Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage
Corresponding Author: Jie Shu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 139
Abstract
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Highlights:
1 Zero capacity fading after over 3000 cycles at 1 C.
2 Only 6.4% capacity is lost when rate is increased by 50 times.
3 Diffusion mechanism of formation and fracture of hydrogen bonds is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Li, W.R. McKinnon, J.R. Dahn, Lithium intercalation from aqueous solutions. J. Electrochem. Soc. 141, 2310 (1994). https://doi.org/10.1557/PROC-369-69
- D.W. Su, A. McDonagh, S.-Z. Qiao, G.X. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
- S.L. Yu, Y. Li, Y.H. Lu, B. Xu, Q.T. Wang et al., A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries. J. Power Sources 275, 45 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.196
- A. Ramanujapuram, D. Gordon, A. Magasinski, B. Ward, N. Nitta et al., Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes. Energy Environ. Sci. 9, 1841 (2016). https://doi.org/10.1039/C6EE00093B
- T.T. Liu, X. Cheng, H.X. Yu, H.J. Zhu, N. Peng et al., An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68 (2019). https://doi.org/10.1016/j.ensm.2018.09.02
- S.G. Chen, R. Lan, J. Humphreys, S.W. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
- M.T. Liu, K. Turcheniuk, W.B. Fu, Y. Yang, M. Liu et al., Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes. Nano Energy 71, 104627 (2020). https://doi.org/10.1016/j.nanoen.2020.104621
- J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30, 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- M.T. Xia, X.K. Zhang, T.T. Liu, H.X. Yu, S. Chen et al., Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 394, 124923 (2020). https://doi.org/10.1016/j.cej.2020.124923
- Y.Q. Zhang, G. Liu, C.H. Zhang, Q.G. Chi, T.D. Zhang et al., Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chem. Eng. J. 392, 123652 (2020). https://doi.org/10.1016/j.cej.2019.123653
- M. Liao, J.W. Wang, L. Ye, H. Sun, Y.Z. Wen et al., A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem. Int. Ed. 59, 2273 (2020). https://doi.org/10.1002/anie.201912203
- M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489 (2020). https://doi.org/10.1021/acsami.9b20129
- S.L. Liu, P.P. Wang, C. Liu, Y.D. Deng, S.M. Dou et al., Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries. Small 16, 2002856 (2020). https://doi.org/10.1002/smll.202002856
- L. Yan, J.H. Huang, Z.W. Guo, X.L. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685 (2020). https://doi.org/10.1021/acsenergylett.0c00109
- M.T. Xia, X.K. Zhang, H.X. Yu, Z.W. Yang, S. Chen et al., Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127759
- X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu et al., Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127767
- X.F. Wang, Y.M. Xie, K. Tang, C. Wang, C.L. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen ion storage. Angew. Chem. Int. Ed. 57, 11569 (2018). https://doi.org/10.1002/anie.201803664
- Z. Chen, Y.T. Peng, F. Liu, Z.Y. Le, J. Zhu et al., Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett. 15, 6802 (2015). https://doi.org/10.1021/acs.nanolett.5b02642
- C.Y. Li, D.X. Zhang, F.X. Ma, T.Y. Ma, J. Wang et al., A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery. Chemsuschem 12, 3732 (2019). https://doi.org/10.1002/cssc.201901622
- D.L. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5, 1357 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
- S.F. Kuchena, Y. Wang, Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 3, 11690 (2020). https://doi.org/10.1021/acsaem.0c01791
- Y.D. Zhang, Y.F. An, B. Yin, J.M. Jiang, S.Y. Dong et al., A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7, 11314 (2019). https://doi.org/10.1039/C9TA00254E
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 60, 5718 (2013). https://doi.org/10.1126/science.1241488
- X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernande et al., Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026 (2017). https://doi.org/10.1002/anie.201707473
- M. Xie, W. Zhao, Y.L. Mao, F.Q. Huang, K0.38(H2O)0.82MoS2 as a universal host for rechargeable aqueous cation (K+, Na+, Li+, NH4+, Mg2+, Al3+) batteries. Dalton Trans. 49, 3488 (2020). https://doi.org/10.1039/d0dt00471e
- D.X. Yu, Z.X. Wei, X.Y. Zhang, Y. Zeng, C.Z. Wang et al., Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 31, 2008743 (2021). https://doi.org/10.1002/adfm.202008743
- S.Y. Dong, W. Shin, H. Jiang, X.Y. Wu, Z.F. Li et al., Ultra-fast NH4+ storage: Strong H bonding between NH4+ and bi-layered V2O5. Chem 5, 1 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
- G.J. Liang, Y.L. Wang, Z.D. Huang, F.N. Mo, X.L. Li et al., Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32, 1907802 (2020). https://doi.org/10.1002/adma.201907802
- B.Q. Wang, Y. Ha, Y.T. Chen, Y.J. Xu, H.G. Pan et al., Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J. Mater. Chem. A 6, 8947 (2018). https://doi.org/10.1039/c8ta02291g
- B.Q. Wang, Y. Han, X. Wang, N. Bahlawane, H.G. Pan et al., Prussian blue analogs for rechargeable batteries. iScience 3, 110 (2018). https://doi.org/10.1016/j.isci.2018.04.008
- Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315 (2016). https://doi.org/10.1002/adfm.201600747
- C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 4, 991 (2019). https://doi.org/10.1039/C8NH00484F
- X.Y. Wu, C.H. Wu, C.X. Wei, L. Hu, J.F. Qian et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393 (2016). https://doi.org/10.1021/acsami.5b12620
- D.-M. Kim, Y.J. Kim, D. Arumugam, S.W. Woo, Y.N. Jo et al., Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl. Mater. Interfaces 8, 8554 (2016). https://doi.org/10.1021/acsami.6b01352
- L. Chen, H.Z. Shao, X.F. Zhou, G.Q. Liu, J. Jiang et al., Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 7, 11982 (2016). https://doi.org/10.1038/ncomms11982
- L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495 (2019). https://doi.org/10.1038/s41560-019-0388-0
- B.X. Xie, P.J. Zuo, L.G. Wang, J.J. Wang, H. Huo et al., Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 61, 201 (2019). https://doi.org/10.1016/j.nanoen.2019.04.059
- X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J.J. Hong et al., NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077 (2018). https://doi.org/10.1021/acsaem.8b00789
- W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, Electrochemical properties and redox mechanism of Na2Ni0.4Co06[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. J. Phys. Chem. C 121, 27805 (2017). https://doi.org/10.1021/acs.jpcc.7b07920
- B.Q. Wang, X. Wang, C. Liang, M. Yan, Y.Z. Jiang, An all-Prussian-blue-based aqueous sodium-ion battery. ChemElectroChem 6, 4848 (2019). https://doi.org/10.1002/celc.201901223
- X. Wang, B.Q. Wang, Y.X. Tang, B.B. Xu, C. Liang et al., Manganese hexacyanoferrate reinforced by PEDOT coating toward high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 8, 3222 (2020). https://doi.org/10.1039/C9TA12376H
- D.X. Zuo, C.P. Wang, J.W. Wu, H.J. Qiu, Q. Zhang et al., Comprehensive study of Na2-xMnFe(CN)6·yH2O cathodes with cube morphology: Structure, valence state and electrochemical properties. Solid State Ionics 340, 115025 (2019). https://doi.org/10.1016/j.ssi.2019.115025
- J. Han, A. Mariani, H. Zhang, M. Zarrabeitia, X.P. Gao et al., Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. Energy Storage Mater. 30, 196 (2020). https://doi.org/10.1016/j.ensm.2020.04.028
- B.Q. Wang, S.Y. Liu, W.P. Sun, Y.X. Tang, H.G. Pan et al., Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs. Chemsuschem 12, 2415 (2019). https://doi.org/10.1002/cssc.201900582
- G.Y. Du, M.L. Tao, J. Li, T.T. Yang, W. Gao et al., Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater. 10, 1903351 (2019). https://doi.org/10.1002/aenm.201903351
- K.J. Zhu, Z.P. Li, T. Jin, L.F. Jiao, Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries. J. Mater. Chem. A 8, 21103 (2020). https://doi.org/10.1039/D0TA06979E
- M.A. Lumley, D.-H. Nam, K.-S. Choi, Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater desalination. ACS Appl. Mater. Interfaces 12, 36014 (2020). https://doi.org/10.1021/acsami.0c08084
- G. Kasiri, J. Glenneberg, R. Kun, G. Zampardi, F.L. Mantia, Microstructural changes of Prussian blue derivatives during cycling in zinc containing electrolytes. ChemElectroChem 7, 3301 (2020). https://doi.org/10.1002/celc.202000886
- Y. Liu, D.D. He, Y.J. Cheng, L. Li, Z.S. Lu et al., A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery. Small 16, 1906964 (2020). https://doi.org/10.1002/smll.201906946
- X.Y. Wu, Y. Luo, M.Y. Sun, J.F. Qian, Y.L. Cao et al., Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006
- J. Wang, C.H. Mi, P. Nie, S.Y. Dong, S.Y. Tang et al., Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. J. Electroanal. Chem. 818, 10 (2018). https://doi.org/10.1016/j.jelechem.2018.04.011
- D.P. Cai, X.H. Yang, B.H. Qu, T.H. Wang, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun. 53, 6780 (2017). https://doi.org/10.1039/C7CC02516E
- X.-Y. Wu, M.-Y. Sun, Y.-F. Shen, J.-F. Qian, Y.-L. Cao et al., Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7, 407 (2014). https://doi.org/10.1002/cssc.201301036
- X.Y. Wu, M.Y. Sun, S.M. Guo, J.F. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium ion batteries. ChemNanoMat 1, 188 (2015). https://doi.org/10.1002/cnma.201500021
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/NMAT3601
- Y.J. Mao, Y.T. Chen, J. Qin, C.S. Shi, E.Z. Liu et al., Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced Prussian blue for high performance Na-ion battery cathode. Nano Energy 58, 192 (2019). https://doi.org/10.1016/j.nanoen.2019.01.048
- D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146 (2010). https://doi.org/10.1038/NMAT2612
- N. Sa, T.L. Kinnibrugh, H. Wang, G.S. Gautam, K.W. Chapman et al., Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28, 2962 (2016). https://doi.org/10.1021/acs.chemmater.6b00026
- M.C. Xu, K.D.M. Harris, J.M. Thomas, In situ solid-state 1H NMR studies of hydration of the solid acid catalyst ZSM-5 in its ammonium form. Solid State Nucl. Mag. 35, 93 (2019). https://doi.org/10.1016/j.ssnmr.2008.12.011
- H.-J. Lunk, H. Hartl, M.A. Hartl, M.J.G. Fait, I.G. Shenderovich et al., “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries. Inorg. Chem. 49, 9400 (2010). https://doi.org/10.1021/ic101103g
- S. Selvasekarapandian, M. Hema, J. Kawamura, O. Kamishima, R. Baskaran, Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J. Phys. Soc. Jpn. 79, 163 (2010). https://doi.org/10.1143/jpsjs.79sa.163
- G. Ali, J.-H. Lee, D. Susanto, S.-W. Choi, B.W. Cho et al., Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS Appl. Mater. Interfaces 8, 15422 (2016). https://doi.org/10.1021/acsami.6b04014
References
W. Li, W.R. McKinnon, J.R. Dahn, Lithium intercalation from aqueous solutions. J. Electrochem. Soc. 141, 2310 (1994). https://doi.org/10.1557/PROC-369-69
D.W. Su, A. McDonagh, S.-Z. Qiao, G.X. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
S.L. Yu, Y. Li, Y.H. Lu, B. Xu, Q.T. Wang et al., A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries. J. Power Sources 275, 45 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.196
A. Ramanujapuram, D. Gordon, A. Magasinski, B. Ward, N. Nitta et al., Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes. Energy Environ. Sci. 9, 1841 (2016). https://doi.org/10.1039/C6EE00093B
T.T. Liu, X. Cheng, H.X. Yu, H.J. Zhu, N. Peng et al., An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68 (2019). https://doi.org/10.1016/j.ensm.2018.09.02
S.G. Chen, R. Lan, J. Humphreys, S.W. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
M.T. Liu, K. Turcheniuk, W.B. Fu, Y. Yang, M. Liu et al., Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes. Nano Energy 71, 104627 (2020). https://doi.org/10.1016/j.nanoen.2020.104621
J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30, 2001263 (2020). https://doi.org/10.1002/adfm.202001263
M.T. Xia, X.K. Zhang, T.T. Liu, H.X. Yu, S. Chen et al., Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 394, 124923 (2020). https://doi.org/10.1016/j.cej.2020.124923
Y.Q. Zhang, G. Liu, C.H. Zhang, Q.G. Chi, T.D. Zhang et al., Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chem. Eng. J. 392, 123652 (2020). https://doi.org/10.1016/j.cej.2019.123653
M. Liao, J.W. Wang, L. Ye, H. Sun, Y.Z. Wen et al., A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem. Int. Ed. 59, 2273 (2020). https://doi.org/10.1002/anie.201912203
M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489 (2020). https://doi.org/10.1021/acsami.9b20129
S.L. Liu, P.P. Wang, C. Liu, Y.D. Deng, S.M. Dou et al., Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries. Small 16, 2002856 (2020). https://doi.org/10.1002/smll.202002856
L. Yan, J.H. Huang, Z.W. Guo, X.L. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685 (2020). https://doi.org/10.1021/acsenergylett.0c00109
M.T. Xia, X.K. Zhang, H.X. Yu, Z.W. Yang, S. Chen et al., Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127759
X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu et al., Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127767
X.F. Wang, Y.M. Xie, K. Tang, C. Wang, C.L. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen ion storage. Angew. Chem. Int. Ed. 57, 11569 (2018). https://doi.org/10.1002/anie.201803664
Z. Chen, Y.T. Peng, F. Liu, Z.Y. Le, J. Zhu et al., Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett. 15, 6802 (2015). https://doi.org/10.1021/acs.nanolett.5b02642
C.Y. Li, D.X. Zhang, F.X. Ma, T.Y. Ma, J. Wang et al., A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery. Chemsuschem 12, 3732 (2019). https://doi.org/10.1002/cssc.201901622
D.L. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5, 1357 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
S.F. Kuchena, Y. Wang, Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 3, 11690 (2020). https://doi.org/10.1021/acsaem.0c01791
Y.D. Zhang, Y.F. An, B. Yin, J.M. Jiang, S.Y. Dong et al., A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7, 11314 (2019). https://doi.org/10.1039/C9TA00254E
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 60, 5718 (2013). https://doi.org/10.1126/science.1241488
X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernande et al., Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026 (2017). https://doi.org/10.1002/anie.201707473
M. Xie, W. Zhao, Y.L. Mao, F.Q. Huang, K0.38(H2O)0.82MoS2 as a universal host for rechargeable aqueous cation (K+, Na+, Li+, NH4+, Mg2+, Al3+) batteries. Dalton Trans. 49, 3488 (2020). https://doi.org/10.1039/d0dt00471e
D.X. Yu, Z.X. Wei, X.Y. Zhang, Y. Zeng, C.Z. Wang et al., Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 31, 2008743 (2021). https://doi.org/10.1002/adfm.202008743
S.Y. Dong, W. Shin, H. Jiang, X.Y. Wu, Z.F. Li et al., Ultra-fast NH4+ storage: Strong H bonding between NH4+ and bi-layered V2O5. Chem 5, 1 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
G.J. Liang, Y.L. Wang, Z.D. Huang, F.N. Mo, X.L. Li et al., Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32, 1907802 (2020). https://doi.org/10.1002/adma.201907802
B.Q. Wang, Y. Ha, Y.T. Chen, Y.J. Xu, H.G. Pan et al., Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J. Mater. Chem. A 6, 8947 (2018). https://doi.org/10.1039/c8ta02291g
B.Q. Wang, Y. Han, X. Wang, N. Bahlawane, H.G. Pan et al., Prussian blue analogs for rechargeable batteries. iScience 3, 110 (2018). https://doi.org/10.1016/j.isci.2018.04.008
Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315 (2016). https://doi.org/10.1002/adfm.201600747
C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 4, 991 (2019). https://doi.org/10.1039/C8NH00484F
X.Y. Wu, C.H. Wu, C.X. Wei, L. Hu, J.F. Qian et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393 (2016). https://doi.org/10.1021/acsami.5b12620
D.-M. Kim, Y.J. Kim, D. Arumugam, S.W. Woo, Y.N. Jo et al., Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl. Mater. Interfaces 8, 8554 (2016). https://doi.org/10.1021/acsami.6b01352
L. Chen, H.Z. Shao, X.F. Zhou, G.Q. Liu, J. Jiang et al., Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 7, 11982 (2016). https://doi.org/10.1038/ncomms11982
L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495 (2019). https://doi.org/10.1038/s41560-019-0388-0
B.X. Xie, P.J. Zuo, L.G. Wang, J.J. Wang, H. Huo et al., Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 61, 201 (2019). https://doi.org/10.1016/j.nanoen.2019.04.059
X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J.J. Hong et al., NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077 (2018). https://doi.org/10.1021/acsaem.8b00789
W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, Electrochemical properties and redox mechanism of Na2Ni0.4Co06[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. J. Phys. Chem. C 121, 27805 (2017). https://doi.org/10.1021/acs.jpcc.7b07920
B.Q. Wang, X. Wang, C. Liang, M. Yan, Y.Z. Jiang, An all-Prussian-blue-based aqueous sodium-ion battery. ChemElectroChem 6, 4848 (2019). https://doi.org/10.1002/celc.201901223
X. Wang, B.Q. Wang, Y.X. Tang, B.B. Xu, C. Liang et al., Manganese hexacyanoferrate reinforced by PEDOT coating toward high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 8, 3222 (2020). https://doi.org/10.1039/C9TA12376H
D.X. Zuo, C.P. Wang, J.W. Wu, H.J. Qiu, Q. Zhang et al., Comprehensive study of Na2-xMnFe(CN)6·yH2O cathodes with cube morphology: Structure, valence state and electrochemical properties. Solid State Ionics 340, 115025 (2019). https://doi.org/10.1016/j.ssi.2019.115025
J. Han, A. Mariani, H. Zhang, M. Zarrabeitia, X.P. Gao et al., Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. Energy Storage Mater. 30, 196 (2020). https://doi.org/10.1016/j.ensm.2020.04.028
B.Q. Wang, S.Y. Liu, W.P. Sun, Y.X. Tang, H.G. Pan et al., Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs. Chemsuschem 12, 2415 (2019). https://doi.org/10.1002/cssc.201900582
G.Y. Du, M.L. Tao, J. Li, T.T. Yang, W. Gao et al., Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater. 10, 1903351 (2019). https://doi.org/10.1002/aenm.201903351
K.J. Zhu, Z.P. Li, T. Jin, L.F. Jiao, Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries. J. Mater. Chem. A 8, 21103 (2020). https://doi.org/10.1039/D0TA06979E
M.A. Lumley, D.-H. Nam, K.-S. Choi, Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater desalination. ACS Appl. Mater. Interfaces 12, 36014 (2020). https://doi.org/10.1021/acsami.0c08084
G. Kasiri, J. Glenneberg, R. Kun, G. Zampardi, F.L. Mantia, Microstructural changes of Prussian blue derivatives during cycling in zinc containing electrolytes. ChemElectroChem 7, 3301 (2020). https://doi.org/10.1002/celc.202000886
Y. Liu, D.D. He, Y.J. Cheng, L. Li, Z.S. Lu et al., A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery. Small 16, 1906964 (2020). https://doi.org/10.1002/smll.201906946
X.Y. Wu, Y. Luo, M.Y. Sun, J.F. Qian, Y.L. Cao et al., Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006
J. Wang, C.H. Mi, P. Nie, S.Y. Dong, S.Y. Tang et al., Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. J. Electroanal. Chem. 818, 10 (2018). https://doi.org/10.1016/j.jelechem.2018.04.011
D.P. Cai, X.H. Yang, B.H. Qu, T.H. Wang, Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries. Chem. Commun. 53, 6780 (2017). https://doi.org/10.1039/C7CC02516E
X.-Y. Wu, M.-Y. Sun, Y.-F. Shen, J.-F. Qian, Y.-L. Cao et al., Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7, 407 (2014). https://doi.org/10.1002/cssc.201301036
X.Y. Wu, M.Y. Sun, S.M. Guo, J.F. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium ion batteries. ChemNanoMat 1, 188 (2015). https://doi.org/10.1002/cnma.201500021
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/NMAT3601
Y.J. Mao, Y.T. Chen, J. Qin, C.S. Shi, E.Z. Liu et al., Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced Prussian blue for high performance Na-ion battery cathode. Nano Energy 58, 192 (2019). https://doi.org/10.1016/j.nanoen.2019.01.048
D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146 (2010). https://doi.org/10.1038/NMAT2612
N. Sa, T.L. Kinnibrugh, H. Wang, G.S. Gautam, K.W. Chapman et al., Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28, 2962 (2016). https://doi.org/10.1021/acs.chemmater.6b00026
M.C. Xu, K.D.M. Harris, J.M. Thomas, In situ solid-state 1H NMR studies of hydration of the solid acid catalyst ZSM-5 in its ammonium form. Solid State Nucl. Mag. 35, 93 (2019). https://doi.org/10.1016/j.ssnmr.2008.12.011
H.-J. Lunk, H. Hartl, M.A. Hartl, M.J.G. Fait, I.G. Shenderovich et al., “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries. Inorg. Chem. 49, 9400 (2010). https://doi.org/10.1021/ic101103g
S. Selvasekarapandian, M. Hema, J. Kawamura, O. Kamishima, R. Baskaran, Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J. Phys. Soc. Jpn. 79, 163 (2010). https://doi.org/10.1143/jpsjs.79sa.163
G. Ali, J.-H. Lee, D. Susanto, S.-W. Choi, B.W. Cho et al., Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS Appl. Mater. Interfaces 8, 15422 (2016). https://doi.org/10.1021/acsami.6b04014