Three-Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties
Corresponding Author: Ye Yuan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 76
Abstract
Currently, electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems. Thus, developing excellent microwave absorbers have a huge significance in the material research field. Herein, a kind of ultrafine zinc oxide (ZnO) nanoparticles (NPs) supported on three-dimensional (3D) ordered mesoporous carbon spheres (ZnO/OMCS) is prepared from silica inverse opal by using phenolic resol precursor as carbon source. The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres. ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption (− 39.3 dB at 10.4 GHz with a small thickness of 2 mm) and a broad effective absorption bandwidth (9.1 GHz). The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure. This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
Highlights:
1 Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles are successfully prepared.
2 The microwave absorbing performance of zinc oxide/carbon nanocomposites can be controlled through regulating ratio of zinc oxide nanoparticles.
3 Electromagnetic simulation of radar cross section on a complicated groove structure demonstrates the microwave absorbing ability of the carbon based nanocomposites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
- L.L. Song, Y.P. Duan, J. Liu, H.F. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
- Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
- J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
- L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
- O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms7628
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
- L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.2755875
- W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009). https://doi.org/10.1063/1.3152764
- F. Peng, F. Meng, Y. Guo, H. Wang, F. Huang et al., Intercalating hybrids of sandwich-like Fe3O4–graphite: synthesis and their synergistic enhancement of microwave absorption. ACS Sustain. Chem. Eng. 6, 16744–16753 (2018). https://doi.org/10.1021/acssuschemeng.8b04021
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011). https://doi.org/10.1063/1.3555436
- G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012). https://doi.org/10.1021/jp300050u
- G.X. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- H.L. Xu, H. Bi, R.B. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 07A522 (2012). https://doi.org/10.1063/1.3691527
- B.H. Chang, Y.Z. You, C.X. Hong, X. Xiao, T.C. Liang et al., Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25, 5916–5921 (2013). https://doi.org/10.1002/adma.201302435
- R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh et al., Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1, 5727–5735 (2013). https://doi.org/10.1039/C3TA10604G
- Y.L. Ren, C.L. Zhu, S. Zhang, C.Y. Li, Y.J. Chen et al., Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296–12303 (2013). https://doi.org/10.1039/C3NR04058E
- C.Z. Ping, X. Chuan, M.C. Qun, R.W. Cai, C.H. Ming, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- Y.Y. Lü, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- J.H. Luo, Y. Xu, W. Yao, C.F. Jiang, J. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015). https://doi.org/10.1016/j.compscitech.2015.07.008
- H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
- K.P. Yuan, R.C. Che, Q. Cao, Z.K. Sun, Q. Yue et al., Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 7, 5312–5319 (2015). https://doi.org/10.1021/am508683p
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- Y. Yuan, Y.Y. Xiong, J.J. Li, W.L. Yin, Q.Y. Peng et al., Large-scale synthesis of hollow carbon fibers with ultra-large diameter by thermally controlled pyrolysis. J. Am. Ceram. Soc. 103, 5629–5637 (2020). https://doi.org/10.1111/jace.17316
- G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- L.J. Wei, C.R. Chao, C.H. Jun, Z. Fan, X. Feng et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012). https://doi.org/10.1002/smll.201102245
- C.W. Zhang, Y. Peng, Y. Song, J.J. Li, F.X. Yin et al., Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 12, 24102–24111 (2020). https://doi.org/10.1021/acsami.0c03105
- L. Liu, L. Wang, Q.Q. Li, X.F. Yu, X.F. Shi et al., High-performance microwave absorption of MOF-derived core-shell Co@N-doped Ccarbon anchored on reduced graphene oxide. ChemNanoMat 5, 558–565 (2019). https://doi.org/10.1002/cnma.201800637
- J. Yan, Y. Huang, C. Chen, X.D. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
- S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- G.H. He, Y.P. Duan, H.F. Pang, J.J. Hu, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces 7, 2000407 (2020). https://doi.org/10.1002/admi.202000407
- L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson et al., Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031–3034 (2003). https://doi.org/10.1002/anie.200351461
- W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo et al., Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
- M. Cai, A. Shui, X. Wang, C. He, J.J. Qian et al., A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638
- P. Claudia, K. Andreas, W. Horst, Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002). https://doi.org/10.1002/1521-3773(20020402)41:7
- Y.L. Chen, Z.A. Hu, Y.Q. Chang, H.W. Wang, Z.Y. Zhang et al., Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011). https://doi.org/10.1021/jp109597n
- C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017). https://doi.org/10.1016/j.carbon.2017.01.077
- D.C. Wei, Y.J. Qi, S.H. Lv, G.M. Shi, Y.X. Dai et al., Facile synthesis of thin coating C/ZnO composites with strong electromagnetic wave absorption. Ceram. Int. 45, 4448–4454 (2019). https://doi.org/10.1016/j.ceramint.2018.11.123
- Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang et al., Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005). https://doi.org/10.1002/anie.200501561
- R.C. Schroden, M. Al-Daous, C.F. Blanford, A. Stein, Optical properties of inverse opal photonic crystals. Chem. Mater. 14, 3305–3315 (2002). https://doi.org/10.1021/cm020100z
- M. Zeng, B. Yang, H. Yan, H. Qu, Y. Hu, Efficient recovery of Ag(I) from aqueous solution using MoS2 nanosheets: adsorption study and DFT calculation. Chem. Phys. Lett. 757, 137865 (2020). https://doi.org/10.1016/j.cplett.2020.137865
- A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. Carbon 70, 119–129 (2014). https://doi.org/10.1016/j.carbon.2013.12.080
- M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014). https://doi.org/10.1021/nn501124h
- F.X. Yin, Z. Zhang, Y.G. Zhang, C.W. Zhang, L. Xu, ZnO nanoparticles encapsulated in three dimensional ordered macro-/mesoporous carbon as high-performance anode for lithium-ion battery. Electrochim. Acta 270, 274–283 (2018). https://doi.org/10.1016/j.electacta.2018.03.073
- D.B. Putungan, S.-H. Lin, J.-L. Kuo, Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl. Mater. Interfaces 8, 18754–18762 (2016). https://doi.org/10.1021/acsami.6b03499
- Y.F. Guo, J.Y. Li, F.B. Meng, W. Wei, Q. Yang et al., Hybridization-induced polarization of graphene sheets by intercalation-polymerized polyaniline toward high performance of microwave absorption. ACS Appl. Mater. Interfaces 11, 17100–17107 (2019). https://doi.org/10.1021/acsami.9b04498
- H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
- Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
- P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang et al., Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11, 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
- X.A. Li, X.Y. Qu, Z. Xu, W.Q. Dong, F.Y. Wang et al., Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 11, 19267–19276 (2019). https://doi.org/10.1021/acsami.9b01783
- X.P. Li, Z.M. Deng, Y. Li, H.B. Zhang, S. Zhao et al., Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073
References
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
L.L. Song, Y.P. Duan, J. Liu, H.F. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms7628
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.2755875
W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009). https://doi.org/10.1063/1.3152764
F. Peng, F. Meng, Y. Guo, H. Wang, F. Huang et al., Intercalating hybrids of sandwich-like Fe3O4–graphite: synthesis and their synergistic enhancement of microwave absorption. ACS Sustain. Chem. Eng. 6, 16744–16753 (2018). https://doi.org/10.1021/acssuschemeng.8b04021
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011). https://doi.org/10.1063/1.3555436
G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012). https://doi.org/10.1021/jp300050u
G.X. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
H.L. Xu, H. Bi, R.B. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111, 07A522 (2012). https://doi.org/10.1063/1.3691527
B.H. Chang, Y.Z. You, C.X. Hong, X. Xiao, T.C. Liang et al., Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25, 5916–5921 (2013). https://doi.org/10.1002/adma.201302435
R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh et al., Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1, 5727–5735 (2013). https://doi.org/10.1039/C3TA10604G
Y.L. Ren, C.L. Zhu, S. Zhang, C.Y. Li, Y.J. Chen et al., Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296–12303 (2013). https://doi.org/10.1039/C3NR04058E
C.Z. Ping, X. Chuan, M.C. Qun, R.W. Cai, C.H. Ming, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
Y.Y. Lü, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
J.H. Luo, Y. Xu, W. Yao, C.F. Jiang, J. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015). https://doi.org/10.1016/j.compscitech.2015.07.008
H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
K.P. Yuan, R.C. Che, Q. Cao, Z.K. Sun, Q. Yue et al., Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 7, 5312–5319 (2015). https://doi.org/10.1021/am508683p
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
Y. Yuan, Y.Y. Xiong, J.J. Li, W.L. Yin, Q.Y. Peng et al., Large-scale synthesis of hollow carbon fibers with ultra-large diameter by thermally controlled pyrolysis. J. Am. Ceram. Soc. 103, 5629–5637 (2020). https://doi.org/10.1111/jace.17316
G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011). https://doi.org/10.1021/cm103441u
L.J. Wei, C.R. Chao, C.H. Jun, Z. Fan, X. Feng et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012). https://doi.org/10.1002/smll.201102245
C.W. Zhang, Y. Peng, Y. Song, J.J. Li, F.X. Yin et al., Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 12, 24102–24111 (2020). https://doi.org/10.1021/acsami.0c03105
L. Liu, L. Wang, Q.Q. Li, X.F. Yu, X.F. Shi et al., High-performance microwave absorption of MOF-derived core-shell Co@N-doped Ccarbon anchored on reduced graphene oxide. ChemNanoMat 5, 558–565 (2019). https://doi.org/10.1002/cnma.201800637
J. Yan, Y. Huang, C. Chen, X.D. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
G.H. He, Y.P. Duan, H.F. Pang, J.J. Hu, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces 7, 2000407 (2020). https://doi.org/10.1002/admi.202000407
L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson et al., Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031–3034 (2003). https://doi.org/10.1002/anie.200351461
W. Feng, Y.M. Wang, J.C. Chen, L. Wang, L.X. Guo et al., Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
M. Cai, A. Shui, X. Wang, C. He, J.J. Qian et al., A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638
P. Claudia, K. Andreas, W. Horst, Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 (2002). https://doi.org/10.1002/1521-3773(20020402)41:7
Y.L. Chen, Z.A. Hu, Y.Q. Chang, H.W. Wang, Z.Y. Zhang et al., Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011). https://doi.org/10.1021/jp109597n
C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017). https://doi.org/10.1016/j.carbon.2017.01.077
D.C. Wei, Y.J. Qi, S.H. Lv, G.M. Shi, Y.X. Dai et al., Facile synthesis of thin coating C/ZnO composites with strong electromagnetic wave absorption. Ceram. Int. 45, 4448–4454 (2019). https://doi.org/10.1016/j.ceramint.2018.11.123
Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang et al., Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005). https://doi.org/10.1002/anie.200501561
R.C. Schroden, M. Al-Daous, C.F. Blanford, A. Stein, Optical properties of inverse opal photonic crystals. Chem. Mater. 14, 3305–3315 (2002). https://doi.org/10.1021/cm020100z
M. Zeng, B. Yang, H. Yan, H. Qu, Y. Hu, Efficient recovery of Ag(I) from aqueous solution using MoS2 nanosheets: adsorption study and DFT calculation. Chem. Phys. Lett. 757, 137865 (2020). https://doi.org/10.1016/j.cplett.2020.137865
A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. Carbon 70, 119–129 (2014). https://doi.org/10.1016/j.carbon.2013.12.080
M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014). https://doi.org/10.1021/nn501124h
F.X. Yin, Z. Zhang, Y.G. Zhang, C.W. Zhang, L. Xu, ZnO nanoparticles encapsulated in three dimensional ordered macro-/mesoporous carbon as high-performance anode for lithium-ion battery. Electrochim. Acta 270, 274–283 (2018). https://doi.org/10.1016/j.electacta.2018.03.073
D.B. Putungan, S.-H. Lin, J.-L. Kuo, Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl. Mater. Interfaces 8, 18754–18762 (2016). https://doi.org/10.1021/acsami.6b03499
Y.F. Guo, J.Y. Li, F.B. Meng, W. Wei, Q. Yang et al., Hybridization-induced polarization of graphene sheets by intercalation-polymerized polyaniline toward high performance of microwave absorption. ACS Appl. Mater. Interfaces 11, 17100–17107 (2019). https://doi.org/10.1021/acsami.9b04498
H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji et al., Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang et al., Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11, 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
X.A. Li, X.Y. Qu, Z. Xu, W.Q. Dong, F.Y. Wang et al., Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 11, 19267–19276 (2019). https://doi.org/10.1021/acsami.9b01783
X.P. Li, Z.M. Deng, Y. Li, H.B. Zhang, S. Zhao et al., Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073