Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn–Air Batteries
Corresponding Author: Zuofeng Chen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 126
Abstract
Metal–air batteries, like Zn–air batteries (ZABs) are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) was prepared through a strategy of coordination construction–cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support, leading to improved electric conductivity, accelerated reaction kinetics, and optimized adsorption energy for intermediates of ORR and OER. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential (E1/2) of ORR and the potential at 10 mA cm‒2 (Ej=10) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test (360 h, 15 days). A sodium polyacrylate (PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity. The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.
Highlights:
1 A novel heterostructured bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) is prepared through a strategy of coordination construction-cation exchange-pyrolysis.
2 The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which can be used in liquid and flexible quasi-solid-state rechargeable Zn–air batteries.
3 The density functional theory calculations reveal optimized adsorption energies for intermediates of ORR and OER on heterostructured Co/CoFe@NC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.-Q. Li, S.-Y. Zhang, B. Wang, Z.-J. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 11, 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
- S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- B.B. Guo, R.G. Ma, Z.C. Li, S.K. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn–air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun et al., A stable bifunctional catalyst for rechargeable Zinc-air batteries: iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem. Int. Ed. 57, 16166–16170 (2018). https://doi.org/10.1002/anie.201809009
- C. Hu, Y. Lin, J.W. Connell, H.M. Cheng, Y. Gogotsi et al., Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019). https://doi.org/10.1002/adma.201806128
- D. Ji, J. Sun, L. Tian, A. Chinnappan, T. Zhang et al., Engineering of the heterointerface of porous carbon nanofiber–supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis. Adv. Funct. Mater. 30, 1910568 (2020). https://doi.org/10.1002/adfm.201910568
- Z. Zhang, Y.P. Deng, Z. Xing, D. Luo, S. Sy et al., “Ship in a Bottle” design of highly efficient bifunctional electrocatalysts for long-lasting rechargeable Zn–air batteries. ACS Nano 13, 7062–7072 (2019). https://doi.org/10.1021/acsnano.9b02315
- H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu et al., Oxygen reduction reactions of Fe-NC catalysts: current status and the way forward. Electrochem. Energy Rev. 2, 252–276 (2019). https://doi.org/10.1007/s41918-019-00030-w
- Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon et al., 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy Environ. Sci. 12, 2830–2841 (2019). https://doi.org/10.1039/c9ee01899a
- J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
- L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao et al., Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn–air batteries. Adv. Funct. Mater. 27, 1703779 (2017). https://doi.org/10.1002/adfm.201703779
- W.-T. He, R.-G. Ma, Y.-F. Zhu, M.-J. Yang, J.-C. Wang, Renewable porous carbons prepared by KOH activation as oxygen reduction electrocatalysts. J. Inorg. Mater. 34, 1115–1122 (2019). https://doi.org/10.15541/jim20190036
- Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat et al., In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6, 1443–1453 (2018). https://doi.org/10.1039/c7ta09958d
- W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li et al., Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery. Adv. Funct. Mater. 28, 1706675 (2018). https://doi.org/10.1002/adfm.201706675
- A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
- Y. Niu, X. Huang, W. Hu, Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 332, 305–311 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.130
- J. Liu, T. He, Q. Wang, Z. Zhou, Y. Zhang et al., Confining ultrasmall bimetallic alloys in porous N-carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. J. Mater. Chem. 7, 12451–12456 (2019). https://doi.org/10.1039/C9TA02264C
- D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li et al., Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn–air batteries. Appl. Catal. B Environ. 268, 118729 (2020). https://doi.org/10.1016/j.apcatb.2020.118729
- H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu et al., NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn–air batteries. Nano Energy 68, 104293 (2020). https://doi.org/10.1016/j.nanoen.2019.104293
- D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable Zinc–air batteries. Adv. Funct. Mater. 30, 1908167 (2019). https://doi.org/10.1002/adfm.201908167
- D. Bin, B. Yang, C. Li, Y. Liu, X. Zhang et al., In situ growth of NiFe Alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries. ACS Appl. Mater. Interfaces 10, 26178–26187 (2018). https://doi.org/10.1021/acsami.8b04940
- P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun et al., Self-powered water-splitting devices by core-shell NiFe@N-Graphite-based Zn–air batteries. Adv. Funct. Mater. 28, 1706928 (2018). https://doi.org/10.1002/adfm.201706928
- S. Sultan, J.N. Tiwari, J.-H. Jang, A.M. Harzandi, F. Salehnia et al., Highly efficient oxygen reduction reaction activity of graphitic tube encapsulating nitrided CoxFey alloy. Adv. Energy Mater. 8, 1801002 (2018). https://doi.org/10.1002/aenm.201801002
- A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide et al., Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed. 55, 4087–4091 (2016). https://doi.org/10.1002/anie.201509382
- H. Ning, G. Li, Y. Chen, K. Zhang, Z. Gong et al., Porous N-doped carbon-encapsulated CoNi Alloy nanoparticles derived from MOFs as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 11, 1957–1968 (2019). https://doi.org/10.1021/acsami.8b13290
- S.L. Zhang, B.Y. Guan, X.W.D. Lou, Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15, 1805324 (2019). https://doi.org/10.1002/smll.201805324
- Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei et al., A flexible rechargeable Zinc–air battery with excellent low-temperature adaptability. Angew. Chem. Int. Ed. 132, 4823–4829 (2020). https://doi.org/10.1002/ange.201915836
- C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv. Mater. 29, 1703185 (2017). https://doi.org/10.1002/adma.201703185
- C. Hu, Y. Shi, C. Sun, S. Liang, S. Bao et al., Facile preparation of ion-doped poly(p-phenylenediamine) nanoparticles for photothermal therapy. Chem. Commun. 54, 4862–4865 (2018). https://doi.org/10.1039/c8cc01100a
- Y. Jiang, Y.P. Deng, R. Liang, J. Fu, D. Luo et al., Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn–air batteries. Adv. Energy Mater. 9, 1900911 (2019). https://doi.org/10.1002/aenm.201900911
- L. Ji, J. Wang, X. Teng, H. Dong, X. He et al., N, P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl. Mater. Interfaces 10, 14632–14640 (2018). https://doi.org/10.1021/acsami.8b00363
- J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen et al., Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 32, 1905679 (2020). https://doi.org/10.1002/adma.201905679
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 31, 1902339 (2019). https://doi.org/10.1002/adma.201902339
- X. Zheng, Y. Cao, X. Zheng, M. Cai, J. Zhang et al., Engineering interface and oxygen vacancies of NixCo1−xSe2 to boost oxygen catalysis for flexible Zn–air batteries. ACS Appl. Mater. Interfaces 11, 27964–27972 (2019). https://doi.org/10.1021/acsami.9b08424
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
- H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, X. Cui et al., Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state Zinc-air batteries. Energy Storage Mater. 15, 124–130 (2018). https://doi.org/10.1016/j.ensm.2018.03.022
- Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn–air batteries to drive water splitting. Small 16, 1906735 (2020). https://doi.org/10.1002/smll.201906735
- H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu et al., MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B Environ. 250, 143–149 (2019). https://doi.org/10.1016/j.apcatb.2019.03.013
- Z. Cai, D. Zhou, M. Wang, S.M. Bak, Y. Wu et al., Introducing Fe(2+) into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57, 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
- K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
- D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). https://doi.org/10.1021/ja511559d
- I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525
- Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060–4063 (2007). https://doi.org/10.1002/anie.200700894
- A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 5, 4819–4824 (2015). https://doi.org/10.1021/acscatal.5b01037
- Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li et al., Solid-state rechargeable Zn//NiCo and Zn–air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 8, 1802288 (2018). https://doi.org/10.1002/aenm.201802288
- Z. Pei, Y. Huang, Z. Tang, L. Ma, Z. Liu et al., Enabling highly efficient, flexible and rechargeable quasi-solid-state Zn–air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Mater. 20, 234–242 (2019). https://doi.org/10.1016/j.ensm.2018.11.010
References
B.-Q. Li, S.-Y. Zhang, B. Wang, Z.-J. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 11, 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
B.B. Guo, R.G. Ma, Z.C. Li, S.K. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn–air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
X. Liu, L. Wang, P. Yu, C. Tian, F. Sun et al., A stable bifunctional catalyst for rechargeable Zinc-air batteries: iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem. Int. Ed. 57, 16166–16170 (2018). https://doi.org/10.1002/anie.201809009
C. Hu, Y. Lin, J.W. Connell, H.M. Cheng, Y. Gogotsi et al., Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019). https://doi.org/10.1002/adma.201806128
D. Ji, J. Sun, L. Tian, A. Chinnappan, T. Zhang et al., Engineering of the heterointerface of porous carbon nanofiber–supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis. Adv. Funct. Mater. 30, 1910568 (2020). https://doi.org/10.1002/adfm.201910568
Z. Zhang, Y.P. Deng, Z. Xing, D. Luo, S. Sy et al., “Ship in a Bottle” design of highly efficient bifunctional electrocatalysts for long-lasting rechargeable Zn–air batteries. ACS Nano 13, 7062–7072 (2019). https://doi.org/10.1021/acsnano.9b02315
H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu et al., Oxygen reduction reactions of Fe-NC catalysts: current status and the way forward. Electrochem. Energy Rev. 2, 252–276 (2019). https://doi.org/10.1007/s41918-019-00030-w
Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon et al., 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy Environ. Sci. 12, 2830–2841 (2019). https://doi.org/10.1039/c9ee01899a
J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao et al., Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn–air batteries. Adv. Funct. Mater. 27, 1703779 (2017). https://doi.org/10.1002/adfm.201703779
W.-T. He, R.-G. Ma, Y.-F. Zhu, M.-J. Yang, J.-C. Wang, Renewable porous carbons prepared by KOH activation as oxygen reduction electrocatalysts. J. Inorg. Mater. 34, 1115–1122 (2019). https://doi.org/10.15541/jim20190036
Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat et al., In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6, 1443–1453 (2018). https://doi.org/10.1039/c7ta09958d
W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li et al., Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery. Adv. Funct. Mater. 28, 1706675 (2018). https://doi.org/10.1002/adfm.201706675
A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
Y. Niu, X. Huang, W. Hu, Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 332, 305–311 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.130
J. Liu, T. He, Q. Wang, Z. Zhou, Y. Zhang et al., Confining ultrasmall bimetallic alloys in porous N-carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. J. Mater. Chem. 7, 12451–12456 (2019). https://doi.org/10.1039/C9TA02264C
D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li et al., Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn–air batteries. Appl. Catal. B Environ. 268, 118729 (2020). https://doi.org/10.1016/j.apcatb.2020.118729
H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu et al., NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn–air batteries. Nano Energy 68, 104293 (2020). https://doi.org/10.1016/j.nanoen.2019.104293
D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable Zinc–air batteries. Adv. Funct. Mater. 30, 1908167 (2019). https://doi.org/10.1002/adfm.201908167
D. Bin, B. Yang, C. Li, Y. Liu, X. Zhang et al., In situ growth of NiFe Alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries. ACS Appl. Mater. Interfaces 10, 26178–26187 (2018). https://doi.org/10.1021/acsami.8b04940
P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun et al., Self-powered water-splitting devices by core-shell NiFe@N-Graphite-based Zn–air batteries. Adv. Funct. Mater. 28, 1706928 (2018). https://doi.org/10.1002/adfm.201706928
S. Sultan, J.N. Tiwari, J.-H. Jang, A.M. Harzandi, F. Salehnia et al., Highly efficient oxygen reduction reaction activity of graphitic tube encapsulating nitrided CoxFey alloy. Adv. Energy Mater. 8, 1801002 (2018). https://doi.org/10.1002/aenm.201801002
A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide et al., Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed. 55, 4087–4091 (2016). https://doi.org/10.1002/anie.201509382
H. Ning, G. Li, Y. Chen, K. Zhang, Z. Gong et al., Porous N-doped carbon-encapsulated CoNi Alloy nanoparticles derived from MOFs as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 11, 1957–1968 (2019). https://doi.org/10.1021/acsami.8b13290
S.L. Zhang, B.Y. Guan, X.W.D. Lou, Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15, 1805324 (2019). https://doi.org/10.1002/smll.201805324
Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei et al., A flexible rechargeable Zinc–air battery with excellent low-temperature adaptability. Angew. Chem. Int. Ed. 132, 4823–4829 (2020). https://doi.org/10.1002/ange.201915836
C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv. Mater. 29, 1703185 (2017). https://doi.org/10.1002/adma.201703185
C. Hu, Y. Shi, C. Sun, S. Liang, S. Bao et al., Facile preparation of ion-doped poly(p-phenylenediamine) nanoparticles for photothermal therapy. Chem. Commun. 54, 4862–4865 (2018). https://doi.org/10.1039/c8cc01100a
Y. Jiang, Y.P. Deng, R. Liang, J. Fu, D. Luo et al., Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn–air batteries. Adv. Energy Mater. 9, 1900911 (2019). https://doi.org/10.1002/aenm.201900911
L. Ji, J. Wang, X. Teng, H. Dong, X. He et al., N, P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl. Mater. Interfaces 10, 14632–14640 (2018). https://doi.org/10.1021/acsami.8b00363
J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen et al., Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 32, 1905679 (2020). https://doi.org/10.1002/adma.201905679
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 31, 1902339 (2019). https://doi.org/10.1002/adma.201902339
X. Zheng, Y. Cao, X. Zheng, M. Cai, J. Zhang et al., Engineering interface and oxygen vacancies of NixCo1−xSe2 to boost oxygen catalysis for flexible Zn–air batteries. ACS Appl. Mater. Interfaces 11, 27964–27972 (2019). https://doi.org/10.1021/acsami.9b08424
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, X. Cui et al., Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state Zinc-air batteries. Energy Storage Mater. 15, 124–130 (2018). https://doi.org/10.1016/j.ensm.2018.03.022
Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn–air batteries to drive water splitting. Small 16, 1906735 (2020). https://doi.org/10.1002/smll.201906735
H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu et al., MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B Environ. 250, 143–149 (2019). https://doi.org/10.1016/j.apcatb.2019.03.013
Z. Cai, D. Zhou, M. Wang, S.M. Bak, Y. Wu et al., Introducing Fe(2+) into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57, 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). https://doi.org/10.1021/ja511559d
I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525
Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060–4063 (2007). https://doi.org/10.1002/anie.200700894
A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 5, 4819–4824 (2015). https://doi.org/10.1021/acscatal.5b01037
Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li et al., Solid-state rechargeable Zn//NiCo and Zn–air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 8, 1802288 (2018). https://doi.org/10.1002/aenm.201802288
Z. Pei, Y. Huang, Z. Tang, L. Ma, Z. Liu et al., Enabling highly efficient, flexible and rechargeable quasi-solid-state Zn–air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Mater. 20, 234–242 (2019). https://doi.org/10.1016/j.ensm.2018.11.010