Single-Photon Sources Based on Novel Color Centers in Silicon Carbide P–I–N Diodes: Combining Theory and Experiment
Corresponding Author: Dmitry Yu. Fedyanin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 83
Abstract
Point defects in the crystal lattice of SiC, known as color centers, have recently emerged as one of the most promising single-photon emitters for non-classical light sources. However, the search for the best color center that satisfies all the requirements of practical applications has only just begun. Many color centers in SiC have been recently discovered but not yet identified. Therefore, it is extremely challenging to understand their optoelectronic properties and evaluate their potential for use in practical single-photon sources. Here, we present a theoretical approach that explains the experiments on single-photon electroluminescence (SPEL) of novel color centers in SiC p–i–n diodes and gives the possibility to engineer highly efficient single-photon emitting diodes based on them. Moreover, we develop a novel method of determining the electron and hole capture cross sections by the color center from experimental measurements of the SPEL rate and second-order coherence. Unlike other methods, the developed approach uses the experimental results at the single defect level that can be easily obtained as soon as a single-color center is identified in the i-type region of the SiC p–i–n diode.
Highlights:
1 Theory of electrically driven single-photon sources based on color centers in silicon carbide p–i–n diodes.
2 New method of determining the electron and hole capture cross sections by an optically active point defect (color center) from the experimental measurements of the single-photon electroluminescence rate and second-order coherence.
3 The developed method is based on the measurements at the single defect level. Therefore, in contrast to other approaches, one point defect is sufficient to measure its electron and hole capture cross sections.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Bedington, J.M. Arrazola, A. Ling, Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017). https://doi.org/10.1038/s41534-017-0031-5
- J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao et al., Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020). https://doi.org/10.1038/s41586-020-2401-y
- P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita et al., Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017). https://doi.org/10.1038/ncomms13984
- E. Diamanti, H.-K. Lo, B. Qi, Z. Yuan, Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). https://doi.org/10.1038/npjqi.2016.25
- Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, Large scale quantum key distribution: challenges and solutions. Opt. Express. 26, 24260–24273 (2018). https://doi.org/10.1364/OE.26.024260
- N. Montaut, L. Sansoni, E. Meyer-Scott, R. Ricken, V. Quiring et al., High-efficiency plug-and-play source of heralded single photons. Phys. Rev. Appl. 8, 024021 (2017). https://doi.org/10.1103/physrevapplied.8.024021
- X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng et al., Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017). https://doi.org/10.1038/lsa.2016.249
- L. Caspani, C. Xiong, B.J. Eggleton, D. Bajoni, M. Liscidini et al., Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017). https://doi.org/10.1038/lsa.2017.100
- M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677
- A. Boretti, L. Rosa, A. Mackie, S. Castelletto, Electrically driven quantum light sources. Adv. Opt. Mater. 3, 1012–1033 (2015). https://doi.org/10.1002/adom.201500022
- S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012). https://doi.org/10.1088/0034-4885/75/12/126503
- P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218
- S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya, Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 105, 141109 (2014). https://doi.org/10.1063/1.4897640
- I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186
- S. Lagomarsino, F. Gorelli, M. Santoro, N. Fabbri, A. Hajeb et al., Robust luminescence of the silicon-vacancy center in diamond at high temperatures. AIP Adv. 5, 127117 (2015). https://doi.org/10.1063/1.4938256
- R. Brouri, A. Beveratos, J.P. Poizat, P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000). https://doi.org/10.1364/ol.25.001294
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura et al., Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012). https://doi.org/10.1038/nphoton.2012.75
- A. Lohrmann, S. Pezzagna, I. Dobrinets, P. Spinicelli, V. Jacques et al., Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011). https://doi.org/10.1063/1.3670332
- I.A. Khramtsov, D.Y. Fedyanin, Bright single-photon emitting diodes based on the silicon-vacancy center in AlN/diamond heterostructures. Nanomaterials 10, 361 (2020). https://doi.org/10.3390/nano10020361
- A. Lohrmann, B.C. Johnson, J.C. McCallum, S. Castelletto, A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017). https://doi.org/10.1088/1361-6633/aa5171
- S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda et al., A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014). https://doi.org/10.1038/nmat3806
- A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima et al., Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015). https://doi.org/10.1038/ncomms8783
- I.A. Khramtsov, A.A. Vyshnevyy, D.Y. Fedyanin, Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide. npj Quantum Inf. 4, 15 (2018). https://doi.org/10.1038/s41534-018-0066-2
- M. Widmann, M. Niethammer, T. Makino, T. Rendler, S. Lasse et al., Bright single photon sources in lateral silicon carbide light emitting diodes. Appl. Phys. Lett. 112, 231103 (2018). https://doi.org/10.1063/1.5032291
- S.-I. Sato, T. Honda, T. Makino, Y. Hijikata, S.-Y. Lee et al., Room temperature electrical control of single photon sources at 4H-SiC surface. ACS Photon. 5, 3159–3165 (2018). https://doi.org/10.1021/acsphotonics.8b00375
- F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov et al., Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013). https://doi.org/10.1038/srep01637
- I.A. Khramtsov, D.Y. Fedyanin, Superinjection in diamond p–i–n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Phys. Rev. Appl. 12, 024013 (2019). https://doi.org/10.1103/PhysRevApplied.12.024013
- I.A. Khramtsov, D.Y. Fedyanin, Superinjection of holes in homojunction diodes based on wide-bandgap semiconductors. Materials 12, 1972 (2019). https://doi.org/10.3390/ma12121972
- I.A. Khramtsov, D.Y. Fedyanin, Superinjection in diamond homojunction P–I–N diodes. Semicond. Sci. Technol. 34, 03LT03 (2019). https://doi.org/10.1088/1361-6641/ab0569
- Y. Yan, S.-H. Wei, Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Status Solidi B 245, 641–652 (2008). https://doi.org/10.1002/pssb.200743334
- J.H. Park, D.Y. Kim, E. Fred Schubert, J. Cho, Kim JK (2018) Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett. 3, 655–662 (2018). https://doi.org/10.1021/acsenergylett.8b00002
- I.A. Khramtsov, D. Yu. Fedyanin, Superinjection in single-photon emitting diamond diodes, in 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong (2018), pp. 123–124. https://doi.org/10.1109/nusod.2018.8570242
- A.J. Shields, Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007). https://doi.org/10.1038/nphoton.2007.46
- D.Y. Fedyanin, A.V. Krasavin, A.V. Arsenin, A.V. Zayats, Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser. Nanophotonics 9, 3965–3975 (2020). https://doi.org/10.1515/nanoph-2020-0157
- G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010). https://doi.org/10.1002/lpor.200900033
- I.A. Khramtsov, D.Y. Fedyanin, Gate-tunable single-photon emitting diode with an extremely low tuning time, in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2020), paper JTh2A.21. https://doi.org/10.1364/cleo_at.2020.jth2a.21
- D.Y. Fedyanin, I.A. Khramtsov, A.A. Vyshnevyy, Electrically driven single-photon sources based on color centers in silicon carbide: pursuing gigacount-per-second emission rates, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, pp. 1–1. https://doi.org/10.1109/cleoe-eqec.2019.8873252
- Q. Li, J.-Y. Zhou, Z.-H. Liu, J.-S. Xu, C.-F. Li et al., Stable single photon sources in the near C-band range above 400 K. J. Semicond. 40, 072902 (2019). https://doi.org/10.1088/1674-4926/40/7/072902
- J. Wang, Y. Zhou, Z. Wang, A. Rasmita, J. Yang et al., Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 4106 (2018). https://doi.org/10.1038/s41467-018-06605-3
- D.Y. Fedyanin, M. Agio, Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New J. Phys. 18, 073012 (2016). https://doi.org/10.1088/1367-2630/18/7/073012
- I.A. Khramtsov, M. Agio, D.Y. Fedyanin, Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 8, 024031 (2017). https://doi.org/10.1103/physrevapplied.8.024031
- V.N. Abakumov, V.I. Perel, I.N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, Amsterdam, 1991).
- A. Alkauskas, C.E. Dreyer, J.L. Lyons, C.G. Van de Walle, Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 93, 201304 (2016). https://doi.org/10.1103/physrevb.93.201304
- J. Pernot, W. Zawadzki, S. Contreras, J.L. Robert, E. Neyret et al., Electrical transport in n-type 4H silicon carbide. J. Appl. Phys. 90, 1869–1878 (2001). https://doi.org/10.1063/1.1382849
- C. Erginsoy, Neutral impurity scattering in semiconductors. Phys. Rev. 79, 1013–1014 (1950). https://doi.org/10.1103/physrev.79.1013
- S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).
- T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, Hoboken, 2014).
- I.A. Khramtsov, D.Y. Fedyanin, Toward ultrafast tuning and triggering single-photon electroluminescence of color centers in silicon carbide. ACS Appl. Electron. Mater. 1, 1859–1865 (2019). https://doi.org/10.1021/acsaelm.9b00385
- V. Presser, K.G. Nickel, Silica on silicon carbide. Crit. Rev. Solid State Mater. Sci. 33, 1–99 (2008). https://doi.org/10.1080/10408430701718914
- I.D. Booker, H. Abdalla, J. Hassan, R. Karhu, L. Lilja et al., Oxidation-induced deep levels in n- and p-type 4H- and 6H-SiC and their influence on carrier lifetime. Phys. Rev. Appl. 6, 014010 (2016). https://doi.org/10.1103/physrevapplied.6.014010
- K. Gulbinas, V. Grivickas, H.P. Mahabadi, M. Usman, A. Hallén, Surface recombination investigation in thin 4H-SiC layers. Mater. Sci. 17, 119–124 (1970). https://doi.org/10.5755/j01.ms.17.2.479
- K. Bray, D.Y. Fedyanin, I.A. Khramtsov, M.O. Bilokur, B. Regan et al., Electrical excitation and charge-state conversion of silicon vacancy color centers in single-crystal diamond membranes. Appl. Phys. Lett. 116, 101103 (2020). https://doi.org/10.1063/1.5139256
- C.P. Anderson, A. Bourassa, K.C. Miao, G. Wolfowicz, P.J. Mintun et al., Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019). https://doi.org/10.1126/science.aax9406
- D.A. Broadway, N. Dontschuk, A. Tsai, S.E. Lillie, C.T.-K. Lew et al., Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 1, 502–507 (2018). https://doi.org/10.1038/s41928-018-0130-0
- M. Widmann, M. Niethammer, D.Y. Fedyanin, I.A. Khramtsov, T. Rendler et al., Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. Nano Lett. 19, 7173–7180 (2019). https://doi.org/10.1021/acs.nanolett.9b02774
- M. Pfender, N. Aslam, P. Simon, D. Antonov, G. Thiering et al., Protecting a diamond quantum memory by charge state control. Nano Lett. 17, 5931–5937 (2017). https://doi.org/10.1021/acs.nanolett.7b01796
- B.J. Shields, Q.P. Unterreithmeier, N.P. de Leon, H. Park, M.D. Lukin, Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015). https://doi.org/10.1103/physrevlett.114.136402
- I.A. Khramtsov, D.Y. Fedyanin, On-demand generation of high-purity single-photon pulses by NV centers in diamond under electrical excitation, in Frontiers in Optics / Laser Science, OSA Technical Digest, ed by B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, (Optical Society of America, 2020), paper FW4C.7. https://doi.org/10.1364/FIO.2020.FW4C.7
- M. Niethammer, M. Widmann, T. Rendler, N. Morioka, Y.-C. Chen et al., Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019). https://doi.org/10.1038/s41467-019-13545-z
- P. Siyushev, M. Nesladek, E. Bourgeois, M. Gulka, J. Hruby et al., Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 363, 728–731 (2019). https://doi.org/10.1126/science.aav2789
References
R. Bedington, J.M. Arrazola, A. Ling, Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017). https://doi.org/10.1038/s41534-017-0031-5
J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao et al., Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020). https://doi.org/10.1038/s41586-020-2401-y
P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita et al., Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017). https://doi.org/10.1038/ncomms13984
E. Diamanti, H.-K. Lo, B. Qi, Z. Yuan, Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). https://doi.org/10.1038/npjqi.2016.25
Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, Large scale quantum key distribution: challenges and solutions. Opt. Express. 26, 24260–24273 (2018). https://doi.org/10.1364/OE.26.024260
N. Montaut, L. Sansoni, E. Meyer-Scott, R. Ricken, V. Quiring et al., High-efficiency plug-and-play source of heralded single photons. Phys. Rev. Appl. 8, 024021 (2017). https://doi.org/10.1103/physrevapplied.8.024021
X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng et al., Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2017). https://doi.org/10.1038/lsa.2016.249
L. Caspani, C. Xiong, B.J. Eggleton, D. Bajoni, M. Liscidini et al., Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017). https://doi.org/10.1038/lsa.2017.100
M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677
A. Boretti, L. Rosa, A. Mackie, S. Castelletto, Electrically driven quantum light sources. Adv. Opt. Mater. 3, 1012–1033 (2015). https://doi.org/10.1002/adom.201500022
S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012). https://doi.org/10.1088/0034-4885/75/12/126503
P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218
S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya, Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 105, 141109 (2014). https://doi.org/10.1063/1.4897640
I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186
S. Lagomarsino, F. Gorelli, M. Santoro, N. Fabbri, A. Hajeb et al., Robust luminescence of the silicon-vacancy center in diamond at high temperatures. AIP Adv. 5, 127117 (2015). https://doi.org/10.1063/1.4938256
R. Brouri, A. Beveratos, J.P. Poizat, P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000). https://doi.org/10.1364/ol.25.001294
N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura et al., Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012). https://doi.org/10.1038/nphoton.2012.75
A. Lohrmann, S. Pezzagna, I. Dobrinets, P. Spinicelli, V. Jacques et al., Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011). https://doi.org/10.1063/1.3670332
I.A. Khramtsov, D.Y. Fedyanin, Bright single-photon emitting diodes based on the silicon-vacancy center in AlN/diamond heterostructures. Nanomaterials 10, 361 (2020). https://doi.org/10.3390/nano10020361
A. Lohrmann, B.C. Johnson, J.C. McCallum, S. Castelletto, A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017). https://doi.org/10.1088/1361-6633/aa5171
S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda et al., A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014). https://doi.org/10.1038/nmat3806
A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima et al., Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015). https://doi.org/10.1038/ncomms8783
I.A. Khramtsov, A.A. Vyshnevyy, D.Y. Fedyanin, Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide. npj Quantum Inf. 4, 15 (2018). https://doi.org/10.1038/s41534-018-0066-2
M. Widmann, M. Niethammer, T. Makino, T. Rendler, S. Lasse et al., Bright single photon sources in lateral silicon carbide light emitting diodes. Appl. Phys. Lett. 112, 231103 (2018). https://doi.org/10.1063/1.5032291
S.-I. Sato, T. Honda, T. Makino, Y. Hijikata, S.-Y. Lee et al., Room temperature electrical control of single photon sources at 4H-SiC surface. ACS Photon. 5, 3159–3165 (2018). https://doi.org/10.1021/acsphotonics.8b00375
F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov et al., Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013). https://doi.org/10.1038/srep01637
I.A. Khramtsov, D.Y. Fedyanin, Superinjection in diamond p–i–n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Phys. Rev. Appl. 12, 024013 (2019). https://doi.org/10.1103/PhysRevApplied.12.024013
I.A. Khramtsov, D.Y. Fedyanin, Superinjection of holes in homojunction diodes based on wide-bandgap semiconductors. Materials 12, 1972 (2019). https://doi.org/10.3390/ma12121972
I.A. Khramtsov, D.Y. Fedyanin, Superinjection in diamond homojunction P–I–N diodes. Semicond. Sci. Technol. 34, 03LT03 (2019). https://doi.org/10.1088/1361-6641/ab0569
Y. Yan, S.-H. Wei, Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Status Solidi B 245, 641–652 (2008). https://doi.org/10.1002/pssb.200743334
J.H. Park, D.Y. Kim, E. Fred Schubert, J. Cho, Kim JK (2018) Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett. 3, 655–662 (2018). https://doi.org/10.1021/acsenergylett.8b00002
I.A. Khramtsov, D. Yu. Fedyanin, Superinjection in single-photon emitting diamond diodes, in 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong (2018), pp. 123–124. https://doi.org/10.1109/nusod.2018.8570242
A.J. Shields, Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007). https://doi.org/10.1038/nphoton.2007.46
D.Y. Fedyanin, A.V. Krasavin, A.V. Arsenin, A.V. Zayats, Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser. Nanophotonics 9, 3965–3975 (2020). https://doi.org/10.1515/nanoph-2020-0157
G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010). https://doi.org/10.1002/lpor.200900033
I.A. Khramtsov, D.Y. Fedyanin, Gate-tunable single-photon emitting diode with an extremely low tuning time, in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2020), paper JTh2A.21. https://doi.org/10.1364/cleo_at.2020.jth2a.21
D.Y. Fedyanin, I.A. Khramtsov, A.A. Vyshnevyy, Electrically driven single-photon sources based on color centers in silicon carbide: pursuing gigacount-per-second emission rates, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, pp. 1–1. https://doi.org/10.1109/cleoe-eqec.2019.8873252
Q. Li, J.-Y. Zhou, Z.-H. Liu, J.-S. Xu, C.-F. Li et al., Stable single photon sources in the near C-band range above 400 K. J. Semicond. 40, 072902 (2019). https://doi.org/10.1088/1674-4926/40/7/072902
J. Wang, Y. Zhou, Z. Wang, A. Rasmita, J. Yang et al., Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 4106 (2018). https://doi.org/10.1038/s41467-018-06605-3
D.Y. Fedyanin, M. Agio, Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New J. Phys. 18, 073012 (2016). https://doi.org/10.1088/1367-2630/18/7/073012
I.A. Khramtsov, M. Agio, D.Y. Fedyanin, Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 8, 024031 (2017). https://doi.org/10.1103/physrevapplied.8.024031
V.N. Abakumov, V.I. Perel, I.N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, Amsterdam, 1991).
A. Alkauskas, C.E. Dreyer, J.L. Lyons, C.G. Van de Walle, Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 93, 201304 (2016). https://doi.org/10.1103/physrevb.93.201304
J. Pernot, W. Zawadzki, S. Contreras, J.L. Robert, E. Neyret et al., Electrical transport in n-type 4H silicon carbide. J. Appl. Phys. 90, 1869–1878 (2001). https://doi.org/10.1063/1.1382849
C. Erginsoy, Neutral impurity scattering in semiconductors. Phys. Rev. 79, 1013–1014 (1950). https://doi.org/10.1103/physrev.79.1013
S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).
T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, Hoboken, 2014).
I.A. Khramtsov, D.Y. Fedyanin, Toward ultrafast tuning and triggering single-photon electroluminescence of color centers in silicon carbide. ACS Appl. Electron. Mater. 1, 1859–1865 (2019). https://doi.org/10.1021/acsaelm.9b00385
V. Presser, K.G. Nickel, Silica on silicon carbide. Crit. Rev. Solid State Mater. Sci. 33, 1–99 (2008). https://doi.org/10.1080/10408430701718914
I.D. Booker, H. Abdalla, J. Hassan, R. Karhu, L. Lilja et al., Oxidation-induced deep levels in n- and p-type 4H- and 6H-SiC and their influence on carrier lifetime. Phys. Rev. Appl. 6, 014010 (2016). https://doi.org/10.1103/physrevapplied.6.014010
K. Gulbinas, V. Grivickas, H.P. Mahabadi, M. Usman, A. Hallén, Surface recombination investigation in thin 4H-SiC layers. Mater. Sci. 17, 119–124 (1970). https://doi.org/10.5755/j01.ms.17.2.479
K. Bray, D.Y. Fedyanin, I.A. Khramtsov, M.O. Bilokur, B. Regan et al., Electrical excitation and charge-state conversion of silicon vacancy color centers in single-crystal diamond membranes. Appl. Phys. Lett. 116, 101103 (2020). https://doi.org/10.1063/1.5139256
C.P. Anderson, A. Bourassa, K.C. Miao, G. Wolfowicz, P.J. Mintun et al., Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019). https://doi.org/10.1126/science.aax9406
D.A. Broadway, N. Dontschuk, A. Tsai, S.E. Lillie, C.T.-K. Lew et al., Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 1, 502–507 (2018). https://doi.org/10.1038/s41928-018-0130-0
M. Widmann, M. Niethammer, D.Y. Fedyanin, I.A. Khramtsov, T. Rendler et al., Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. Nano Lett. 19, 7173–7180 (2019). https://doi.org/10.1021/acs.nanolett.9b02774
M. Pfender, N. Aslam, P. Simon, D. Antonov, G. Thiering et al., Protecting a diamond quantum memory by charge state control. Nano Lett. 17, 5931–5937 (2017). https://doi.org/10.1021/acs.nanolett.7b01796
B.J. Shields, Q.P. Unterreithmeier, N.P. de Leon, H. Park, M.D. Lukin, Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015). https://doi.org/10.1103/physrevlett.114.136402
I.A. Khramtsov, D.Y. Fedyanin, On-demand generation of high-purity single-photon pulses by NV centers in diamond under electrical excitation, in Frontiers in Optics / Laser Science, OSA Technical Digest, ed by B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, (Optical Society of America, 2020), paper FW4C.7. https://doi.org/10.1364/FIO.2020.FW4C.7
M. Niethammer, M. Widmann, T. Rendler, N. Morioka, Y.-C. Chen et al., Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019). https://doi.org/10.1038/s41467-019-13545-z
P. Siyushev, M. Nesladek, E. Bourgeois, M. Gulka, J. Hruby et al., Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 363, 728–731 (2019). https://doi.org/10.1126/science.aav2789