. Batalha, C.J. Van Tyne, et al., Comprehensive Materials Processing (Elsevier, 2014), pp. 205–219. https://doi.org/10.1016/B978-0-08-096532-1.01307-8
- V. Krivetsky, A. Ponzoni, E. Comini, M. Rumyantseva, A. Gaskov, Selective modified SnO2-based materials for gas sensors arrays. Procedia Chem. 1(1), 204–207 (2009). https://doi.org/10.1016/j.proche.2009.07.051
- E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81(10), 1869–1871 (2002). https://doi.org/10.1063/1.1504867
- J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun et al., Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 10(15), 7210–7217 (2018). https://doi.org/10.1039/C8NR01379A
- M.D. Ganji, N. Sharifi, M. Ghorbanzadeh Ahangari, A. Khosravi, Density functional theory calculations of hydrogen molecule adsorption on monolayer molybdenum and tungsten disulfide. Phys. E Low Dimens. Syst. Nanostruct. 57, 28–34 (2014). https://doi.org/10.1016/j.physe.2013.10.039
- M. Hijazi, V. Stambouli, M. Rieu, G. Tournier, C. Pijolat et al., Sensitive and selective ammonia gas sensor based on molecularly modified SnO2. Multidiscip. Digit. Publ. Inst. Proc. 1(4), 399 (2017). https://doi.org/10.3390/proceedings1040399
- Y. Zhong, W. Li, X. Zhao, X. Jiang, S. Lin et al., High-response room-temperature NO2 sensor and ultrafast humidity sensor based on SnO2 with rich oxygen vacancy. ACS Appl. Mater. Interfaces 11(14), 13441–13449 (2019). https://doi.org/10.1021/acsami.9b01737
- T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19(33), 332001 (2008). https://doi.org/10.1088/0957-4484/19/33/332001
- H. Choi, J.S. Choi, J.-S. Kim, J.-H. Choe, K.H. Chung et al., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10(18), 3685–3691 (2014). https://doi.org/10.1002/smll.201400434
- Z. Zanolli, J.C. Charlier, Defective carbon nanotubes for single-molecule sensing. Phys. Rev. B 80(15), 155447 (2009). https://doi.org/10.1103/PhysRevB.80.155447
- S. Santucci, S. Picozzi, F.D. Gregorio, L. Lozzi, C. Cantalini et al., NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. J. Chem. Phys. 119(20), 10904–10910 (2003). https://doi.org/10.1063/1.1619948
- H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao et al., NO2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid. Sens. Actuators B Chem. 176, 166–173 (2013). https://doi.org/10.1016/j.snb.2012.09.060
- J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu et al., NO2 sensing performance of SnO2 hollow-sphere sensor. Sens. Actuators B Chem. 135(2), 610–617 (2009). https://doi.org/10.1016/j.snb.2008.09.026
- Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao et al., Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sens. Actuators B Chem. 227, 419–426 (2016). https://doi.org/10.1016/j.snb.2015.11.051
- M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces 7(6), 3571–3580 (2015). https://doi.org/10.1021/am507397z
- Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.J. Choi, J.-H. Park et al., Novel fabrication of a SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9), 095508 (2008). https://doi.org/10.1088/0957-4484/19/9/095508
- W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu et al., SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21(24), 245605 (2010). https://doi.org/10.1088/0957-4484/21/24/245605
- R. Leghrib, A. Felten, J.J. Pireaux, E. Llobet, Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films 520(3), 966–970 (2011). https://doi.org/10.1016/j.tsf.2011.04.186
- Z. Wang, Y. Zhang, S. Liu, T. Zhang, Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators B Chem. 222, 893–903 (2016). https://doi.org/10.1016/j.snb.2015.09.027
- S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 510(1), 119–124 (2012). https://doi.org/10.1016/j.jallcom.2011.09.006
- S. Liu, Z. Wang, Y. Zhang, J. Li, T. Zhang, Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sens. Actuators B Chem. 228, 134–143 (2016). https://doi.org/10.1016/j.snb.2016.01.023
- Z. Zhang, M. Xu, L. Liu, X. Ruan, J. Yan et al., Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators B Chem. 257, 714–727 (2018). https://doi.org/10.1016/j.snb.2017.10.190
- V.V. Quang, N.V. Dung, N.S. Trong, N.D. Hoa, N.V. Duy et al., Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105(1), 013107 (2014). https://doi.org/10.1063/1.4887486
- A. Sharma, M. Tomar, V. Gupta, WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2. Sens. Actuators B Chem. 176, 675–684 (2013). https://doi.org/10.1016/j.snb.2012.09.094
- J.-H. Kim, A. Katoch, S.-H. Kim, S.S. Kim, Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core–shell nanowires. ACS Appl. Mater. Interfaces 7(28), 15351–15358 (2015). https://doi.org/10.1021/acsami.5b03224
- J. Sun, P. Sun, D. Zhang, J. Xu, X. Liang et al., Growth of SnO2 nanowire arrays by ultrasonic spray pyrolysis and their gas sensing performance. RSC Adv. 4(82), 43429–43435 (2014). https://doi.org/10.1039/C4RA05682E
- Y.J. Kwon, S.Y. Kang, P. Wu, Y. Peng, S.S. Kim et al., Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 8(21), 13646–13658 (2016). https://doi.org/10.1021/acsami.6b01619
- J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart et al., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9(10), 10313–10323 (2015). https://doi.org/10.1021/acsnano.5b04343
- T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11(2), 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y
- H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi et al., Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces 9(37), 31667–31682 (2017). https://doi.org/10.1021/acsami.7b02533
- J. Partridge, M. Field, J. Peng, A. Sadek, K. Kalantar-Zadeh et al., Nanostructured SnO2 films prepared from evaporated Sn and their application as gas sensors. Nanotechnology 19(12), 125504 (2008). https://doi.org/10.1088/0957-4484/19/12/125504
- S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens. Actuators B Chem. 211, 318–324 (2015). https://doi.org/10.1016/j.snb.2015.01.127
- H. Zhang, Y. Wang, X. Zhu, Y. Li, W. Cai, Bilayer Au nanoparticle-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sens. Actuators B Chem. 280, 192–200 (2019). https://doi.org/10.1016/j.snb.2018.10.065
- I. Kortidis, H.C. Swart, S.S. Ray, D.E. Motaung, Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods. Sens. Actuators B Chem. 285, 92–107 (2019). https://doi.org/10.1016/j.snb.2019.01.007
- S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han et al., Design of Au@WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuators B Chem. 282, 917–926 (2019). https://doi.org/10.1016/j.snb.2018.11.142
- Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceram. Int. 45(2, Part A), 1513–1522 (2019). https://doi.org/10.1016/j.ceramint.2018.10.022
- Y. Song, F. Chen, Y. Zhang, S. Zhang, F. Liu et al., Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers. Sens. Actuators B Chem. 287, 191–198 (2019). https://doi.org/10.1016/j.snb.2019.01.146
- R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J. Hazard. Mater. 370, 126–137 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.016
- H.-Y. Lee, Y.-C. Heish, C.-T. Lee, High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J. Alloys Compd. 773, 950–954 (2019). https://doi.org/10.1016/j.jallcom.2018.09.290
- M.S. Choi, J.H. Bang, A. Mirzaei, W. Oum, H.G. Na et al., Promotional effects of ZnO-branching and Au-functionalization on the surface of SnO2 nanowires for NO2 sensing. J. Alloys Compd. 786, 27–39 (2019). https://doi.org/10.1016/j.jallcom.2019.01.311
- H. Ma, L. Yu, X. Yuan, Y. Li, C. Li et al., Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 782, 1121–1126 (2019). https://doi.org/10.1016/j.jallcom.2018.12.180
- A. Giampiccolo, D.M. Tobaldi, S.G. Leonardi, B.J. Murdoch, M.P. Seabra et al., Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B Environ. 243, 183–194 (2019). https://doi.org/10.1016/j.apcatb.2018.10.032
- M. Penza, R. Rossi, M. Alvisi, G. Cassano, M.A. Signore et al., Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B Chem. 135(1), 289–297 (2008). https://doi.org/10.1016/j.snb.2008.08.024
- M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 166–167, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
- H.Y. Jeong, D.-S. Lee, H.K. Choi, D.H. Lee, J.-E. Kim et al., Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96(21), 213105 (2010). https://doi.org/10.1063/1.3432446
- H. Zhang, Q. Li, J. Huang, Y. Du, S.C. Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors 16(7), 1152 (2016). https://doi.org/10.3390/s16071152
- X. Liu, J. Cui, J. Sun, X. Zhang, 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 4(43), 22601–22605 (2014). https://doi.org/10.1039/C4RA02453B
- A. Aziz, N. Tiwale, S.A. Hodge, S.J. Attwood, G. Divitini et al., Core–shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 Gas sensing. ACS Appl. Mater. Interfaces 10(50), 43817–43823 (2018). https://doi.org/10.1021/acsami.8b17149
- N. Ramgir, R. Bhusari, N.S. Rawat, S.J. Patil, A.K. Debnath et al., TiO2/ZnO heterostructure nanowire based NO2 sensor. Mater. Sci. Semicond. Process. 106, 104770 (2020). https://doi.org/10.1016/j.mssp.2019.104770
- A. Sharma, M. Tomar, V. Gupta, Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J. Mater. Chem. 22(44), 23608–23616 (2012). https://doi.org/10.1039/C2JM35172B
- M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93(26), 263103 (2008). https://doi.org/10.1063/1.3046726
- M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi et al., On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B Chem. 138(1), 168–173 (2009). https://doi.org/10.1016/j.snb.2009.02.008
- H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B Chem. 190, 472–478 (2014). https://doi.org/10.1016/j.snb.2013.08.067
- S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan et al., Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 23(20), 205501 (2012). https://doi.org/10.1088/0957-4484/23/20/205501
- N.G. Cho, D.J. Yang, M.-J. Jin, H.-G. Kim, H.L. Tuller et al., Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators B Chem. 160(1), 1468–1472 (2011). https://doi.org/10.1016/j.snb.2011.07.035
- J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia et al., ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens. Actuators B Chem. 139(2), 411–417 (2009). https://doi.org/10.1016/j.snb.2009.03.014
- E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim et al., High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B Chem. 141(1), 239–243 (2009). https://doi.org/10.1016/j.snb.2009.06.031
- J.H. Jun, J. Yun, K. Cho, I.-S. Hwang, J.-H. Lee et al., Necked ZnO nanoparticle-based NO2 sensors with high and fast response. Sens. Actuators B Chem. 140(2), 412–417 (2009). https://doi.org/10.1016/j.snb.2009.05.019
- Z.U. Abideen, A. Katoch, J.-H. Kim, Y.J. Kwon, H.W. Kim et al., Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens. Actuators B Chem. 221, 1499–1507 (2015). https://doi.org/10.1016/j.snb.2015.07.120
- R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 152, 189–191 (2015). https://doi.org/10.1016/j.matlet.2015.03.112
- X. Chen, Y. Shen, P. Zhou, S. Zhao, X. Zhong et al., NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sens. Actuators B Chem. 280, 151–161 (2019). https://doi.org/10.1016/j.snb.2018.10.063
- V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature. Nanoscale Res. Lett. 9(1), 467–467 (2014). https://doi.org/10.1186/1556-276X-9-467
- A.V. Kolobov, J. Tominaga, From 3D to 2D: fabrication methods. Two-Dimensional Transition-Metal Dichalcogenides (Springer International Publishing, 2016), pp. 79–107. https://doi.org/10.1007/978-3-319-31450-1_4
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
- R.-L. Chu, G.-B. Liu, W. Yao, X. Xu, D. Xiao et al., Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B 89(15), 155317 (2014). https://doi.org/10.1103/PhysRevB.89.155317
- K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25(46), 6699–6702 (2013). https://doi.org/10.1002/adma.201303230
- R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MoS2 nanowires network. Appl. Phys. Lett. 112(5), 053502 (2018). https://doi.org/10.1063/1.5019296
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
- R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. 2(9), 092516 (2014). https://doi.org/10.1063/1.4896077
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with monolayer MoS2. Nano Lett. 13(2), 668–673 (2013). https://doi.org/10.1021/nl3043079
- S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013). https://doi.org/10.1021/nl4011172
- Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang et al., Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5(1), 18596 (2015). https://doi.org/10.1038/srep18596
- L. Zhan, W. Wan, Z. Zhu, Y. Xu, T.-M. Shih et al., Centimeter-scale nearly single-crystal monolayer MoS2 via self-limiting vapor deposition epitaxy. J. Phys. Chem. C 121(8), 4703–4707 (2017). https://doi.org/10.1021/acs.jpcc.6b12785
- A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale 8(5), 3008–3018 (2016). https://doi.org/10.1039/C5NR07401K
- X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14(2), 464–472 (2014). https://doi.org/10.1021/nl4033704
- H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar et al., Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14(4), 1909–1913 (2014). https://doi.org/10.1021/nl4046922
- S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden et al., Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). https://doi.org/10.1021/nn4002038
- J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). https://doi.org/10.1021/nn503211t
- H. Ago, H. Endo, P. Solís-Fernández, R. Takizawa, Y. Ohta et al., Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces 7(9), 5265–5273 (2015). https://doi.org/10.1021/am508569m
- J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu et al., Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8(6), 6024–6030 (2014). https://doi.org/10.1021/nn5020819
- S. Najmaei, J. Yuan, J. Zhang, P. Ajayan, J. Lou, Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 48(1), 31–40 (2015). https://doi.org/10.1021/ar500291j
- L. Zhang, K. Liu, A.B. Wong, J. Kim, X. Hong et al., Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14(11), 6418–6423 (2014). https://doi.org/10.1021/nl502961e
- L. Chen, B. Liu, M. Ge, Y. Ma, A.N. Abbas et al., Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9(8), 8368–8375 (2015). https://doi.org/10.1021/acsnano.5b03043
- A. Roy, R. Ghosh, A. Rai, A. Sanne, K. Kim et al., Intra-domain periodic defects in monolayer MoS2. Appl. Phys. Lett. 110(20), 201905 (2017). https://doi.org/10.1063/1.4983789
- X. Zeng, H. Hirwa, M. Ortel, H.C. Nerl, V. Nicolosi et al., Growth of large sized two-dimensional MoS2 flakes in aqueous solution. Nanoscale 9(19), 6575–6580 (2017). https://doi.org/10.1039/C7NR00701A
- A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased Flake Size. Chem. Mater. 24(12), 2414–2421 (2012). https://doi.org/10.1021/cm301515z
- N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim et al., Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8(7), 6902–6910 (2014). https://doi.org/10.1021/nn5016242
- Z. Dai, W. Jin, M. Grady, J.T. Sadowski, J.I. Dadap et al., Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: a selected area low energy electron diffraction study. Surf. Sci. 660, 16–21 (2017). https://doi.org/10.1016/j.susc.2017.02.005
- D.L.C. Ky, B.-C. Tran Khac, C.T. Le, Y.S. Kim, K.-H. Chung, Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4), 395–406 (2018). https://doi.org/10.1007/s40544-017-0172-8
- G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró et al., Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5(1), 14714 (2015). https://doi.org/10.1038/srep14714
- Y.-K. Huang, J.D. Cain, L. Peng, S. Hao, T. Chasapis et al., Evaporative thinning: a facile synthesis method for high quality ultrathin layers of 2D crystals. ACS Nano 8(10), 10851–10857 (2014). https://doi.org/10.1021/nn504664p
- D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13(3), 1341–1347 (2013). https://doi.org/10.1021/nl400258t
- M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg et al., One-dimensional metallic edge states in MoS. Phys. Rev. Lett. 87(19), 196803 (2001). https://doi.org/10.1103/PhysRevLett.87.196803
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone et al., Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207–211 (2013). https://doi.org/10.1038/nmat3505
- S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944–5948 (2013). https://doi.org/10.1021/nl403036h
- A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson et al., Electrical control of optical properties of monolayer MoS2. Solid State Commun. 155, 49–52 (2013). https://doi.org/10.1016/j.ssc.2012.11.010
- H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
- S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13(6), 2831–2836 (2013). https://doi.org/10.1021/nl4011172
- G. Finkelstein, H. Shtrikman, I. Bar-Joseph, Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 74(6), 976–979 (1995). https://doi.org/10.1103/PhysRevLett.74.976
- A.V. Agrawal, K. Kaur, M. Kumar, Interfacial study of vertically aligned n-type MoS2 flakes heterojunction with p-type Cu-Zn-Sn-S for self-powered, fast and high performance broadband photodetector. Appl. Surf. Sci. 514, 145901 (2020). https://doi.org/10.1016/j.apsusc.2020.145901
- T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical h2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007). https://doi.org/10.1126/science.1141483
- C. Kim, J.-C. Park, S.Y. Choi, Y. Kim, S.-Y. Seo et al., Self-formed channel devices based on vertically grown 2d materials with large-surface-area and their potential for chemical sensor applications. Small 14(15), 1704116 (2018). https://doi.org/10.1002/smll.201704116
- Y.-S. Shim, K.C. Kwon, J.M. Suh, K.S. Choi, Y.G. Song et al., Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor. ACS Appl. Mater. Interfaces 10(37), 31594–31602 (2018). https://doi.org/10.1021/acsami.8b08114
- J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11(11), 963–969 (2012). https://doi.org/10.1038/nmat3439
- L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang et al., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9(6), 6478–6483 (2015). https://doi.org/10.1021/acsnano.5b02188
- A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, Z. Zhu et al., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111(9), 093102 (2017). https://doi.org/10.1063/1.5000825
- A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. Small 10(8), 1555–1565 (2014). https://doi.org/10.1002/smll.201302818
- M.A. Uddin, A.K. Singh, T.S. Sudarshan, G. Koley, Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity. Nanotechnology 25(12), 125501 (2014). https://doi.org/10.1088/0957-4484/25/12/125501
- A.N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong et al., Black phosphorus gas sensors. ACS Nano 9(5), 5618–5624 (2015). https://doi.org/10.1021/acsnano.5b01961
- Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials: ohmic, Schottky, and p–n heterojunctions. ACS Nano 10(5), 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
- G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009). https://doi.org/10.1088/0957-4484/20/44/445502
- M. Zhu, X. Li, S. Chung, L. Zhao, X. Li et al., Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 84, 138–145 (2015). https://doi.org/10.1016/j.carbon.2014.12.008
- Metal-Semiconductor Contacts (Ed.), Physics of Semiconductor Devices (2006), pp. 134–196. https://doi.org/10.1002/9780470068328.ch3
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. Proc. Natl. Aca. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh et al., Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 94(19), 191103 (2009). https://doi.org/10.1063/1.3133358
- T.-Y. Wei, P.-H. Yeh, S.-Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 131(48), 17690–17695 (2009). https://doi.org/10.1021/ja907585c
- S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, Defect-dominated doping and contact resistance in MoS2. ACS Nano 8(3), 2880–2888 (2014). https://doi.org/10.1021/nn500044q
- Y.Y. Illarionov, T. Knobloch, M. Waltl, G. Rzepa, A. Pospischil et al., Energetic mapping of oxide traps in MoS2 field-effect transistors. 2D Mater. 4(2), 025108 (2017). https://doi.org/10.1088/2053-1583/aa734a
- M.C. Hersam, Defects at the two-dimensional limit. J. Phys. Chem. Lett. 6(14), 2738–2739 (2015). https://doi.org/10.1021/acs.jpclett.5b01218
- F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m
- P. Vancsó, G.Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim et al., The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6(1), 29726 (2016). https://doi.org/10.1038/srep29726
- H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi et al., Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100(12), 123104 (2012). https://doi.org/10.1063/1.3696045
- K. Barthelmi, J. Klein, A. Hötger, L. Sigl, F. Sigger et al., Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117(7), 070501 (2020). https://doi.org/10.1063/5.0018557
- B. Stampfer, F. Zhang, Y.Y. Illarionov, T. Knobloch, P. Wu et al., Characterization of single defects in ultrascaled MoS2 field-effect transistors. ACS Nano 12(6), 5368–5375 (2018). https://doi.org/10.1021/acsnano.8b00268
- G. Lee, G. Yang, A. Cho, J.W. Han, J. Kim, Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys. Chem. Chem. Phys. 18(21), 14198–14204 (2016). https://doi.org/10.1039/C5CP04422G
- B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.H. Bae et al., The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13(5), 1962–1968 (2013). https://doi.org/10.1021/nl304734g
- H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75(6), 062501 (2012). https://doi.org/10.1088/0034-4885/75/6/062501
- Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo et al., Understanding dopant and defect effect on H2S sensing performances of graphene: a first-principles study. Comput. Mater. Sci. 69, 222–228 (2013). https://doi.org/10.1016/j.commatsci.2012.11.048
- F.A. Villamena, Chapter 2—chemistry of reactive species, in ed. by F.A. Villamena, Reactive Species Detection in Biology (Elsevier, 2017), pp. 13–64. https://doi.org/10.1016/B978-0-12-420017-3.00005-0
- O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008). https://doi.org/10.1103/PhysRevB.77.125416
- H. Li, M. Huang, G. Cao, Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. Phys. Chem. Chem. Phys. 18(22), 15110–15117 (2016). https://doi.org/10.1039/C6CP01362G
- H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4(1), 2642 (2013). https://doi.org/10.1038/ncomms3642
- D. Liu, Y. Guo, L. Fang, J. Robertson, Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103(18), 183113 (2013). https://doi.org/10.1063/1.4824893
- H.G. Rosa, L. Junpeng, L.C. Gomes, M.J.L.F. Rodrigues, S.C. Haur et al., Second-harmonic spectroscopy for defects engineering monitoring in transition metal dichalcogenides. Adv. Opt. Mater. 6(5), 1701327 (2018). https://doi.org/10.1002/adom.201701327
- M.P.K. Sahoo, J. Wang, Y. Zhang, T. Shimada, T. Kitamura, Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J. Phys. Chem. C 120(26), 14113–14121 (2016). https://doi.org/10.1021/acs.jpcc.6b03284
- Y. Linghu, C. Wu, Gas molecules on defective and nonmetal-doped MoS2 monolayers. J. Phys. Chem. C 124(2), 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
- Y. Linghu, C. Wu, Gas molecules on defective and nonmetal doped MoS2 monolayers. J. Phys. Chem. C 124(2), 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
- D. Zhao, X. Fan, Z. Luo, Y. An, Y. Hu, Enhanced gas-sensing performance of graphene by doping transition metal atoms: a first-principles study. Phys. Lett. A 382(40), 2965–2973 (2018). https://doi.org/10.1016/j.physleta.2018.06.046
- H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88(3), 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
- Y. Jing, X. Tan, Z. Zhou, P. Shen, Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer. J. Mater. Chem. A 2(40), 16892–16897 (2014). https://doi.org/10.1039/C4TA03660C
- J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park et al., Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14(12), 6976–6982 (2014). https://doi.org/10.1021/nl503251h
- S. Qin, W. Lei, D. Liu, Y. Chen, In-situ and tunable nitrogen-doping of MoS2 nanosheets. Sci. Rep. 4(1), 7582 (2014). https://doi.org/10.1038/srep07582
- B.B. Xiao, P. Zhang, L.P. Han, Z. Wen, Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction. Appl. Surf. Sci. 354, 221–228 (2015). https://doi.org/10.1016/j.apsusc.2014.12.134
- J. Dai, J. Yuan, Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys. Rev. B 81(16), 165414 (2010). https://doi.org/10.1103/PhysRevB.81.165414
- Y.-H. Lu, M. Zhou, C. Zhang, Y.-P. Feng, Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113(47), 20156–20160 (2009). https://doi.org/10.1021/jp908829m
- Y. Fan, J. Zhang, Y. Qiu, J. Zhu, Y. Zhang et al., A DFT study of transition metal (Fe Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption. Comput. Mater. Sci. 138, 255–266 (2017). https://doi.org/10.1016/j.commatsci.2017.06.029
- H. Luo, Y. Cao, J. Zhou, J. Feng, J. Cao et al., Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem. Phys. Lett. 643, 27–33 (2016). https://doi.org/10.1016/j.cplett.2015.10.077
- J. Zhu, H. Zhang, Y. Tong, L. Zhao, Y. Zhang et al., First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 419, 522–530 (2017). https://doi.org/10.1016/j.apsusc.2017.04.157
- J. Song, H. Lou, Improvement of gas-adsorption performances of Ag-functionalized monolayer MoS2 surfaces: a first-principles study. J. Appl. Phys. 123(17), 175303 (2018). https://doi.org/10.1063/1.5022829
- O. Leenaerts, B. Partoens, F.M. Peeters, Paramagnetic adsorbates on graphene: a charge transfer analysis. Appl. Phys. Lett. 92(24), 243125 (2008). https://doi.org/10.1063/1.2949753
- J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008). https://doi.org/10.1021/nl8013007
- J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121(50), 11720–11732 (1999). https://doi.org/10.1021/ja991644d
- Y. Kim, S.-K. Kang, N.-C. Oh, H.-D. Lee, S.-M. Lee et al., Improved sensitivity in schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 11(42), 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
- R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta et al., Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29(46), 464001 (2018). https://doi.
References
T.W. Ashenden, T.A. Mansfield, Extreme pollution sensitivity of grasses when SO2 and NO2 are present in the atmosphere together. Nature 273(5658), 142–143 (1978). https://doi.org/10.1038/273142a0
L. Calderón-Garcidueñas, B. Azzarelli, H. Acuna, R. Garcia, T.M. Gambling et al., Air pollution and brain damage. Toxicol. Pathol. 30(3), 373–389 (2002). https://doi.org/10.1080/01926230252929954
R.J. van der A, H.J. Eskes, K.F. Boersma, T.P.C. van Noije, M. Van Roozendael et al., Trends, seasonal variability and dominant NOx source derived from a ten-year record of NO2 measured from space. J. Geophys. Res. Atmos. 113(D4), 302 (2008). https://doi.org/10.1029/2007JD009021
J.G. Speight, Chapter one—inorganic chemicals in the environment, in ed. by J. Speight Environmental Inorganic Chemistry for Engineers (Butterworth-Heinemann, 2017), pp. 1–49. https://doi.org/10.1016/B978-0-12-849891-0.00001-1
D. Fowler, J.N. Cape, I.D. Leith, I.S. Paterson, J.W. Kinnaird et al., Rainfall acidity in northern Britain. Nature 297(5865), 383–385 (1982). https://doi.org/10.1038/297383a0
N.M. Elsayed, Toxicity of nitrogen dioxide: an introduction. Toxicology 89(3), 161–174 (1994). https://doi.org/10.1016/0300-483X(94)90096-5
J.A. Burney, The downstream air pollution impacts of the transition from coal to natural gas in the United States. Nat. Sustain. 3(2), 152–160 (2020). https://doi.org/10.1038/s41893-019-0453-5
L. Meier, P. Tanskanen, L. Heng, G.H. Lee, F. Fraundorfer et al., PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robots 33(1), 21–39 (2012). https://doi.org/10.1007/s10514-012-9281-4
C. Li, L. Yu, W. He, Y. Cheng, G. Song, Development of local emissions rate model for light-duty gasoline vehicles: Beijing field data and patterns of emissions rates in EPA simulator. Transp. Res. Record. 2627(1), 67–76 (2017). https://doi.org/10.3141/2627-08
A. Richter, J.P. Burrows, H. Nüß, C. Granier, U. Niemeier, Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437(7055), 129–132 (2005). https://doi.org/10.1038/nature04092
R.J. van der A, D.H.M.U. Peters, H. Eskes, K.F. Boersma, M. Van Roozendael et al., Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. 111(D12), D12317 (2006). https://doi.org/10.1029/2005jd006594
P. Castellanos, K.F. Boersma, Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Sci. Rep. 2(1), 265 (2012). https://doi.org/10.1038/srep00265
P.K. Hopke, Contemporary threats and air pollution. Atmos. Environ. 43(1), 87–93 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.053
C. Zhang, C. Liu, Q. Hu, Z. Cai, W. Su et al., Satellite UV–Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005–2017. Light Sci. Appl. 8(1), 100 (2019). https://doi.org/10.1038/s41377-019-0210-6
R.G. Derwent, K. Nodopt, Long-range transport and deposition of acidic nitrogen species in north-west Europe. Nature 324(6095), 356–358 (1986). https://doi.org/10.1038/324356a0
J.A. Bernstein, N. Alexis, C. Barnes, I.L. Bernstein, A. Nel et al., Health effects of air pollution. J. Allergy Clin. Immunol. 114(5), 1116–1123 (2004). https://doi.org/10.1016/j.jaci.2004.08.030
D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u
K. Luo, R. Li, W. Li, Z. Wang, X. Ma et al., Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: an exploration of spatial heterogeneity and the district-specific predictors. Sci. Rep. 6(1), 38328 (2016). https://doi.org/10.1038/srep38328
W.H. Organization, World health statistics 2016: monitoring health for the SDGs sustainable development goals (World Health Organization; 2016)
W.H. Organization, Guidelines for drinking-water quality (World Health Organization; 1993)
A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification. Pure Appl. Chem. 63(9), 1247–1250 (1991). https://doi.org/10.1351/pac199163091247
G.W. Hunter, L.-Y. Chen, P.G. Neudeck, D. Knight, C.-C. Liu et al, Chemical Gas Sensors for Aeronautic and Space Applications 2 (1998)
J. Guerrero-Ibáñez, S. Zeadally, J. Contreras-Castillo, Sensor technologies for intelligent transportation systems. Sensors 18(4), 1212 (2018). https://doi.org/10.3390/s18041212
H. Long, L. Chan, A. Harley-Trochimczyk, L.E. Luna, Z. Tang et al., 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interface 4(16), 1700217 (2017). https://doi.org/10.1002/admi.201700217
B. Zhao, C.Y. Li, L.L. Liu, B. Zhou, Q.K. Zhang et al., Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study. Appl. Surf. Sci. 382, 280–287 (2016). https://doi.org/10.1016/j.apsusc.2016.04.158
X. Chen, Y. Shen, P. Zhou, X. Zhong, G. Li et al., Bimetallic Au/Pd nanoparticles decorated ZnO nanowires for NO2 detection. Sens. Actuators B Chem. 289, 160–168 (2019). https://doi.org/10.1016/j.snb.2019.03.095
M. Yin, Y. Wang, L. Yu, H. Wang, Y. Zhu et al., Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. J. Alloys Compd. 829, 154471 (2020). https://doi.org/10.1016/j.jallcom.2020.154471
Y. Xia, J. Wang, J.-L. Xu, X. Li, D. Xie et al., Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces 8(51), 35454–35463 (2016). https://doi.org/10.1021/acsami.6b12501
H. Tabata, Y. Sato, K. Oi, O. Kubo, M. Katayama, Bias- and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction. ACS Appl. Mater. Interfaces 10(44), 38387–38393 (2018). https://doi.org/10.1021/acsami.8b14667
J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han et al., Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3(7), 929–933 (2003). https://doi.org/10.1021/nl034220x
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5(1), 8052 (2015). https://doi.org/10.1038/srep08052
L. Yu, F. Guo, S. Liu, J. Qi, M. Yin et al., Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties. Mater. Lett. 183, 122–126 (2016). https://doi.org/10.1016/j.matlet.2016.07.086
H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). https://doi.org/10.1002/smll.201101016
S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung et al., Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9(9), 9314–9321 (2015). https://doi.org/10.1021/acsnano.5b04504
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
W. Yuan, G. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). https://doi.org/10.1039/C3TA11774J
C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010). https://doi.org/10.1016/j.carbon.2010.01.058
M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang et al., Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96(6), 063110 (2010). https://doi.org/10.1063/1.3318263
J.H. Choi, J. Lee, M. Byeon, T.E. Hong, H. Park et al., Graphene-based gas sensors with high sensitivity and minimal sensor-to-sensor variation. ACS Appl. Nano Mater. 3(3), 2257–2265 (2020). https://doi.org/10.1021/acsanm.9b02378
D. Li, R.B. Kaner, Graphene-based materials. Science 320(5880), 1170–1171 (2008). https://doi.org/10.1126/science.1158180
Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu et al., Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro-Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). https://doi.org/10.1039/C0NR00323A
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin et al., From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
N. Bertram, J. Cordes, Y.D. Kim, G. Ganteför, S. Gemming et al., Nanoplatelets made from MoS2 and WS2. Chem. Phys. Lett. 418(1), 36–39 (2006). https://doi.org/10.1016/j.cplett.2005.10.046
B. Dubertret, T. Heine, M. Terrones, The rise of two-dimensional materials. Acc. Chem. Res. 48(1), 1–2 (2015). https://doi.org/10.1021/ar5004434
Y. Han, M.-Y. Li, G.-S. Jung, M.A. Marsalis, Z. Qin et al., Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17(2), 129–133 (2018). https://doi.org/10.1038/nmat5038
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
C. Mai, A. Barrette, Y. Yu, Y.G. Semenov, K.W. Kim et al., Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14(1), 202–206 (2014). https://doi.org/10.1021/nl403742j
J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross et al., Valleytronics in 2D materials. Nat. Rev. Mater. 1(11), 16055 (2016). https://doi.org/10.1038/natrevmats.2016.55
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Ann. Rev. Mater. Res. 45(1), 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
D. Jariwala, V.K. Sangwan, D.J. Late, J.E. Johns, V.P. Dravid et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102(17), 173107 (2013). https://doi.org/10.1063/1.4803920
B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44(1), 92–96 (2013). https://doi.org/10.1002/jrs.4147
S.I. Khondaker, M.R. Islam, Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study. J. Phys. Chem. C 120(25), 13801–13806 (2016). https://doi.org/10.1021/acs.jpcc.6b03247
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
E.H. Hwang, S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77(11), 115449 (2008). https://doi.org/10.1103/PhysRevB.77.115449
E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias et al., Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105(26), 266601 (2010). https://doi.org/10.1103/PhysRevLett.105.266601
S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011). https://doi.org/10.1016/j.carbon.2010.09.004
G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee et al., Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10(4), 1002–1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
J. Ma, M. Zhang, L. Dong, Y. Sun, Y. Su et al., Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 9(7), 075207 (2019). https://doi.org/10.1063/1.5099511
F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012). https://doi.org/10.1021/jz300358t
Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu et al., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10), 9110–9117 (2012). https://doi.org/10.1021/nn303352k
T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3), 261–270 (1992). https://doi.org/10.1016/0039-6028(92)90183-7
J. Coraux, A.T. N‘Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008). https://doi.org/10.1021/nl0728874
W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8(5), 163 (2017). https://doi.org/10.3390/mi8050163
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
A. Voshell, M. Terrones, M. Rana, Review of optical properties of two-dimensional transition metal dichalcogenides. SPIE 107540L (2018) https://doi.org/10.1117/12.2323132
T.C. Berkelbach, D.R. Reichman, Optical and excitonic properties of atomically thin transition-metal dichalcogenides. Annu. Rev. Condens. Matter Phys. 9, 379–396 (2018). https://doi.org/10.1146/annurev-conmatphys-033117-054009
P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu et al., Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 30(31), 1801729 (2018). https://doi.org/10.1002/adma.201801729
J. Deng, L. Zong, M. Zhu, F. Liao, Y. Xie et al., MoS2/HfO2/silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 29(46), 1906242 (2019). https://doi.org/10.1002/adfm.201906242
N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang et al., Light-driven WSe2–ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 7(1), 1901637 (2020). https://doi.org/10.1002/advs.201901637
K.J. Berean, J.Z. Ou, T. Daeneke, B.J. Carey, E.P. Nguyen et al., 2D MoS2 PDMS nanocomposites for NO2 separation. Small 11(38), 5035–5040 (2015). https://doi.org/10.1002/smll.201501129
H. Khan, A. Zavabeti, J.Z. Ou, T. Daeneke, Y. Li et al., Two dimensional tungsten oxide nanosheets with unprecedented selectivity and sensitivity to NO2. 2017 IEEE Sensor 1–3 (2017). https://doi.org/10.1109/ICSENS.2017.8234283
X. Chen, X. Chen, Y. Han, C. Su, M. Zeng et al., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology 30(44), 445503 (2019). https://doi.org/10.1088/1361-6528/ab35ec
Y. Han, Y. Liu, C. Su, S. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
Z. Yang, C. Su, S. Wang, Y. Han, X. Chen et al., Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology 31(7), 075501 (2019). https://doi.org/10.1088/1361-6528/ab5271
R. Guo, Y. Han, C. Su, X. Chen, M. Zeng et al., Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B Chem. 300, 127013 (2019). https://doi.org/10.1016/j.snb.2019.127013
S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). https://doi.org/10.3390/electronics4030651
M. Kumar, A.V. Agrawal, M. Moradi, R. Yousefi, Chapter 6 - Nanosensors for gas sensing applications, in eds. by A. Abdeltif, A.A. Assadi, P. Nguyen-Tri, et al., Nanomaterials for Air Remediation (Elsevier, 2020), pp. 107–130. https://doi.org/10.1016/B978-0-12-818821-7.00006-3
S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
Z. Feng, Y. Xie, J. Chen, Y. Yu, S. Zheng et al., Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 4(2), 025018 (2017). https://doi.org/10.1021/nl301702r
B. Cho, A.R. Kim, D.J. Kim, H.-S. Chung, S.Y. Choi et al., Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 8(30), 19635–19642 (2016). https://doi.org/10.1021/acsami.6b05943
K.P. Gattu, K. Ghule, A.A. Kashale, V.B. Patil, D.M. Phase et al., Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Adv. 5(89), 72849–72856 (2015). https://doi.org/10.1039/C5RA13513C
D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS2 electronics. Acc. Chem. Res. 48(1), 100–110 (2015). https://doi.org/10.1021/ar500274q
P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190(1), 128–143 (2000). https://doi.org/10.1006/jcat.1999.2743
W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng et al., Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). https://doi.org/10.1021/nn302422x
K. Kalantar-zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016). https://doi.org/10.1021/acssensors.5b00142
F. Wypych, R. Schöllhorn, 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. (1992). https://doi.org/10.1039/C39920001386
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
W. Zhao, R.M. Ribeiro, G. Eda, Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48(1), 91–99 (2015). https://doi.org/10.1021/ar500303m
S. Zhang, J. Liu, K.H. Ruiz, R. Tu, M. Yang et al., Morphological evolution of vertically standing molybdenum disulfide nanosheets by chemical vapor deposition. Materials 11(4), 631 (2018). https://doi.org/10.3390/ma11040631
X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu et al., Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4(1), 1776 (2013). https://doi.org/10.1038/ncomms2803
B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.-H. Kim et al., Chemical sensing of 2D Graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7(30), 16775–16780 (2015). https://doi.org/10.1021/acsami.5b04541
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014). https://doi.org/10.1021/nn405938z
K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85(11), 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
A.V. Agrawal, N. Kumar, S. Venkatesan, A. Zakhidov, C. Manspeaker et al., Controlled growth of MoS2 flakes from in-plane to edge-enriched 3d network and their surface-energy studies. ACS Appl. Nano Mater. 1(5), 2356–2367 (2018). https://doi.org/10.1021/acsanm.8b00467
B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85(16), 161403 (2012). https://doi.org/10.1103/PhysRevB.85.161403
Y.K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song et al., High performance and transparent multilayer MoS2 transistors: tuning Schottky barrier characteristics. AIP Adv. 6(5), 055026 (2016). https://doi.org/10.1063/1.4953062
S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
Q. Zhang, W. Bao, A. Gong, T. Gong, D. Ma et al., A highly sensitive, highly transparent, gel-gated MoS2 phototransistor on biodegradable nanopaper. Nanoscale 8(29), 14237–14242 (2016). https://doi.org/10.1039/C6NR01534D
Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27–37 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17(41), 27742–27749 (2015). https://doi.org/10.1039/C5CP04576B
J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013–4017 (2012). https://doi.org/10.1021/nl301335q
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8(1), 425 (2013). https://doi.org/10.1186/1556-276x-8-425
H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang et al., Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens. 3(5), 998–1004 (2018). https://doi.org/10.1021/acssensors.8b00146
Y. Zhou, C. Zou, X. Lin, Y. Guo, UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature. Appl. Phys. Lett. 113(8), 082103 (2018)
J. Guo, R. Wen, J. Zhai, Z.L. Wang, Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Sci. Bull. 64(2), 128–135 (2019). https://doi.org/10.1016/j.scib.2018.12.009
Y. Xia, C. Hu, S. Guo, L. Zhang, M. Wang et al., Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 3(1), 665–673 (2020). https://doi.org/10.1021/acsanm.9b02180
J. Lu, J.H. Lu, H. Liu, B. Liu, L. Gong et al., Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 11(15), 1792–1800 (2015). https://doi.org/10.1002/smll.201402591
A.J. Cohen, P. Mori-Sánchez, W. Yang, Challenges for density functional theory. Chem. Rev. 112(1), 289–320 (2012). https://doi.org/10.1021/cr200107z
R.O. Jones, Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87(3), 897–923 (2015). https://doi.org/10.1103/RevModPhys.87.897
MathSciNet
S. Tang, Z. Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J. Chem. Phys. 134(4), 044710 (2011). https://doi.org/10.1063/1.3541249
D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi et al., Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7(7), 465–471 (2012). https://doi.org/10.1038/nnano.2012.71
T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin et al., Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 13(4), 1757–1763 (2013). https://doi.org/10.1021/nl4003443
L.-L. Li, J. Ji, R. Fei, C.-Z. Wang, Q. Lu et al., A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012). https://doi.org/10.1002/adfm.201200166
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622
S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83(11), 2280–2282 (2003). https://doi.org/10.1063/1.1610251
O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes. Sens. Actuators B Chem. 93(1), 338–344 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
S. Wang, D. Huang, S. Xu, W. Jiang, T. Wang et al., Two-dimensional NiO nanosheets with enhanced room temperature NO2 sensing performance via Al doping. Phys. Chem. Chem. Phys. 19(29), 19043–19049 (2017). https://doi.org/10.1039/C7CP03259E
X. Chen, S. Wang, C. Su, Y. Han, C. Zou et al., Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B Chem. 305, 127393 (2020). https://doi.org/10.1016/j.snb.2019.127393
N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia et al., Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4(1), 5209 (2014). https://doi.org/10.1038/srep05209
B. Li, S. Yang, N. Huo, Y. Li, J. Yang et al., Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Adv. 4(50), 26407–26412 (2014). https://doi.org/10.1039/C4RA01632G
Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng et al., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009). https://doi.org/10.1088/0957-484/20/18/185504
G. Liu, Y. Lin, Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 74(3), 308–317 (2007). https://doi.org/10.1016/j.talanta.2007.10.014
G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317–5338 (2012). https://doi.org/10.1021/cr300020c
D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors 8(3), 1400–1458 (2008). https://doi.org/10.3390/s80314000
K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012). https://doi.org/10.1021/cr2001178
C. Zou, J. Hu, Y. Su, F. Shao, Z. Tao et al., Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front. Mater. 6, 195 (2019). https://doi.org/10.3389/fmats.2019.00195
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nano Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
J. Xu, Y.A. Shun, Q. Pan, J. Qin, Sensing characteristics of double layer film of ZnO. Sens. Actuators B Chem. 66(1), 161–163 (2000). https://doi.org/10.1016/S0925-4005(00)00327-0
J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases. ACS Appl. Mater. Interfaces 11(27), 24172–24183 (2019). https://doi.org/10.1021/acsami.9b07208
J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19(9), 6313–6329 (2017). https://doi.org/10.1039/C6CP07799D
M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, 13.08 - Developments in semiconducting oxide-based gas-sensing materials, in by eds. S. Hashmi, G.F. Batalha, C.J. Van Tyne, et al., Comprehensive Materials Processing (Elsevier, 2014), pp. 205–219. https://doi.org/10.1016/B978-0-08-096532-1.01307-8
V. Krivetsky, A. Ponzoni, E. Comini, M. Rumyantseva, A. Gaskov, Selective modified SnO2-based materials for gas sensors arrays. Procedia Chem. 1(1), 204–207 (2009). https://doi.org/10.1016/j.proche.2009.07.051
E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81(10), 1869–1871 (2002). https://doi.org/10.1063/1.1504867
J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun et al., Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 10(15), 7210–7217 (2018). https://doi.org/10.1039/C8NR01379A
M.D. Ganji, N. Sharifi, M. Ghorbanzadeh Ahangari, A. Khosravi, Density functional theory calculations of hydrogen molecule adsorption on monolayer molybdenum and tungsten disulfide. Phys. E Low Dimens. Syst. Nanostruct. 57, 28–34 (2014). https://doi.org/10.1016/j.physe.2013.10.039
M. Hijazi, V. Stambouli, M. Rieu, G. Tournier, C. Pijolat et al., Sensitive and selective ammonia gas sensor based on molecularly modified SnO2. Multidiscip. Digit. Publ. Inst. Proc. 1(4), 399 (2017). https://doi.org/10.3390/proceedings1040399
Y. Zhong, W. Li, X. Zhao, X. Jiang, S. Lin et al., High-response room-temperature NO2 sensor and ultrafast humidity sensor based on SnO2 with rich oxygen vacancy. ACS Appl. Mater. Interfaces 11(14), 13441–13449 (2019). https://doi.org/10.1021/acsami.9b01737
T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19(33), 332001 (2008). https://doi.org/10.1088/0957-4484/19/33/332001
H. Choi, J.S. Choi, J.-S. Kim, J.-H. Choe, K.H. Chung et al., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10(18), 3685–3691 (2014). https://doi.org/10.1002/smll.201400434
Z. Zanolli, J.C. Charlier, Defective carbon nanotubes for single-molecule sensing. Phys. Rev. B 80(15), 155447 (2009). https://doi.org/10.1103/PhysRevB.80.155447
S. Santucci, S. Picozzi, F.D. Gregorio, L. Lozzi, C. Cantalini et al., NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. J. Chem. Phys. 119(20), 10904–10910 (2003). https://doi.org/10.1063/1.1619948
H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao et al., NO2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid. Sens. Actuators B Chem. 176, 166–173 (2013). https://doi.org/10.1016/j.snb.2012.09.060
J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu et al., NO2 sensing performance of SnO2 hollow-sphere sensor. Sens. Actuators B Chem. 135(2), 610–617 (2009). https://doi.org/10.1016/j.snb.2008.09.026
Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao et al., Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sens. Actuators B Chem. 227, 419–426 (2016). https://doi.org/10.1016/j.snb.2015.11.051
M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces 7(6), 3571–3580 (2015). https://doi.org/10.1021/am507397z
Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.J. Choi, J.-H. Park et al., Novel fabrication of a SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9), 095508 (2008). https://doi.org/10.1088/0957-4484/19/9/095508
W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu et al., SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21(24), 245605 (2010). https://doi.org/10.1088/0957-4484/21/24/245605
R. Leghrib, A. Felten, J.J. Pireaux, E. Llobet, Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films 520(3), 966–970 (2011). https://doi.org/10.1016/j.tsf.2011.04.186
Z. Wang, Y. Zhang, S. Liu, T. Zhang, Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators B Chem. 222, 893–903 (2016). https://doi.org/10.1016/j.snb.2015.09.027
S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 510(1), 119–124 (2012). https://doi.org/10.1016/j.jallcom.2011.09.006
S. Liu, Z. Wang, Y. Zhang, J. Li, T. Zhang, Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sens. Actuators B Chem. 228, 134–143 (2016). https://doi.org/10.1016/j.snb.2016.01.023
Z. Zhang, M. Xu, L. Liu, X. Ruan, J. Yan et al., Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators B Chem. 257, 714–727 (2018). https://doi.org/10.1016/j.snb.2017.10.190
V.V. Quang, N.V. Dung, N.S. Trong, N.D. Hoa, N.V. Duy et al., Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105(1), 013107 (2014). https://doi.org/10.1063/1.4887486
A. Sharma, M. Tomar, V. Gupta, WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2. Sens. Actuators B Chem. 176, 675–684 (2013). https://doi.org/10.1016/j.snb.2012.09.094
J.-H. Kim, A. Katoch, S.-H. Kim, S.S. Kim, Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core–shell nanowires. ACS Appl. Mater. Interfaces 7(28), 15351–15358 (2015). https://doi.org/10.1021/acsami.5b03224
J. Sun, P. Sun, D. Zhang, J. Xu, X. Liang et al., Growth of SnO2 nanowire arrays by ultrasonic spray pyrolysis and their gas sensing performance. RSC Adv. 4(82), 43429–43435 (2014). https://doi.org/10.1039/C4RA05682E
Y.J. Kwon, S.Y. Kang, P. Wu, Y. Peng, S.S. Kim et al., Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 8(21), 13646–13658 (2016). https://doi.org/10.1021/acsami.6b01619
J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart et al., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9(10), 10313–10323 (2015). https://doi.org/10.1021/acsnano.5b04343
T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11(2), 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y
H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi et al., Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces 9(37), 31667–31682 (2017). https://doi.org/10.1021/acsami.7b02533
J. Partridge, M. Field, J. Peng, A. Sadek, K. Kalantar-Zadeh et al., Nanostructured SnO2 films prepared from evaporated Sn and their application as gas sensors. Nanotechnology 19(12), 125504 (2008). https://doi.org/10.1088/0957-4484/19/12/125504
S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens. Actuators B Chem. 211, 318–324 (2015). https://doi.org/10.1016/j.snb.2015.01.127
H. Zhang, Y. Wang, X. Zhu, Y. Li, W. Cai, Bilayer Au nanoparticle-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sens. Actuators B Chem. 280, 192–200 (2019). https://doi.org/10.1016/j.snb.2018.10.065
I. Kortidis, H.C. Swart, S.S. Ray, D.E. Motaung, Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods. Sens. Actuators B Chem. 285, 92–107 (2019). https://doi.org/10.1016/j.snb.2019.01.007
S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han et al., Design of Au@WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sens. Actuators B Chem. 282, 917–926 (2019). https://doi.org/10.1016/j.snb.2018.11.142
Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceram. Int. 45(2, Part A), 1513–1522 (2019). https://doi.org/10.1016/j.ceramint.2018.10.022
Y. Song, F. Chen, Y. Zhang, S. Zhang, F. Liu et al., Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers. Sens. Actuators B Chem. 287, 191–198 (2019). https://doi.org/10.1016/j.snb.2019.01.146
R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J. Hazard. Mater. 370, 126–137 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.016
H.-Y. Lee, Y.-C. Heish, C.-T. Lee, High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J. Alloys Compd. 773, 950–954 (2019). https://doi.org/10.1016/j.jallcom.2018.09.290
M.S. Choi, J.H. Bang, A. Mirzaei, W. Oum, H.G. Na et al., Promotional effects of ZnO-branching and Au-functionalization on the surface of SnO2 nanowires for NO2 sensing. J. Alloys Compd. 786, 27–39 (2019). https://doi.org/10.1016/j.jallcom.2019.01.311
H. Ma, L. Yu, X. Yuan, Y. Li, C. Li et al., Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 782, 1121–1126 (2019). https://doi.org/10.1016/j.jallcom.2018.12.180
A. Giampiccolo, D.M. Tobaldi, S.G. Leonardi, B.J. Murdoch, M.P. Seabra et al., Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B Environ. 243, 183–194 (2019). https://doi.org/10.1016/j.apcatb.2018.10.032
M. Penza, R. Rossi, M. Alvisi, G. Cassano, M.A. Signore et al., Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B Chem. 135(1), 289–297 (2008). https://doi.org/10.1016/j.snb.2008.08.024
M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 166–167, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
H.Y. Jeong, D.-S. Lee, H.K. Choi, D.H. Lee, J.-E. Kim et al., Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96(21), 213105 (2010). https://doi.org/10.1063/1.3432446
H. Zhang, Q. Li, J. Huang, Y. Du, S.C. Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors 16(7), 1152 (2016). https://doi.org/10.3390/s16071152
X. Liu, J. Cui, J. Sun, X. Zhang, 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 4(43), 22601–22605 (2014). https://doi.org/10.1039/C4RA02453B
A. Aziz, N. Tiwale, S.A. Hodge, S.J. Attwood, G. Divitini et al., Core–shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 Gas sensing. ACS Appl. Mater. Interfaces 10(50), 43817–43823 (2018). https://doi.org/10.1021/acsami.8b17149
N. Ramgir, R. Bhusari, N.S. Rawat, S.J. Patil, A.K. Debnath et al., TiO2/ZnO heterostructure nanowire based NO2 sensor. Mater. Sci. Semicond. Process. 106, 104770 (2020). https://doi.org/10.1016/j.mssp.2019.104770
A. Sharma, M. Tomar, V. Gupta, Room temperature trace level detection of NO2 gas using SnO2 modified carbon nanotubes based sensor. J. Mater. Chem. 22(44), 23608–23616 (2012). https://doi.org/10.1039/C2JM35172B
M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93(26), 263103 (2008). https://doi.org/10.1063/1.3046726
M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi et al., On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B Chem. 138(1), 168–173 (2009). https://doi.org/10.1016/j.snb.2009.02.008
H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B Chem. 190, 472–478 (2014). https://doi.org/10.1016/j.snb.2013.08.067
S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan et al., Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 23(20), 205501 (2012). https://doi.org/10.1088/0957-4484/23/20/205501
N.G. Cho, D.J. Yang, M.-J. Jin, H.-G. Kim, H.L. Tuller et al., Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators B Chem. 160(1), 1468–1472 (2011). https://doi.org/10.1016/j.snb.2011.07.035
J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia et al., ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens. Actuators B Chem. 139(2), 411–417 (2009). https://doi.org/10.1016/j.snb.2009.03.014
E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim et al., High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B Chem. 141(1), 239–243 (2009). https://doi.org/10.1016/j.snb.2009.06.031
J.H. Jun, J. Yun, K. Cho, I.-S. Hwang, J.-H. Lee et al., Necked ZnO nanoparticle-based NO2 sensors with high and fast response. Sens. Actuators B Chem. 140(2), 412–417 (2009). https://doi.org/10.1016/j.snb.2009.05.019
Z.U. Abideen, A. Katoch, J.-H. Kim, Y.J. Kwon, H.W. Kim et al., Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens. Actuators B Chem. 221, 1499–1507 (2015). https://doi.org/10.1016/j.snb.2015.07.120
R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 152, 189–191 (2015). https://doi.org/10.1016/j.matlet.2015.03.112
X. Chen, Y. Shen, P. Zhou, S. Zhao, X. Zhong et al., NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sens. Actuators B Chem. 280, 151–161 (2019). https://doi.org/10.1016/j.snb.2018.10.063
V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature. Nanoscale Res. Lett. 9(1), 467–467 (2014). https://doi.org/10.1186/1556-276X-9-467
A.V. Kolobov, J. Tominaga, From 3D to 2D: fabrication methods. Two-Dimensional Transition-Metal Dichalcogenides (Springer International Publishing, 2016), pp. 79–107. https://doi.org/10.1007/978-3-319-31450-1_4
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
R.-L. Chu, G.-B. Liu, W. Yao, X. Xu, D. Xiao et al., Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B 89(15), 155317 (2014). https://doi.org/10.1103/PhysRevB.89.155317
K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25(46), 6699–6702 (2013). https://doi.org/10.1002/adma.201303230
R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MoS2 nanowires network. Appl. Phys. Lett. 112(5), 053502 (2018). https://doi.org/10.1063/1.5019296
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li et al., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. 2(9), 092516 (2014). https://doi.org/10.1063/1.4896077
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with monolayer MoS2. Nano Lett. 13(2), 668–673 (2013). https://doi.org/10.1021/nl3043079
S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013). https://doi.org/10.1021/nl4011172
Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang et al., Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5(1), 18596 (2015). https://doi.org/10.1038/srep18596
L. Zhan, W. Wan, Z. Zhu, Y. Xu, T.-M. Shih et al., Centimeter-scale nearly single-crystal monolayer MoS2 via self-limiting vapor deposition epitaxy. J. Phys. Chem. C 121(8), 4703–4707 (2017). https://doi.org/10.1021/acs.jpcc.6b12785
A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale 8(5), 3008–3018 (2016). https://doi.org/10.1039/C5NR07401K
X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14(2), 464–472 (2014). https://doi.org/10.1021/nl4033704
H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar et al., Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14(4), 1909–1913 (2014). https://doi.org/10.1021/nl4046922
S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden et al., Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7(3), 2768–2772 (2013). https://doi.org/10.1021/nn4002038
J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). https://doi.org/10.1021/nn503211t
H. Ago, H. Endo, P. Solís-Fernández, R. Takizawa, Y. Ohta et al., Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces 7(9), 5265–5273 (2015). https://doi.org/10.1021/am508569m
J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu et al., Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 8(6), 6024–6030 (2014). https://doi.org/10.1021/nn5020819
S. Najmaei, J. Yuan, J. Zhang, P. Ajayan, J. Lou, Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 48(1), 31–40 (2015). https://doi.org/10.1021/ar500291j
L. Zhang, K. Liu, A.B. Wong, J. Kim, X. Hong et al., Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14(11), 6418–6423 (2014). https://doi.org/10.1021/nl502961e
L. Chen, B. Liu, M. Ge, Y. Ma, A.N. Abbas et al., Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9(8), 8368–8375 (2015). https://doi.org/10.1021/acsnano.5b03043
A. Roy, R. Ghosh, A. Rai, A. Sanne, K. Kim et al., Intra-domain periodic defects in monolayer MoS2. Appl. Phys. Lett. 110(20), 201905 (2017). https://doi.org/10.1063/1.4983789
X. Zeng, H. Hirwa, M. Ortel, H.C. Nerl, V. Nicolosi et al., Growth of large sized two-dimensional MoS2 flakes in aqueous solution. Nanoscale 9(19), 6575–6580 (2017). https://doi.org/10.1039/C7NR00701A
A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased Flake Size. Chem. Mater. 24(12), 2414–2421 (2012). https://doi.org/10.1021/cm301515z
N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim et al., Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8(7), 6902–6910 (2014). https://doi.org/10.1021/nn5016242
Z. Dai, W. Jin, M. Grady, J.T. Sadowski, J.I. Dadap et al., Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: a selected area low energy electron diffraction study. Surf. Sci. 660, 16–21 (2017). https://doi.org/10.1016/j.susc.2017.02.005
D.L.C. Ky, B.-C. Tran Khac, C.T. Le, Y.S. Kim, K.-H. Chung, Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4), 395–406 (2018). https://doi.org/10.1007/s40544-017-0172-8
G.Z. Magda, J. Pető, G. Dobrik, C. Hwang, L.P. Biró et al., Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5(1), 14714 (2015). https://doi.org/10.1038/srep14714
Y.-K. Huang, J.D. Cain, L. Peng, S. Hao, T. Chasapis et al., Evaporative thinning: a facile synthesis method for high quality ultrathin layers of 2D crystals. ACS Nano 8(10), 10851–10857 (2014). https://doi.org/10.1021/nn504664p
D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13(3), 1341–1347 (2013). https://doi.org/10.1021/nl400258t
M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg et al., One-dimensional metallic edge states in MoS. Phys. Rev. Lett. 87(19), 196803 (2001). https://doi.org/10.1103/PhysRevLett.87.196803
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone et al., Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207–211 (2013). https://doi.org/10.1038/nmat3505
S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944–5948 (2013). https://doi.org/10.1021/nl403036h
A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson et al., Electrical control of optical properties of monolayer MoS2. Solid State Commun. 155, 49–52 (2013). https://doi.org/10.1016/j.ssc.2012.11.010
H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13(6), 2831–2836 (2013). https://doi.org/10.1021/nl4011172
G. Finkelstein, H. Shtrikman, I. Bar-Joseph, Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 74(6), 976–979 (1995). https://doi.org/10.1103/PhysRevLett.74.976
A.V. Agrawal, K. Kaur, M. Kumar, Interfacial study of vertically aligned n-type MoS2 flakes heterojunction with p-type Cu-Zn-Sn-S for self-powered, fast and high performance broadband photodetector. Appl. Surf. Sci. 514, 145901 (2020). https://doi.org/10.1016/j.apsusc.2020.145901
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical h2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007). https://doi.org/10.1126/science.1141483
C. Kim, J.-C. Park, S.Y. Choi, Y. Kim, S.-Y. Seo et al., Self-formed channel devices based on vertically grown 2d materials with large-surface-area and their potential for chemical sensor applications. Small 14(15), 1704116 (2018). https://doi.org/10.1002/smll.201704116
Y.-S. Shim, K.C. Kwon, J.M. Suh, K.S. Choi, Y.G. Song et al., Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor. ACS Appl. Mater. Interfaces 10(37), 31594–31602 (2018). https://doi.org/10.1021/acsami.8b08114
J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11(11), 963–969 (2012). https://doi.org/10.1038/nmat3439
L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang et al., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9(6), 6478–6483 (2015). https://doi.org/10.1021/acsnano.5b02188
A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, Z. Zhu et al., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111(9), 093102 (2017). https://doi.org/10.1063/1.5000825
A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. Small 10(8), 1555–1565 (2014). https://doi.org/10.1002/smll.201302818
M.A. Uddin, A.K. Singh, T.S. Sudarshan, G. Koley, Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity. Nanotechnology 25(12), 125501 (2014). https://doi.org/10.1088/0957-4484/25/12/125501
A.N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong et al., Black phosphorus gas sensors. ACS Nano 9(5), 5618–5624 (2015). https://doi.org/10.1021/acsnano.5b01961
Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials: ohmic, Schottky, and p–n heterojunctions. ACS Nano 10(5), 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009). https://doi.org/10.1088/0957-4484/20/44/445502
M. Zhu, X. Li, S. Chung, L. Zhao, X. Li et al., Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 84, 138–145 (2015). https://doi.org/10.1016/j.carbon.2014.12.008
Metal-Semiconductor Contacts (Ed.), Physics of Semiconductor Devices (2006), pp. 134–196. https://doi.org/10.1002/9780470068328.ch3
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. Proc. Natl. Aca. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh et al., Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 94(19), 191103 (2009). https://doi.org/10.1063/1.3133358
T.-Y. Wei, P.-H. Yeh, S.-Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 131(48), 17690–17695 (2009). https://doi.org/10.1021/ja907585c
S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, Defect-dominated doping and contact resistance in MoS2. ACS Nano 8(3), 2880–2888 (2014). https://doi.org/10.1021/nn500044q
Y.Y. Illarionov, T. Knobloch, M. Waltl, G. Rzepa, A. Pospischil et al., Energetic mapping of oxide traps in MoS2 field-effect transistors. 2D Mater. 4(2), 025108 (2017). https://doi.org/10.1088/2053-1583/aa734a
M.C. Hersam, Defects at the two-dimensional limit. J. Phys. Chem. Lett. 6(14), 2738–2739 (2015). https://doi.org/10.1021/acs.jpclett.5b01218
F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m
P. Vancsó, G.Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim et al., The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6(1), 29726 (2016). https://doi.org/10.1038/srep29726
H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi et al., Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100(12), 123104 (2012). https://doi.org/10.1063/1.3696045
K. Barthelmi, J. Klein, A. Hötger, L. Sigl, F. Sigger et al., Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117(7), 070501 (2020). https://doi.org/10.1063/5.0018557
B. Stampfer, F. Zhang, Y.Y. Illarionov, T. Knobloch, P. Wu et al., Characterization of single defects in ultrascaled MoS2 field-effect transistors. ACS Nano 12(6), 5368–5375 (2018). https://doi.org/10.1021/acsnano.8b00268
G. Lee, G. Yang, A. Cho, J.W. Han, J. Kim, Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys. Chem. Chem. Phys. 18(21), 14198–14204 (2016). https://doi.org/10.1039/C5CP04422G
B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.H. Bae et al., The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13(5), 1962–1968 (2013). https://doi.org/10.1021/nl304734g
H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75(6), 062501 (2012). https://doi.org/10.1088/0034-4885/75/6/062501
Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo et al., Understanding dopant and defect effect on H2S sensing performances of graphene: a first-principles study. Comput. Mater. Sci. 69, 222–228 (2013). https://doi.org/10.1016/j.commatsci.2012.11.048
F.A. Villamena, Chapter 2—chemistry of reactive species, in ed. by F.A. Villamena, Reactive Species Detection in Biology (Elsevier, 2017), pp. 13–64. https://doi.org/10.1016/B978-0-12-420017-3.00005-0
O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008). https://doi.org/10.1103/PhysRevB.77.125416
H. Li, M. Huang, G. Cao, Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study. Phys. Chem. Chem. Phys. 18(22), 15110–15117 (2016). https://doi.org/10.1039/C6CP01362G
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4(1), 2642 (2013). https://doi.org/10.1038/ncomms3642
D. Liu, Y. Guo, L. Fang, J. Robertson, Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103(18), 183113 (2013). https://doi.org/10.1063/1.4824893
H.G. Rosa, L. Junpeng, L.C. Gomes, M.J.L.F. Rodrigues, S.C. Haur et al., Second-harmonic spectroscopy for defects engineering monitoring in transition metal dichalcogenides. Adv. Opt. Mater. 6(5), 1701327 (2018). https://doi.org/10.1002/adom.201701327
M.P.K. Sahoo, J. Wang, Y. Zhang, T. Shimada, T. Kitamura, Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J. Phys. Chem. C 120(26), 14113–14121 (2016). https://doi.org/10.1021/acs.jpcc.6b03284
Y. Linghu, C. Wu, Gas molecules on defective and nonmetal-doped MoS2 monolayers. J. Phys. Chem. C 124(2), 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
Y. Linghu, C. Wu, Gas molecules on defective and nonmetal doped MoS2 monolayers. J. Phys. Chem. C 124(2), 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
D. Zhao, X. Fan, Z. Luo, Y. An, Y. Hu, Enhanced gas-sensing performance of graphene by doping transition metal atoms: a first-principles study. Phys. Lett. A 382(40), 2965–2973 (2018). https://doi.org/10.1016/j.physleta.2018.06.046
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88(3), 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
Y. Jing, X. Tan, Z. Zhou, P. Shen, Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer. J. Mater. Chem. A 2(40), 16892–16897 (2014). https://doi.org/10.1039/C4TA03660C
J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park et al., Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14(12), 6976–6982 (2014). https://doi.org/10.1021/nl503251h
S. Qin, W. Lei, D. Liu, Y. Chen, In-situ and tunable nitrogen-doping of MoS2 nanosheets. Sci. Rep. 4(1), 7582 (2014). https://doi.org/10.1038/srep07582
B.B. Xiao, P. Zhang, L.P. Han, Z. Wen, Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction. Appl. Surf. Sci. 354, 221–228 (2015). https://doi.org/10.1016/j.apsusc.2014.12.134
J. Dai, J. Yuan, Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys. Rev. B 81(16), 165414 (2010). https://doi.org/10.1103/PhysRevB.81.165414
Y.-H. Lu, M. Zhou, C. Zhang, Y.-P. Feng, Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113(47), 20156–20160 (2009). https://doi.org/10.1021/jp908829m
Y. Fan, J. Zhang, Y. Qiu, J. Zhu, Y. Zhang et al., A DFT study of transition metal (Fe Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption. Comput. Mater. Sci. 138, 255–266 (2017). https://doi.org/10.1016/j.commatsci.2017.06.029
H. Luo, Y. Cao, J. Zhou, J. Feng, J. Cao et al., Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem. Phys. Lett. 643, 27–33 (2016). https://doi.org/10.1016/j.cplett.2015.10.077
J. Zhu, H. Zhang, Y. Tong, L. Zhao, Y. Zhang et al., First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 419, 522–530 (2017). https://doi.org/10.1016/j.apsusc.2017.04.157
J. Song, H. Lou, Improvement of gas-adsorption performances of Ag-functionalized monolayer MoS2 surfaces: a first-principles study. J. Appl. Phys. 123(17), 175303 (2018). https://doi.org/10.1063/1.5022829
O. Leenaerts, B. Partoens, F.M. Peeters, Paramagnetic adsorbates on graphene: a charge transfer analysis. Appl. Phys. Lett. 92(24), 243125 (2008). https://doi.org/10.1063/1.2949753
J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008). https://doi.org/10.1021/nl8013007
J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121(50), 11720–11732 (1999). https://doi.org/10.1021/ja991644d
Y. Kim, S.-K. Kang, N.-C. Oh, H.-D. Lee, S.-M. Lee et al., Improved sensitivity in schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 11(42), 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta et al., Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29(46), 464001 (2018). https://doi.