Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors
Corresponding Author: Shu Yin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 207
Abstract
Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.
Highlights:
1 Various advanced strategies for improving gas sensing performances of molybdenum-based nanostructures are reviewed.
2 The plausible mechanism of enhanced gas sensing properties from each strategy is discussed.
3 The conclusive outlook, challenge, and suggestions for future development toward marked commercialization of molybdenum-based gas sensing devices are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Brunekreef, S.T. Holgate, Air pollution and health. Lancet 360, 1233–1242 (2002). https://doi.org/10.1016/S0140-6736(02)11274-8
- M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151, 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
- J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015). https://doi.org/10.1038/nature15371
- E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams et al., The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47, 11369–11377 (2013). https://doi.org/10.1021/es4022602
- H. Mayer, Air pollution in cities. Atmos. Environ. 33, 4029–4037 (1999). https://doi.org/10.1016/S1352-2310(99)00144-2
- C.K. Chan, X. Yao, Air pollution in mega cities in China. Atmos. Environ. 42, 1–42 (2008). https://doi.org/10.1016/j.atmosenv.2007.09.003
- K.-H. Kim, E. Kabir, S. Kabir, A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143 (2015). https://doi.org/10.1016/j.envint.2014.10.005
- A. Seaton, D. Godden, W. MacNee, K. Donaldson, Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995). https://doi.org/10.1016/S0140-6736(95)90173-6
- J.O. Anderson, J.G. Thundiyil, A. Stolbach, Clearing the Air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8, 166–175 (2012). https://doi.org/10.1007/s13181-011-0203-1
- E. Sanidas, D.P. Papadopoulos, H. Grassos, M. Velliou, K. Tsioufis et al., Air pollution and arterial hypertension. A new risk factor is in the air. J. Am. Soc. Hypertens. 11, 709–715 (2017). https://doi.org/10.1016/j.jash.2017.09.008
- P. Kumar, L. Morawska, C. Martani, G. Biskos, M. Neophytou et al., The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015). https://doi.org/10.1016/j.envint.2014.11.019
- S. Das, M. Pal, Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
- W. Shin, Medical applications of breath hydrogen measurements chemosensors and chemoreception. Anal. Bioanal. Chem. 406, 3931–3939 (2014). https://doi.org/10.1007/s00216-013-7606-6
- Z. Jia, A. Patra, V. Kutty, T. Venkatesan, Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites 9, 52 (2019). https://doi.org/10.3390/metabo9030052
- G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469–5502 (2010). https://doi.org/10.3390/s100605469
- J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuat. B Chem. 140, 319–336 (2009). https://doi.org/10.1016/j.snb.2009.04.026
- M.J. Tierney, H.O.L. Kim, Electrochemical gas sensor with extremely fast response times. Anal. Chem. 65, 3435–3440 (1993). https://doi.org/10.1021/ac00071a017
- M.J. Jory, P.S. Vukusic, J.R. Sambles, Development of a prototype gas sensor using surface plasmon resonance on gratings. Sens. Actuat. B Chem. 17, 203–209 (1994). https://doi.org/10.1016/0925-4005(93)00871-U
- Z. Jin, Y. Su, Y. Duan, Development of a polyaniline-based optical ammonia sensor. Sens. Actuat. B Chem. 72, 75–79 (2001). https://doi.org/10.1016/S0925-4005(00)00636-5
- D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton et al., Design and performance of a microcantilever-based hydrogen sensor. Sens. Actuat. B Chem. 88, 120–131 (2003). https://doi.org/10.1016/S0925-4005(02)00315-5
- A.J. Ricco, S.J. Martin, T.E. Zipperian, Surface acoustic wave gas sensor based on film conductivity changes. Sens. Actuat. 8, 319–333 (1985). https://doi.org/10.1016/0250-6874(85)80031-7
- N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to? Sens. Actuat. B Chem. 121, 18–35 (2007). https://doi.org/10.1016/j.snb.2006.09.047
- N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. from Asia 7, 63–75 (2003). https://doi.org/10.1023/A:1023436725457
- A. Hermawan, Y. Asakura, M. Inada, S. Yin, One-step synthesis of micro-/mesoporous SnO2 spheres by solvothermal method for toluene gas sensor. Ceram. Int. 45, 15435–15444 (2019). https://doi.org/10.1016/j.ceramint.2019.05.043
- A. Hermawan, Y. Asakura, M. Inada, S. Yin, A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature. J. Mater. Sci. Technol. 51, 119–129 (2020). https://doi.org/10.1016/j.jmst.2020.02.041
- H.M.M. Munasinghe Arachchige, D. Zappa, N. Poli, N. Gunawardhana, E. Comini, Gold functionalized MoO3 nano flakes for gas sensing applications. Sens. ActuaT. B Chem. 269, 331–339 (2018). https://doi.org/10.1016/j.snb.2018.04.124
- G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide materials for development of integrated gas sensors - a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004). https://doi.org/10.1080/10408430490888977
- D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
- H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1–23 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
- A. Hermawan, Y. Asakura, M. Kobayashi, M. Kakihana, S. Yin, High temperature hydrogen gas sensing property of GaN prepared from α-GaOOH. Sens. Actuat. B Chem. 276, 388–396 (2018). https://doi.org/10.1016/j.snb.2018.08.021
- A. Shokri, N. Salami, Gas sensor based on MoS2 monolayer. Sens. Actuat. B Chem. 236, 378–385 (2016). https://doi.org/10.1016/j.snb.2016.06.033
- N. Yamazoe, J. Hisamoto, N. Miura, S. Kuwata, Potentiometric solid-state oxygen sensor using lanthanum fluoride operative at room temperature. Sens. Actuat. 12, 415–423 (1987). https://doi.org/10.1016/0250-6874(87)80060-4
- M. Sajjad, P. Feng, Study the gas sensing properties of boron nitride nanosheets. Mater. Res. Bull. 49, 35–38 (2014). https://doi.org/10.1016/j.materresbull.2013.08.019
- C.M. Hung, V.A. Vuong, N. Van Duy, D. Van An, N. Van Hieu et al., Controlled growth of vertically oriented trilayer MoS2 nanoflakes for room-temperature NO2 gas sensor applications. Phys. Status Solidi (2020). https://doi.org/10.1002/pssa.202000004
- M. Yu, H. Shao, G. Wang, F. Yang, C. Liang et al., Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nat. Commun. 11, 1–9 (2020). https://doi.org/10.1038/s41467-020-15216-w
- T. Liu, Z. Liu, 2D MoS2 nanostructures for biomedical applications. Adv. Healthc. Mater. 7, 1–18 (2018). https://doi.org/10.1002/adhm.201701158
- K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Coll. Surf. B Biointerf. 112, 521–524 (2013). https://doi.org/10.1016/j.colsurfb.2013.08.026
- Y. Jiao, A.M. Hafez, D. Cao, A. Mukhopadhyay, Y. Ma et al., Metallic MoS2 for high performance energy storage and energy conversion. Small 14, 1–20 (2018). https://doi.org/10.1002/smll.201800640
- J. Cheng, C. Wang, X. Zou, L. Liao, Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 7, 1–15 (2019). https://doi.org/10.1002/adom.201800441
- E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interf. 11, 11061–11105 (2019). https://doi.org/10.1021/acsami.8b19859
- S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri et al., Electrical conductivity and gas sensing properties of MoO3. Sens. Actuat. B Chem. 101, 161–174 (2004). https://doi.org/10.1016/j.snb.2004.02.048
- I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram et al., Molybdenum oxides – from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017). https://doi.org/10.1002/adma.201701619
- R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5, 1–28 (2020). https://doi.org/10.1002/admt.201901062
- H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang et al., Au nanoparticles modified MoO3 nanosheets with their enhanced properties for gas sensing. Sens. Actuat. B Chem. 236, 201–207 (2016). https://doi.org/10.1016/j.snb.2016.05.139
- S. Zhang, P. Song, J. Zhang, Z. Li, Z. Yang et al., In2O3-functionalized MoO3 heterostructure nanobelts with improved gas-sensing performance. RSC Adv. 6, 50423–50430 (2016). https://doi.org/10.1039/c6ra07292e
- H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Facile fabrication and enhanced gas sensing properties of hierarchical MoO3 nanostructures. RSC Adv. 5, 72728–72735 (2015). https://doi.org/10.1039/c5ra13036k
- X. Luo, K. You, Y. Hu, S. Yang, X. Pan et al., Rapid hydrogen sensing response and aging of α-MoO3 nanowires paper sensor. Int. J. Hydrogen Energy 42, 8399–8405 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.116
- T. Nagyné-Kovács, L. Studnicka, I.E. Lukács, K. László, P. Pasierb et al., Hydrothermal synthesis and gas sensing of monoclinic MoO3 nanosheets. Nanomaterials 10, 891 (2020). https://doi.org/10.3390/nano10050891
- C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 10430–10435 (2006). https://doi.org/10.1021/jp056664i
- T.T.P. Pham, P.H.D. Nguyen, T.T. Vo, H.H.P. Nguyen, C.L. Luu, Facile method for synthesis of nanosized β –MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 45010 (2015). https://doi.org/10.1088/2043-6262/6/4/045010
- L. Zheng, Y. Xu, D. Jin, Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681–5690 (2009). https://doi.org/10.1021/cm9023887
- K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T.W. Reenaas et al., Electronic properties of reduced molybdenum oxides. Phys. Chem. Chem. Phys. 19, 9232–9245 (2017). https://doi.org/10.1039/C7CP00644F
- Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai et al., A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 8, 14903 (2017). https://doi.org/10.1038/ncomms14903
- V. Galstyan, Quantum dots: perspectives in next-generation chemical gas sensors - A review. Anal. Chim. Acta 1152, 238192 (2021). https://doi.org/10.1016/j.aca.2020.12.067
- S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuat. B Chem. 145, 7–12 (2010). https://doi.org/10.1016/j.snb.2009.11.002
- H. Singh, A. Kumar, B.S. Bansod, T. Singh, A. Thakur et al., Enhanced moisture sensing properties of a nanostructured ZnO coated capacitive sensor. RSC Adv. 8, 3839–3845 (2018). https://doi.org/10.1039/c7ra10917b
- S.J. Xiao, X.J. Zhao, P.P. Hu, Z.J. Chu, C.Z. Huang et al., Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2,4,6-trinitrotoluene determination. ACS Appl. Mater. Interfaces 8, 8184–8191 (2016). https://doi.org/10.1021/acsami.5b11316
- N. Wang, D. Tang, H. Zou, S. Jia, Z. Sun et al., Synthesis of molybdenum oxide quantum dots with better dispersity and bio-imaging ability by reduction method. Opt. Mater. 83, 19–27 (2018). https://doi.org/10.1016/j.optmat.2018.05.065
- L. Yuan, Y. Niu, R. Li, L. Zheng, Y. Wang et al., Molybdenum oxide quantum dots prepared via a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J. Mater. Chem. B 6, 3240–3245 (2018). https://doi.org/10.1039/C8TB00475G
- Z. Zhang, Z. Yang, X. Chen, D. Hu, Y. Hong, Facile gradient oxidation synthesizing of highly-fluorescent MoO3 quantum dots for Cr2O72− trace sensing. Inorg. Chem. Commun. 118, 108001 (2020). https://doi.org/10.1016/j.inoche.2020.108001
- X. Lu, R. Wang, L. Hao, F. Yang, W. Jiao et al., Preparation of quantum dots from MoO3 nanosheets by UV irradiation and insight into morphology changes. J. Mater. Chem. C 4, 11449–11456 (2016). https://doi.org/10.1039/C6TC04006C
- T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuat. B Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003
- J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9, 9903–9924 (2009). https://doi.org/10.3390/s91209903
- S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin et al., Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuat. B Chem. 286, 501–511 (2019). https://doi.org/10.1016/j.snb.2019.01.127
- P. Karnati, S. Akbar, P.A. Morris, Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens. Actuat. B Chem. 295, 127–143 (2019). https://doi.org/10.1016/j.snb.2019.05.049
- M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12, 7207–7258 (2012). https://doi.org/10.3390/s120607207
- S. Cao, C. Zhao, J. Xu, A facile synthesis and controlled growth of various MoO3 nanostructures and their gas-sensing properties. SN Appl. Sci. 1, 1–6 (2019). https://doi.org/10.1007/s42452-019-0944-z
- D. Jiang, Y. Wang, W. Wei, F. Li, Y. Li et al., Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature. RSC Adv. 5, 18655–18659 (2015). https://doi.org/10.1039/c4ra16976j
- Y. Mo, Z. Tan, L. Sun, Y. Lu, X. Liu, Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. J. Alloys Compd. 812, 152166 (2020). https://doi.org/10.1016/j.jallcom.2019.152166
- N.L.W. Septiani, Y.V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang et al., Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. Chemsuschem 13, 1645–1655 (2020). https://doi.org/10.1002/cssc.201901364
- M.M.Y.A. Alsaif, S. Balendhran, M.R. Field, K. Latham, W. Wlodarski et al., Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sens. Actuat. B Chem. 192, 196–204 (2014). https://doi.org/10.1016/j.snb.2013.10.107
- M.M.Y.A. Alsaif, M.R. Field, B.J. Murdoch, T. Daeneke, K. Latham et al., Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale 6, 12780–12791 (2014). https://doi.org/10.1039/c4nr03073g
- F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang et al., 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 8, 8696–8703 (2016). https://doi.org/10.1039/c6nr00880a
- F. Rahman, A. Zavabeti, M.A. Rahman, A. Arash, A. Mazumder et al., Dual selective gas sensing characteristics of 2D α-MoO3-x via a facile transfer process. ACS Appl. Mater. Interf. 11, 40189–40195 (2019). https://doi.org/10.1021/acsami.9b11311
- S. Shen, X. Zhang, X. Cheng, Y. Xu, S. Gao et al., Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl. Nano Mater. 2, 8016–8026 (2019). https://doi.org/10.1021/acsanm.9b02072
- P. Bisht, A. Kumar, I.T. Jensen, M. Ahmad, B.D. Belle et al., Enhanced gas sensing response for 2D α-MoO3 layers: thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact. Sens. Actuat. B Chem. 341, 129953 (2021). https://doi.org/10.1016/j.snb.2021.129953
- S. He, W. Li, L. Feng, W. Yang, Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: the case of acidic α-MoO3 nanorods for selective detection of triethylamine. J. Alloys Compd. 783, 574–582 (2019). https://doi.org/10.1016/j.jallcom.2018.12.349
- Q. Zhou, Q. Zhang, H. Liu, C. Hong, G. Wu et al., Research on gas sensing properties of orthorhombic molybdenum oxide based sensor to hydrogen sulfide. J. Nanoelectron. Optoelectron. 12, 1072–1076 (2017). https://doi.org/10.1166/jno.2017.2119
- K. Xu, W. Wei, Y. Sun, W. Lu, T. Yu et al., Design of NiCo2O4 porous nanosheets/α-MoO3 nanorods heterostructures for ppb-level ethanol detection. Powder Technol. 345, 633–642 (2019). https://doi.org/10.1016/j.powtec.2019.01.051
- Y. Xia, R. Feng, C. Wu, S. Wei, A novel net-like α-MoO3 nanowires based sensor for the detection of hydrogen sulphide in asphalt. J. Nanoelectron. Optoelectron. 13, 1235–1238 (2018). https://doi.org/10.1166/jno.2018.2411
- L. Zhang, Z. Liu, L. Jin, B. Zhang, H. Zhang et al., Self-assembly gridding α-MoO3 nanobelts for highly toxic H2 S gas sensors. Sens. Actuat. B Chem. 237, 350–357 (2016). https://doi.org/10.1016/j.snb.2016.06.104
- S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou et al., High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuat. B Chem. 226, 478–485 (2016). https://doi.org/10.1016/j.snb.2015.12.005
- Z. Tang, X. Deng, Y. Zhang, X. Guo, J. Yang et al., MoO3 nanoflakes coupled reduced graphene oxide with enhanced ethanol sensing performance and mechanism. Sens. Actuat. B Chem. 297, 126730 (2019). https://doi.org/10.1016/j.snb.2019.126730
- H. Ji, W. Zeng, Y. Li, Assembly of 2D nanosheets into flower-like MoO3: new insight into the petal thickness affect on gas-sensing properties. Mater. Res. Bull. 118, 110476 (2019). https://doi.org/10.1016/j.materresbull.2019.05.001
- N.L.W. Septiani, Y.V. Kaneti, B. Yuliarto, H.K.D. Nugraha et al., Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens. Actuat. B Chem. 261, 241–251 (2018). https://doi.org/10.1016/j.snb.2018.01.088
- L. Sui, X. Song, X. Cheng, X. Zhang, Y. Xu et al., An ultraselective and ultrasensitive TEA sensor based on α-MoO3 hierarchical nanostructures and the sensing mechanism. CrystEngComm 17, 6493–6503 (2015). https://doi.org/10.1039/c5ce00693g
- Q. Chen, J. Zheng, X. Liu, X. Zhang, W. Kang et al., First-principles investigations on the mechanism of highly sensitive and selective trimethylamine sensing in MoO3. Appl. Surf. Sci. 524, 146520 (2020). https://doi.org/10.1016/j.apsusc.2020.146520
- B. Mandal, M. Aaryashree, M.T. Das, S.M. Htay, Architecture tailoring of MoO3 nanostructures for superior ethanol sensing performance. Mater. Res. Bull. 109, 281–290 (2019)
- J. Zhang, P. Song, J. Li, Z. Yang, Q. Wang, Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sens. Actuat. B Chem. 249, 458–466 (2017). https://doi.org/10.1016/j.snb.2017.04.137
- Y. Xia, C. Wu, N. Zhao, H. Zhang, Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor. Mater. Lett. 171, 117–120 (2016). https://doi.org/10.1016/j.matlet.2015.12.159
- H. Ji, W. Zeng, Y. Li, New insight into the gas-sensing properties of nanofiber-assembled and nanosheet-assembled hierarchical MoO3 structures. Phys. E Low-Dimen. Syst. Nanostruct. 114, 113646 (2019). https://doi.org/10.1016/j.physe.2019.113646
- A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
- S. Basu, P.K. Basu, Nanocrystalline metal oxides for methane sensors: role of noble metals. J. Sensors 2009, 861968 (2009). https://doi.org/10.1155/2009/861968
- Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrogen Energy 42, 20386–20397 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.066
- L. Sui, X. Zhang, X. Cheng, P. Wang, Y. Xu et al., Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (Benzene, Toluene, And Xylene) and the sensing mechanism. ACS Appl. Mater. Interf. 9, 1661–1670 (2017). https://doi.org/10.1021/acsami.6b11754
- J. Zhang, P. Song, Z. Li, S. Zhang, Z. Yang et al., Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J. Alloys Compd. 685, 1024–1033 (2016). https://doi.org/10.1016/j.jallcom.2016.06.257
- P.C. Nagajyothi, H. Lim, J. Shim, S.B. Rawal, Au nanoparticles supported nanoporous ZnO sphere for enhanced photocatalytic activity under UV-light irradiation. J. Clust. Sci. 27, 1159–1170 (2016). https://doi.org/10.1007/s10876-016-0980-4
- K. He, S. He, W. Yang, Q. Tian, Ag nanoparticles-decorated α-MoO3 nanorods for remarkable and rapid triethylamine-sensing response boosted by pulse-heating technique. J. Alloys Compd. 808, 151704 (2019). https://doi.org/10.1016/j.jallcom.2019.151704
- X. Fu, P. Yang, X. Xiao, D. Zhou, R. Huang et al., Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. J. Alloys Compd. 797, 666–675 (2019). https://doi.org/10.1016/j.jallcom.2019.05.145
- A.A. Mane, A.V. Moholkar, Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid. State. Electron. 139, 21–30 (2018). https://doi.org/10.1016/j.sse.2017.09.011
- Y. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale et al., Sensing the charge state of single gold nanoparticles via work function measurements. Nano Lett. 15, 51–55 (2015). https://doi.org/10.1021/nl503782s
- R.S. Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan et al., Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuat. B Chem. 255, 672–683 (2018). https://doi.org/10.1016/j.snb.2017.08.015
- J. Wang, S. Rathi, B. Singh, I. Lee, S. Maeng et al., Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor. Sens. Actuat. B Chem. 220, 755–761 (2015). https://doi.org/10.1016/j.snb.2015.05.133
- N. Van Toan, N. Viet Chien, N. Van Duy, H. Si Hong, H. Nguyen et al., Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 301, 433–442 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.013
- H. Fu, Z. Wu, X. Yang, P. He, X. An et al., Ultra-high sensitivity and selectivity of Au nanoparticles modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 542, 148721 (2021). https://doi.org/10.1016/j.apsusc.2020.148721
- F. Li, S. Guo, J. Shen, L. Shen, D. Sun et al., Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance. Sens. Actuat. B Chem. 238, 364–373 (2017). https://doi.org/10.1016/j.snb.2016.07.021
- Q. Rong, Y. Zhang, T. Lv, K. Shen, B. Zi et al., Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core–shell and cage structures. Nanotechnology 29, 145503 (2018). https://doi.org/10.1088/1361-6528/aaabd0
- W. Quan, X. Hu, X. Min, J. Qiu, R. Tian et al., A highly sensitive and selective ppb-level acetone sensor based on a Pt-doped 3D porous SnO2 hierarchical structure. Sensors 20, 1150 (2020). https://doi.org/10.3390/s20041150
- Y.J. Kwon, H.G. Na, S.Y. Kang, S. Choi, S.S. Kim et al., Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sens. Actuat. B Chem. 227, 157–168 (2016). https://doi.org/10.1016/j.snb.2015.12.024
- U. Inpan, P. Leangtanom, D. Phokharatkul, A. Wisitsoraat, S. Phanichphant et al., H2S gas sensor based on Ru-MoO3 nanoflake thick film. J. Nanosci. Nanotechnol. 19, 1780–1785 (2019). https://doi.org/10.1166/jnn.2019.16197
- D. Degler, U. Weimar, N. Barsan, Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors 4, 2228–2249 (2019). https://doi.org/10.1021/acssensors.9b00975
- L. Sui, Y.-M. Xu, X.-F. Zhang, X.-L. Cheng, S. Gao et al., Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuat. B Chem. 208, 406–414 (2015). https://doi.org/10.1016/j.snb.2014.10.138
- Y.H. Cho, Y.N. Ko, Y.C. Kang, I.-D. Kim, J.-H. Lee, Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sens. Actuat. B Chem. 195, 189–196 (2014). https://doi.org/10.1016/j.snb.2014.01.021
- A.A. Mane, A.V. Moholkar, Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid-State Electron. 139, 21–30 (2018). https://doi.org/10.1016/j.sse.2017.09.011
- W. Jiang, L. Meng, S. Zhang, X. Chuai, Z. Zhou et al., Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sens. Actuat. B Chem. 299, 126888 (2019). https://doi.org/10.1016/j.snb.2019.126888
- Q.-Y. Ouyang, L. Li, Q.-S. Wang, Y. Zhang, T.-S. Wang et al., Facile synthesis and enhanced H2S sensing performances of Fe-doped α-MoO3 micro-structures. Sens. Actuat. B Chem. 169, 17–25 (2012). https://doi.org/10.1016/j.snb.2012.01.042
- Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, Facile synthesis and enhanced trimethylamine sensing performances of W-doped MoO3 nanobelts. Mater. Sci. Semicond. Process. 66, 33–38 (2017). https://doi.org/10.1016/j.mssp.2017.04.002
- R. Xu, N. Zhang, L. Sun, C. Chen, Y. Chen et al., One-step synthesis and the enhanced xylene-sensing properties of Fe-doped MoO3 nanobelts. RSC Adv. 6, 106364–106369 (2016). https://doi.org/10.1039/c6ra22268d
- S. Wang, J. Xie, J. Hu, H. Qin, Y. Cao, Fe-doped α-MoO3 nanoarrays: Facile solid-state synthesis and excellent xylene-sensing performance. Appl. Surf. Sci. 512, 145722 (2020). https://doi.org/10.1016/j.apsusc.2020.145722
- G. Lei, Z. Wang, J. Xiong, S. Yang, H. Xu et al., The enhanced hydrogen-sensing performance of the Fe-doped MoO3 monolayer: A DFT study. Int. J. Hydrogen Energy 45, 10257–10267 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.238
- J. Wang, Q. Zhou, Z. Wei, L. Xu, W. Zeng, Experimental and theoretical studies of Zn-doped MoO3 hierarchical microflower with excellent sensing performances to carbon monoxide. Ceram. Int. 46, 29222–29232 (2020). https://doi.org/10.1016/j.ceramint.2020.08.096
- X. Li, D. Jiang, Y. Fan, N. Zhang, C. Liu et al., The effects of Zr-doping on improving the sensitivity and selectivity of a one-dimensional α-MoO3-based xylene gas sensor. Inorg. Chem. Front. 7, 1704–1712 (2020). https://doi.org/10.1039/d0qi00019a
- W. Li, S. He, L. Feng, W. Yang, Cr-doped α-MoO3 nanorods for the fast detection of triethylamine using a pulse-heating strategy. Mater. Lett. 250, 143–146 (2019). https://doi.org/10.1016/j.matlet.2019.05.006
- Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC Adv. 7, 28366–28372 (2017). https://doi.org/10.1039/c7ra02893h
- S. Bai, C. Chen, D. Zhang, R. Luo, D. Li et al., Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped α-MoO3 nanobelts. Sens. Actuat. B Chem. 204, 754–762 (2014). https://doi.org/10.1016/j.snb.2014.08.017
- S. Yang, Y. Liu, T. Chen, W. Jin, T. Yang et al., Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol. Appl. Surf. Sci. 393, 377–384 (2017). https://doi.org/10.1016/j.apsusc.2016.10.021
- K. Liu, W. Zhang, F. Lei, L. Liang, B. Gu et al., Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy 30, 810–817 (2016). https://doi.org/10.1016/j.nanoen.2016.09.015
- P. Qin, G. Fang, F. Cheng, W. Ke, H. Lei et al., Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application. ACS Appl. Mater. Interf. 6, 2963–2973 (2014). https://doi.org/10.1021/am405571a
- Y. Zhao, Z. Jin, Z. Liu, Y. Xu, L. Lu et al., Sulfur doped molybdenum oxide quantum dots as efficient fluorescent labels and bacteriostatic. Inorg. Chem. Commun. 122, 108275 (2020). https://doi.org/10.1016/j.inoche.2020.108275
- S. Bandaru, G. Saranya, N.J. English, C. Yam, M. Chen, Tweaking the electronic and optical properties of α-MoO3 by sulphur and selenium doping- a density functional theory study. Sci. Rep. 8, 10144 (2018). https://doi.org/10.1038/s41598-018-28522-7
- B.A. Davis, B. Chakraborty, N. Kalarikkal, L.M. Ramaniah, Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: a DFT study. J. Magn. Magn. Mater. 502, 166503 (2020). https://doi.org/10.1016/j.jmmm.2020.166503
- Y. Linghu, C. Wu, Gas molecules on defective and nonmetal-doped MoS2 monolayers. J. Phys. Chem. C 124, 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
- J. Li, H. Liu, H. Fu, L. Xu, H. Jin et al., Synthesis of 1D α-MoO3/0D ZnO heterostructure nanobelts with enhanced gas sensing properties. J. Alloys Compd. 788, 248–256 (2019). https://doi.org/10.1016/j.jallcom.2019.02.086
- J. Yang, J. Liu, B. Li, L. Han, Y. Xu, A microcube-like hierarchical heterostructure of α-Fe2O3@α-MoO3 for trimethylamine sensing. Dalt. Trans. 49, 8114–8121 (2020). https://doi.org/10.1039/D0DT01521K
- D. Zappa, V. Galstyan, N. Kaur, H.M.M. Munasinghe Arachchige, O. Sisman et al., Metal oxide -based heterostructures for gas sensors- a review. Anal. Chim. Acta 1039, 1–23 (2018)
- D. Jiang, W. Wei, F. Li, Y. Li, C. Liu et al., Xylene gas sensor based on α-MoO3/α-Fe2O3 heterostructure with high response and low operating temperature. RSC Adv. 5, 39442–39448 (2015). https://doi.org/10.1039/c5ra05661f
- Z. Li, P. Song, Z. Yang, Q. Wang, In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceram. Int. 44, 3364–3370 (2018). https://doi.org/10.1016/j.ceramint.2017.11.126
- F. Qu, X. Zhou, B. Zhang, S. Zhang, C. Jiang et al., Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. J. Alloys Compd. 782, 672–678 (2019). https://doi.org/10.1016/j.jallcom.2018.12.258
- F. Zhang, X. Dong, X. Cheng, Y. Xu, X. Zhang et al., Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Appl. Mater. Interf. 11, 11755–11762 (2019). https://doi.org/10.1021/acsami.8b22132
- S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances. Sens. Actuat. B Chem. 216, 113–120 (2015). https://doi.org/10.1016/j.snb.2015.04.036
- S. Bai, C. Chen, M. Cui, R. Luo, A. Chen et al., Rapid synthesis of rGO-MoO3 hybrids and mechanism of enhancing sensing performance to H2S. RSC Adv. 5, 50783–50789 (2015). https://doi.org/10.1039/c5ra06716b
- M. MalekAlaie, M. Jahangiri, A.M. Rashidi, A. HaghighiAsl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Mater. Sci. Semicond. Process. 38, 93–100 (2015). https://doi.org/10.1016/j.mssp.2015.03.034
- S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin et al., Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. 3, 1868 (2013). https://doi.org/10.1038/srep01868
- Y.P. Venkata Subbaiah, K.J. Saji, A. Tiwari, Atomically thin MoS2: a versatile nongraphene 2D material. Adv. Funct. Mater. 26, 2046–2069 (2016). https://doi.org/10.1002/adfm.201504202
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- W. Zhao, J. Pan, Y. Fang, X. Che, D. Wang et al., Metastable MoS2: crystal structure, electronic band structure, synthetic approach and intriguing physical properties. Chem. A Eur. J. 24, 15942–15954 (2018). https://doi.org/10.1002/chem.201801018
- R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53, 3054–3057 (2017). https://doi.org/10.1039/c6cc09952a
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012). https://doi.org/10.1021/nn302422x
- B. Pal, A. Singh, S.G., P. Mahale, A. Kumar, et al., Chemically exfoliated MoS2 layers: spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase. Phys. Rev. B 96, 195426 (2017). https://doi.org/10.1103/PhysRevB.96.195426
- J. Heising, M.G. Kanatzidis, Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999). https://doi.org/10.1021/ja983043c
- J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999). https://doi.org/10.1021/ja991644d
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- A. Molina-Sánchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70, 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001
- S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
- J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). https://doi.org/10.1021/nl301335q
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell et al., Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014). https://doi.org/10.1021/nn501701a
- K.M. Garadkar, A.A. Patil, P.P. Hankare, P.A. Chate, D.J. Sathe et al., MoS2: preparation and their characterization. J. Alloys Compd. 487, 786–789 (2009). https://doi.org/10.1016/j.jallcom.2009.08.069
- H. Gao, H. Gao, J. Suh, J. Suh, M.C. Cao et al., Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20, 4095–4101 (2020). https://doi.org/10.1021/acs.nanolett.9b05247
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014). https://doi.org/10.1038/nmat4080
- Y. Li, L. Wang, S. Zhang, X. Dong, Y. Song et al., Cracked monolayer 1T MoS2 with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catal. Sci. Technol. 7, 718–724 (2017). https://doi.org/10.1039/C6CY02649D
- J.Y. Kim, S.M. Choi, W.S. Seo, W.S. Cho, Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 31, 3225–3227 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3225
- R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson et al., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014). https://doi.org/10.1021/nn405826k
- I. Jo, M.T. Pettes, E. Ou, W. Wu, L. Shi, Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104, 201902 (2014). https://doi.org/10.1063/1.4876965
- S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013). https://doi.org/10.1021/jp402509w
- J.V. Lauritsen, M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nørskov et al., Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221, 510–522 (2004). https://doi.org/10.1016/j.jcat.2003.09.015
- M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg et al., One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803 (2001). https://doi.org/10.1103/PhysRevLett.87.196803
- H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2 -based heterostructures. Chem. Soc. Rev. 47, 6101–6127 (2018). https://doi.org/10.1039/C8CS00314A
- T.H.M. Lau, S. Wu, R. Kato, T.S. Wu, J. Kulhavý et al., Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 9, 7527–7534 (2019). https://doi.org/10.1021/acscatal.9b01503
- A. Taufik, Y. Asakura, H. Kato, M. Kakihana, R. Saleh et al., 1T/2H-MoS2 engineered by in-situ ethylene glycol intercalation for improved toluene sensing response at room temperature. Adv. Powder Technol. 31, 1868–1878 (2020). https://doi.org/10.1016/j.apt.2020.02.022
- E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3, 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
- B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015). https://doi.org/10.1038/srep08052
- Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 425 (2013). https://doi.org/10.1186/1556-276X-8-425
- D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- Y. Feng, K. Zhang, H. Li, F. Wang, B. Zhou et al., In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy. Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa7183
- M. Li, D. Wang, J. Li, Z. Pan, H. Ma et al., Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chin. J. Catal. 38, 597–606 (2017). https://doi.org/10.1016/S1872-2067(17)62779-7
- G. Tang, J. Zhang, C. Liu, D. Zhang, Y. Wang et al., Synthesis and tribological properties of flower-like MoS2 microspheres. Ceram. Int. 40, 11575–11580 (2014). https://doi.org/10.1016/j.ceramint.2014.03.115
- Y. Zhang, W. Zeng, Y. Li, Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl. Surf. Sci. 455, 276–282 (2018). https://doi.org/10.1016/j.apsusc.2018.05.224
- X. Wang, Z. Zhang, Y. Chen, Y. Qu, Y. Lai et al., Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties. J. Alloys Compd. 600, 84–90 (2014). https://doi.org/10.1016/j.jallcom.2014.02.127
- H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011). https://doi.org/10.1021/nl202675f
- M. Wang, G. Li, H. Xu, Y. Qian, J. Yang, Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interf. 5, 1003–1008 (2013). https://doi.org/10.1021/am3026954
- S. Kumari, R. Gusain, N. Kumar, O.P. Khatri, PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J. Ind. Eng. Chem. 42, 87–94 (2016). https://doi.org/10.1016/j.jiec.2016.07.038
- Y. Zhang, W. Zeng, Y. Li, The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J. Alloys Compd. 749, 355–362 (2018). https://doi.org/10.1016/j.jallcom.2018.03.307
- U.K. Sen, S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interf. 5, 1240–1247 (2013). https://doi.org/10.1021/am3022015
- L. Ye, H. Xu, D. Zhang, S. Chen, Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 55, 221–228 (2014). https://doi.org/10.1016/j.materresbull.2014.04.025
- Q. Zhou, C. Hong, Y. Yao, S. Hussain, L. Xu et al., Hierarchically MoS2 nanospheres assembled from nanosheets for superior CO gas-sensing properties. Mater. Res. Bull. 101, 132–139 (2018). https://doi.org/10.1016/j.materresbull.2018.01.030
- A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, Z. Zhu et al., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111, 093102 (2017). https://doi.org/10.1063/1.5000825
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
- H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012). https://doi.org/10.1002/smll.201101016
- M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuat. B Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
- B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interf. 7, 2952–2959 (2015). https://doi.org/10.1021/am508535x
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- H. Long, L. Chan, A. Harley-Trochimczyk, L.E. Luna, Z. Tang et al., 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interf. 4, 2–9 (2017). https://doi.org/10.1002/admi.201700217
- S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan et al., Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors. Appl. Phys. Lett. 106, 022114 (2015). https://doi.org/10.1063/1.4906066
- K. Qi, S. Yu, Q. Wang, W. Zhang, J. Fan et al., Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. J. Mater. Chem. A 4, 4025–4031 (2016). https://doi.org/10.1039/c5ta10337a
- L. Dong, S. Guo, Y. Wang, Q. Zhang, L. Gu et al., Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control. J. Mater. Chem. A 7, 27603–27611 (2019). https://doi.org/10.1039/c9ta08738a
- Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi et al., Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28, 4390–4396 (2016). https://doi.org/10.1021/acs.chemmater.6b01395
- Q. Tang, D.E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015). https://doi.org/10.1021/acs.chemmater.5b00986
- S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du et al., Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1801345 (2018). https://doi.org/10.1002/aenm.201801345
- C. Guo, J. Pan, H. Li, T. Lin, P. Liu et al., Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C 5, 10855–10860 (2017). https://doi.org/10.1039/c7tc03749j
- D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5, 2681–2688 (2017). https://doi.org/10.1039/c6ta09409k
- Y. Zhang, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Hybrid phase 1T/2H-MoS2 with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale 12, 11908–11915 (2020). https://doi.org/10.1039/d0nr02525a
- H. Cao, Z. Bai, Y. Li, Z. Xiao, X. Zhang et al., Solvothermal synthesis of defect-rich mixed 1T–2H MoS2 nanoflowers for enhanced hydrodesulfurization. ACS Sustain. Chem. Eng. 8, 7343–7352 (2020). https://doi.org/10.1021/acssuschemeng.0c00736
- K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102–5109 (2017). https://doi.org/10.1039/c7nr01015j
- B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H Heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interf. 12, 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
- Z. Chen, H. Xu, C. Liu, D. Cao, Q. Ye et al., Good triethylamine sensing properties of Au@MoS2 nanostructures directly grown on ceramic tubes. Mater. Chem. Phys. 245, 122683 (2020). https://doi.org/10.1016/j.matchemphys.2020.122683
- H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang et al., A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016). https://doi.org/10.1016/j.ceramint.2016.02.160
- D.H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuat. B Chem. 250, 686–691 (2017). https://doi.org/10.1016/j.snb.2017.05.028
- C. Kuru, C. Choi, A. Kargar, D. Choi, Y.J. Kim et al., MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2, 1500004 (2015). https://doi.org/10.1002/advs.201500004
- J. Jaiswal, P. Tiwari, P. Singh, R. Chandra, Fabrication of highly responsive room temperature H2 sensor based on vertically aligned edge-oriented MoS2 nanostructured thin film functionalized by Pd nanoparticles. Sens. Actuat. B Chem. 325, 128800 (2020). https://doi.org/10.1016/j.snb.2020.128800
- J. Park, J. Mun, J.-S. Shin, S.-W. Kang, Highly sensitive two-dimensional MoS2 gas sensor decorated with Pt nanoparticles. R. Soc. Open Sci. 5, 181462 (2018). https://doi.org/10.1098/rsos.181462
- S.R. Gottam, C.T. Tsai, L.W. Wang, C.T. Wang, C.C. Lin et al., Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite. Appl. Surf. Sci. 506, 144981 (2020). https://doi.org/10.1016/j.apsusc.2019.144981
- L. Chacko, E. Massera, P.M. Aneesh, Enhancement in the selectivity and sensitivity of Ni and Pd functionalized MoS2 toxic gas sensors. J. Electrochem. Soc. 167, 106506 (2020). https://doi.org/10.1149/1945-7111/ab992c
- P. Halvaee, S. Dehghani, M. Mohammadzadeh, Room temperature methanol sensors based on rod-shaped nanostructures of MoS2 functionalized with Ag nanoparticles. IEEE Sens. J. 21, 4233–4240 (2021). https://doi.org/10.1109/JSEN.2020.3035753
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- J. Suh, T.E. Park, D.Y. Lin, D. Fu, J. Park et al., Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014). https://doi.org/10.1021/nl503251h
- A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016). https://doi.org/10.1021/acsnano.5b06529
- M. Li, J. Yao, X. Wu, S. Zhang, B. Xing et al., P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interf. 12, 6276–6282 (2020). https://doi.org/10.1021/acsami.9b19864
- L. Shao, Z. Wu, H. Duan, T. Shaymurat, Discriminative and rapid detection of ozone realized by sensor array of Zn2+ doping tailored MoS2 ultrathin nanosheets. Sens. Actuat. B Chem. 258, 937–946 (2018). https://doi.org/10.1016/j.snb.2017.11.166
- A. Taufik, Y. Asakura, T. Hasegawa, H. Kato, M. Kakihana et al., Surface engineering of 1T/2H-MoS2 nanoparticles by O2 plasma irradiation as a potential humidity sensor for breathing and skin monitoring applications. ACS Appl. Nano Mater. 3, 7835–7846 (2020). https://doi.org/10.1021/acsanm.0c01352
- Y. Chen, F. Su, H. Xie, R. Wang, C. Ding et al., One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 404, 126498 (2021). https://doi.org/10.1016/j.cej.2020.126498
- D.N. Sangeetha, M.S. Santosh, M. Selvakumar, Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. J. Alloys Compd. 831, 154745 (2020). https://doi.org/10.1016/j.jallcom.2020.154745
- R. Li, L. Yang, T. Xiong, Y. Wu, L. Cao et al., Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sour. 356, 133–139 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.060
- P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27, 225403 (2016). https://doi.org/10.1088/0957-4484/27/22/225403
- J. Guo, C. Liu, Y. Sun, J. Sun, W. Zhang et al., N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J. Solid State Chem. 263, 84–87 (2018). https://doi.org/10.1016/j.jssc.2018.04.023
- A. Taufik, Y. Asakura, T. Hasegawa, S. Yin, MoS2– x Sex nanoparticles for NO detection at room temperature. ACS Appl. Nano Mater. 4, 6861–6871 (2021). https://doi.org/10.1021/acsanm.1c00926
- C. Jin, X. Tang, X. Tan, S.C. Smith, Y. Dai et al., A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. J. Mater. Chem. A 7, 1099–1106 (2019). https://doi.org/10.1039/c8ta08407f
- J. Zhu, H. Zhang, Y. Tong, L. Zhao, Y. Zhang et al., First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 419, 522–530 (2017). https://doi.org/10.1016/j.apsusc.2017.04.157
- D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/c7ta07001b
- S. Singh, S. Sharma, R.C. Singh, S. Sharma, Hydrothermally synthesized MoS2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surf. Sci. 532, 147373 (2020). https://doi.org/10.1016/j.apsusc.2020.147373
- S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018). https://doi.org/10.1039/c7ta11375g
- G. He, D. Huang, Z. Yang, Y. Han, J. Hu et al., Linear humidity response of carbon dot-modified molybdenum disulfide. Phys. Chem. Chem. Phys. 20, 4083–4091 (2018). https://doi.org/10.1039/C7CP07125F
- N. Yue, J. Weicheng, W. Rongguo, D. Guomin, H. Yifan, Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing. J. Mater. Chem. A 4, 8198–8203 (2016). https://doi.org/10.1039/c6ta03267b
- L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv et al., Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 393, 122325 (2020). https://doi.org/10.1016/j.jhazmat.2020.122325
- M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7, 14602–14612 (2019). https://doi.org/10.1039/c9ta03452h
- Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interf. 10, 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
- W. Wang, Y. Zhen, J. Zhang, Y. Li, H. Zhong et al., SnO2 nanoparticles-modified 3D-multilayer MoS2 nanosheets for ammonia gas sensing at room temperature. Sens. Actuat. B Chem. 321, 128471 (2020). https://doi.org/10.1016/j.snb.2020.128471
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2 -based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13, 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2, 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
- A. Ali, O. Koybasi, W. Xing, D.N. Wright, D. Varandani et al., Single digit parts-per-billion NOx detection using MoS2/hBN transistors. Sens. Actuat. A Phys. 315, 112247 (2020). https://doi.org/10.1016/j.sna.2020.112247
- Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee et al., Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interf. 11, 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
- M. Barzegar, A. Iraji zad, A. Tiwari, On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum 167, 90–97 (2019). https://doi.org/10.1016/j.vacuum.2019.05.033
- Y. Han, Y. Ma, Y. Liu, S. Xu, X. Chen et al., Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl. Surf. Sci. 493, 613–619 (2019). https://doi.org/10.1016/j.apsusc.2019.07.052
- K.D. Bronsema, J.L. De Boer, F. Jellinek, On the structure of molybdenum diselenide and disulfide. ZAAC - J. Inorg. Gen. Chem. 540, 15–17 (1986). https://doi.org/10.1002/zaac.19865400904
- A. Eftekhari, Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 8, 1–17 (2017). https://doi.org/10.1016/j.apmt.2017.01.006
- F. Jiang, W.-S. Zhao, J. Zhang, Mini-review: Recent progress in the development of MoSe2 based chemical sensors and biosensors. Microelectron. Eng. 225, 111279 (2020). https://doi.org/10.1016/j.mee.2020.111279
- D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 3–7 (2014). https://doi.org/10.1063/1.4903358
- S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201900138
- Z. Yang, D. Zhang, D. Wang, Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens. Actuat. B Chem. 304, 127369 (2020). https://doi.org/10.1016/j.snb.2019.127369
- R.K. Jha, J.V. D’Costa, N. Sakhuja, N. Bhat, MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens. Actuat. B Chem. 297, 126687 (2019). https://doi.org/10.1016/j.snb.2019.126687
- X. Chen, X. Chen, Y. Han, C. Su, M. Zeng et al., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab35ec
- D. Zhang, Q. Li, P. Li, M. Pang, Y. Luo, Fabrication of Pd-decorated MoSe2 nanoflowers and density functional theory simulation toward ammonia sensing. IEEE Electron Device Lett. 40, 616–619 (2019). https://doi.org/10.1109/LED.2019.2901296
- D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
- Y.F. Lin, Y. Xu, C.Y. Lin, Y.W. Suen, M. Yamamoto et al., Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27, 6612–6619 (2015). https://doi.org/10.1002/adma.201502677
- Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8, 155 (2017). https://doi.org/10.3390/mi8050155
- E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu et al., Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 3, 1719–1726 (2018). https://doi.org/10.1021/acssensors.8b00461
- E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interf. 10, 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
- S.Y. Cho, J.Y. Kim, O. Kwon, J. Kim, H.T. Jung, Molybdenum carbide chemical sensors with ultrahigh signal-to-noise ratios and ambient stability. J. Mater. Chem. A 6, 23408–23416 (2018). https://doi.org/10.1039/C8TA07168C
- F. Rasch, V. Postica, F. Schütt, Y.K. Mishra, A.S. Nia et al., Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens. Actuat. B Chem. 320, 128363 (2020). https://doi.org/10.1016/j.snb.2020.128363
References
B. Brunekreef, S.T. Holgate, Air pollution and health. Lancet 360, 1233–1242 (2002). https://doi.org/10.1016/S0140-6736(02)11274-8
M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151, 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015). https://doi.org/10.1038/nature15371
E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams et al., The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47, 11369–11377 (2013). https://doi.org/10.1021/es4022602
H. Mayer, Air pollution in cities. Atmos. Environ. 33, 4029–4037 (1999). https://doi.org/10.1016/S1352-2310(99)00144-2
C.K. Chan, X. Yao, Air pollution in mega cities in China. Atmos. Environ. 42, 1–42 (2008). https://doi.org/10.1016/j.atmosenv.2007.09.003
K.-H. Kim, E. Kabir, S. Kabir, A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143 (2015). https://doi.org/10.1016/j.envint.2014.10.005
A. Seaton, D. Godden, W. MacNee, K. Donaldson, Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995). https://doi.org/10.1016/S0140-6736(95)90173-6
J.O. Anderson, J.G. Thundiyil, A. Stolbach, Clearing the Air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8, 166–175 (2012). https://doi.org/10.1007/s13181-011-0203-1
E. Sanidas, D.P. Papadopoulos, H. Grassos, M. Velliou, K. Tsioufis et al., Air pollution and arterial hypertension. A new risk factor is in the air. J. Am. Soc. Hypertens. 11, 709–715 (2017). https://doi.org/10.1016/j.jash.2017.09.008
P. Kumar, L. Morawska, C. Martani, G. Biskos, M. Neophytou et al., The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015). https://doi.org/10.1016/j.envint.2014.11.019
S. Das, M. Pal, Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
W. Shin, Medical applications of breath hydrogen measurements chemosensors and chemoreception. Anal. Bioanal. Chem. 406, 3931–3939 (2014). https://doi.org/10.1007/s00216-013-7606-6
Z. Jia, A. Patra, V. Kutty, T. Venkatesan, Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites 9, 52 (2019). https://doi.org/10.3390/metabo9030052
G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469–5502 (2010). https://doi.org/10.3390/s100605469
J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuat. B Chem. 140, 319–336 (2009). https://doi.org/10.1016/j.snb.2009.04.026
M.J. Tierney, H.O.L. Kim, Electrochemical gas sensor with extremely fast response times. Anal. Chem. 65, 3435–3440 (1993). https://doi.org/10.1021/ac00071a017
M.J. Jory, P.S. Vukusic, J.R. Sambles, Development of a prototype gas sensor using surface plasmon resonance on gratings. Sens. Actuat. B Chem. 17, 203–209 (1994). https://doi.org/10.1016/0925-4005(93)00871-U
Z. Jin, Y. Su, Y. Duan, Development of a polyaniline-based optical ammonia sensor. Sens. Actuat. B Chem. 72, 75–79 (2001). https://doi.org/10.1016/S0925-4005(00)00636-5
D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton et al., Design and performance of a microcantilever-based hydrogen sensor. Sens. Actuat. B Chem. 88, 120–131 (2003). https://doi.org/10.1016/S0925-4005(02)00315-5
A.J. Ricco, S.J. Martin, T.E. Zipperian, Surface acoustic wave gas sensor based on film conductivity changes. Sens. Actuat. 8, 319–333 (1985). https://doi.org/10.1016/0250-6874(85)80031-7
N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to? Sens. Actuat. B Chem. 121, 18–35 (2007). https://doi.org/10.1016/j.snb.2006.09.047
N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. from Asia 7, 63–75 (2003). https://doi.org/10.1023/A:1023436725457
A. Hermawan, Y. Asakura, M. Inada, S. Yin, One-step synthesis of micro-/mesoporous SnO2 spheres by solvothermal method for toluene gas sensor. Ceram. Int. 45, 15435–15444 (2019). https://doi.org/10.1016/j.ceramint.2019.05.043
A. Hermawan, Y. Asakura, M. Inada, S. Yin, A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature. J. Mater. Sci. Technol. 51, 119–129 (2020). https://doi.org/10.1016/j.jmst.2020.02.041
H.M.M. Munasinghe Arachchige, D. Zappa, N. Poli, N. Gunawardhana, E. Comini, Gold functionalized MoO3 nano flakes for gas sensing applications. Sens. ActuaT. B Chem. 269, 331–339 (2018). https://doi.org/10.1016/j.snb.2018.04.124
G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide materials for development of integrated gas sensors - a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004). https://doi.org/10.1080/10408430490888977
D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1–23 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
A. Hermawan, Y. Asakura, M. Kobayashi, M. Kakihana, S. Yin, High temperature hydrogen gas sensing property of GaN prepared from α-GaOOH. Sens. Actuat. B Chem. 276, 388–396 (2018). https://doi.org/10.1016/j.snb.2018.08.021
A. Shokri, N. Salami, Gas sensor based on MoS2 monolayer. Sens. Actuat. B Chem. 236, 378–385 (2016). https://doi.org/10.1016/j.snb.2016.06.033
N. Yamazoe, J. Hisamoto, N. Miura, S. Kuwata, Potentiometric solid-state oxygen sensor using lanthanum fluoride operative at room temperature. Sens. Actuat. 12, 415–423 (1987). https://doi.org/10.1016/0250-6874(87)80060-4
M. Sajjad, P. Feng, Study the gas sensing properties of boron nitride nanosheets. Mater. Res. Bull. 49, 35–38 (2014). https://doi.org/10.1016/j.materresbull.2013.08.019
C.M. Hung, V.A. Vuong, N. Van Duy, D. Van An, N. Van Hieu et al., Controlled growth of vertically oriented trilayer MoS2 nanoflakes for room-temperature NO2 gas sensor applications. Phys. Status Solidi (2020). https://doi.org/10.1002/pssa.202000004
M. Yu, H. Shao, G. Wang, F. Yang, C. Liang et al., Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nat. Commun. 11, 1–9 (2020). https://doi.org/10.1038/s41467-020-15216-w
T. Liu, Z. Liu, 2D MoS2 nanostructures for biomedical applications. Adv. Healthc. Mater. 7, 1–18 (2018). https://doi.org/10.1002/adhm.201701158
K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Coll. Surf. B Biointerf. 112, 521–524 (2013). https://doi.org/10.1016/j.colsurfb.2013.08.026
Y. Jiao, A.M. Hafez, D. Cao, A. Mukhopadhyay, Y. Ma et al., Metallic MoS2 for high performance energy storage and energy conversion. Small 14, 1–20 (2018). https://doi.org/10.1002/smll.201800640
J. Cheng, C. Wang, X. Zou, L. Liao, Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 7, 1–15 (2019). https://doi.org/10.1002/adom.201800441
E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interf. 11, 11061–11105 (2019). https://doi.org/10.1021/acsami.8b19859
S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri et al., Electrical conductivity and gas sensing properties of MoO3. Sens. Actuat. B Chem. 101, 161–174 (2004). https://doi.org/10.1016/j.snb.2004.02.048
I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram et al., Molybdenum oxides – from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017). https://doi.org/10.1002/adma.201701619
R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5, 1–28 (2020). https://doi.org/10.1002/admt.201901062
H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang et al., Au nanoparticles modified MoO3 nanosheets with their enhanced properties for gas sensing. Sens. Actuat. B Chem. 236, 201–207 (2016). https://doi.org/10.1016/j.snb.2016.05.139
S. Zhang, P. Song, J. Zhang, Z. Li, Z. Yang et al., In2O3-functionalized MoO3 heterostructure nanobelts with improved gas-sensing performance. RSC Adv. 6, 50423–50430 (2016). https://doi.org/10.1039/c6ra07292e
H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Facile fabrication and enhanced gas sensing properties of hierarchical MoO3 nanostructures. RSC Adv. 5, 72728–72735 (2015). https://doi.org/10.1039/c5ra13036k
X. Luo, K. You, Y. Hu, S. Yang, X. Pan et al., Rapid hydrogen sensing response and aging of α-MoO3 nanowires paper sensor. Int. J. Hydrogen Energy 42, 8399–8405 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.116
T. Nagyné-Kovács, L. Studnicka, I.E. Lukács, K. László, P. Pasierb et al., Hydrothermal synthesis and gas sensing of monoclinic MoO3 nanosheets. Nanomaterials 10, 891 (2020). https://doi.org/10.3390/nano10050891
C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110, 10430–10435 (2006). https://doi.org/10.1021/jp056664i
T.T.P. Pham, P.H.D. Nguyen, T.T. Vo, H.H.P. Nguyen, C.L. Luu, Facile method for synthesis of nanosized β –MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 45010 (2015). https://doi.org/10.1088/2043-6262/6/4/045010
L. Zheng, Y. Xu, D. Jin, Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681–5690 (2009). https://doi.org/10.1021/cm9023887
K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T.W. Reenaas et al., Electronic properties of reduced molybdenum oxides. Phys. Chem. Chem. Phys. 19, 9232–9245 (2017). https://doi.org/10.1039/C7CP00644F
Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai et al., A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 8, 14903 (2017). https://doi.org/10.1038/ncomms14903
V. Galstyan, Quantum dots: perspectives in next-generation chemical gas sensors - A review. Anal. Chim. Acta 1152, 238192 (2021). https://doi.org/10.1016/j.aca.2020.12.067
S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuat. B Chem. 145, 7–12 (2010). https://doi.org/10.1016/j.snb.2009.11.002
H. Singh, A. Kumar, B.S. Bansod, T. Singh, A. Thakur et al., Enhanced moisture sensing properties of a nanostructured ZnO coated capacitive sensor. RSC Adv. 8, 3839–3845 (2018). https://doi.org/10.1039/c7ra10917b
S.J. Xiao, X.J. Zhao, P.P. Hu, Z.J. Chu, C.Z. Huang et al., Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2,4,6-trinitrotoluene determination. ACS Appl. Mater. Interfaces 8, 8184–8191 (2016). https://doi.org/10.1021/acsami.5b11316
N. Wang, D. Tang, H. Zou, S. Jia, Z. Sun et al., Synthesis of molybdenum oxide quantum dots with better dispersity and bio-imaging ability by reduction method. Opt. Mater. 83, 19–27 (2018). https://doi.org/10.1016/j.optmat.2018.05.065
L. Yuan, Y. Niu, R. Li, L. Zheng, Y. Wang et al., Molybdenum oxide quantum dots prepared via a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J. Mater. Chem. B 6, 3240–3245 (2018). https://doi.org/10.1039/C8TB00475G
Z. Zhang, Z. Yang, X. Chen, D. Hu, Y. Hong, Facile gradient oxidation synthesizing of highly-fluorescent MoO3 quantum dots for Cr2O72− trace sensing. Inorg. Chem. Commun. 118, 108001 (2020). https://doi.org/10.1016/j.inoche.2020.108001
X. Lu, R. Wang, L. Hao, F. Yang, W. Jiao et al., Preparation of quantum dots from MoO3 nanosheets by UV irradiation and insight into morphology changes. J. Mater. Chem. C 4, 11449–11456 (2016). https://doi.org/10.1039/C6TC04006C
T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuat. B Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003
J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9, 9903–9924 (2009). https://doi.org/10.3390/s91209903
S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin et al., Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuat. B Chem. 286, 501–511 (2019). https://doi.org/10.1016/j.snb.2019.01.127
P. Karnati, S. Akbar, P.A. Morris, Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens. Actuat. B Chem. 295, 127–143 (2019). https://doi.org/10.1016/j.snb.2019.05.049
M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12, 7207–7258 (2012). https://doi.org/10.3390/s120607207
S. Cao, C. Zhao, J. Xu, A facile synthesis and controlled growth of various MoO3 nanostructures and their gas-sensing properties. SN Appl. Sci. 1, 1–6 (2019). https://doi.org/10.1007/s42452-019-0944-z
D. Jiang, Y. Wang, W. Wei, F. Li, Y. Li et al., Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature. RSC Adv. 5, 18655–18659 (2015). https://doi.org/10.1039/c4ra16976j
Y. Mo, Z. Tan, L. Sun, Y. Lu, X. Liu, Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. J. Alloys Compd. 812, 152166 (2020). https://doi.org/10.1016/j.jallcom.2019.152166
N.L.W. Septiani, Y.V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang et al., Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. Chemsuschem 13, 1645–1655 (2020). https://doi.org/10.1002/cssc.201901364
M.M.Y.A. Alsaif, S. Balendhran, M.R. Field, K. Latham, W. Wlodarski et al., Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sens. Actuat. B Chem. 192, 196–204 (2014). https://doi.org/10.1016/j.snb.2013.10.107
M.M.Y.A. Alsaif, M.R. Field, B.J. Murdoch, T. Daeneke, K. Latham et al., Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale 6, 12780–12791 (2014). https://doi.org/10.1039/c4nr03073g
F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang et al., 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 8, 8696–8703 (2016). https://doi.org/10.1039/c6nr00880a
F. Rahman, A. Zavabeti, M.A. Rahman, A. Arash, A. Mazumder et al., Dual selective gas sensing characteristics of 2D α-MoO3-x via a facile transfer process. ACS Appl. Mater. Interf. 11, 40189–40195 (2019). https://doi.org/10.1021/acsami.9b11311
S. Shen, X. Zhang, X. Cheng, Y. Xu, S. Gao et al., Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl. Nano Mater. 2, 8016–8026 (2019). https://doi.org/10.1021/acsanm.9b02072
P. Bisht, A. Kumar, I.T. Jensen, M. Ahmad, B.D. Belle et al., Enhanced gas sensing response for 2D α-MoO3 layers: thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact. Sens. Actuat. B Chem. 341, 129953 (2021). https://doi.org/10.1016/j.snb.2021.129953
S. He, W. Li, L. Feng, W. Yang, Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: the case of acidic α-MoO3 nanorods for selective detection of triethylamine. J. Alloys Compd. 783, 574–582 (2019). https://doi.org/10.1016/j.jallcom.2018.12.349
Q. Zhou, Q. Zhang, H. Liu, C. Hong, G. Wu et al., Research on gas sensing properties of orthorhombic molybdenum oxide based sensor to hydrogen sulfide. J. Nanoelectron. Optoelectron. 12, 1072–1076 (2017). https://doi.org/10.1166/jno.2017.2119
K. Xu, W. Wei, Y. Sun, W. Lu, T. Yu et al., Design of NiCo2O4 porous nanosheets/α-MoO3 nanorods heterostructures for ppb-level ethanol detection. Powder Technol. 345, 633–642 (2019). https://doi.org/10.1016/j.powtec.2019.01.051
Y. Xia, R. Feng, C. Wu, S. Wei, A novel net-like α-MoO3 nanowires based sensor for the detection of hydrogen sulphide in asphalt. J. Nanoelectron. Optoelectron. 13, 1235–1238 (2018). https://doi.org/10.1166/jno.2018.2411
L. Zhang, Z. Liu, L. Jin, B. Zhang, H. Zhang et al., Self-assembly gridding α-MoO3 nanobelts for highly toxic H2 S gas sensors. Sens. Actuat. B Chem. 237, 350–357 (2016). https://doi.org/10.1016/j.snb.2016.06.104
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou et al., High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuat. B Chem. 226, 478–485 (2016). https://doi.org/10.1016/j.snb.2015.12.005
Z. Tang, X. Deng, Y. Zhang, X. Guo, J. Yang et al., MoO3 nanoflakes coupled reduced graphene oxide with enhanced ethanol sensing performance and mechanism. Sens. Actuat. B Chem. 297, 126730 (2019). https://doi.org/10.1016/j.snb.2019.126730
H. Ji, W. Zeng, Y. Li, Assembly of 2D nanosheets into flower-like MoO3: new insight into the petal thickness affect on gas-sensing properties. Mater. Res. Bull. 118, 110476 (2019). https://doi.org/10.1016/j.materresbull.2019.05.001
N.L.W. Septiani, Y.V. Kaneti, B. Yuliarto, H.K.D. Nugraha et al., Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens. Actuat. B Chem. 261, 241–251 (2018). https://doi.org/10.1016/j.snb.2018.01.088
L. Sui, X. Song, X. Cheng, X. Zhang, Y. Xu et al., An ultraselective and ultrasensitive TEA sensor based on α-MoO3 hierarchical nanostructures and the sensing mechanism. CrystEngComm 17, 6493–6503 (2015). https://doi.org/10.1039/c5ce00693g
Q. Chen, J. Zheng, X. Liu, X. Zhang, W. Kang et al., First-principles investigations on the mechanism of highly sensitive and selective trimethylamine sensing in MoO3. Appl. Surf. Sci. 524, 146520 (2020). https://doi.org/10.1016/j.apsusc.2020.146520
B. Mandal, M. Aaryashree, M.T. Das, S.M. Htay, Architecture tailoring of MoO3 nanostructures for superior ethanol sensing performance. Mater. Res. Bull. 109, 281–290 (2019)
J. Zhang, P. Song, J. Li, Z. Yang, Q. Wang, Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sens. Actuat. B Chem. 249, 458–466 (2017). https://doi.org/10.1016/j.snb.2017.04.137
Y. Xia, C. Wu, N. Zhao, H. Zhang, Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor. Mater. Lett. 171, 117–120 (2016). https://doi.org/10.1016/j.matlet.2015.12.159
H. Ji, W. Zeng, Y. Li, New insight into the gas-sensing properties of nanofiber-assembled and nanosheet-assembled hierarchical MoO3 structures. Phys. E Low-Dimen. Syst. Nanostruct. 114, 113646 (2019). https://doi.org/10.1016/j.physe.2019.113646
A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
S. Basu, P.K. Basu, Nanocrystalline metal oxides for methane sensors: role of noble metals. J. Sensors 2009, 861968 (2009). https://doi.org/10.1155/2009/861968
Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrogen Energy 42, 20386–20397 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.066
L. Sui, X. Zhang, X. Cheng, P. Wang, Y. Xu et al., Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (Benzene, Toluene, And Xylene) and the sensing mechanism. ACS Appl. Mater. Interf. 9, 1661–1670 (2017). https://doi.org/10.1021/acsami.6b11754
J. Zhang, P. Song, Z. Li, S. Zhang, Z. Yang et al., Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J. Alloys Compd. 685, 1024–1033 (2016). https://doi.org/10.1016/j.jallcom.2016.06.257
P.C. Nagajyothi, H. Lim, J. Shim, S.B. Rawal, Au nanoparticles supported nanoporous ZnO sphere for enhanced photocatalytic activity under UV-light irradiation. J. Clust. Sci. 27, 1159–1170 (2016). https://doi.org/10.1007/s10876-016-0980-4
K. He, S. He, W. Yang, Q. Tian, Ag nanoparticles-decorated α-MoO3 nanorods for remarkable and rapid triethylamine-sensing response boosted by pulse-heating technique. J. Alloys Compd. 808, 151704 (2019). https://doi.org/10.1016/j.jallcom.2019.151704
X. Fu, P. Yang, X. Xiao, D. Zhou, R. Huang et al., Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. J. Alloys Compd. 797, 666–675 (2019). https://doi.org/10.1016/j.jallcom.2019.05.145
A.A. Mane, A.V. Moholkar, Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid. State. Electron. 139, 21–30 (2018). https://doi.org/10.1016/j.sse.2017.09.011
Y. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale et al., Sensing the charge state of single gold nanoparticles via work function measurements. Nano Lett. 15, 51–55 (2015). https://doi.org/10.1021/nl503782s
R.S. Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan et al., Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuat. B Chem. 255, 672–683 (2018). https://doi.org/10.1016/j.snb.2017.08.015
J. Wang, S. Rathi, B. Singh, I. Lee, S. Maeng et al., Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor. Sens. Actuat. B Chem. 220, 755–761 (2015). https://doi.org/10.1016/j.snb.2015.05.133
N. Van Toan, N. Viet Chien, N. Van Duy, H. Si Hong, H. Nguyen et al., Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 301, 433–442 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.013
H. Fu, Z. Wu, X. Yang, P. He, X. An et al., Ultra-high sensitivity and selectivity of Au nanoparticles modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 542, 148721 (2021). https://doi.org/10.1016/j.apsusc.2020.148721
F. Li, S. Guo, J. Shen, L. Shen, D. Sun et al., Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance. Sens. Actuat. B Chem. 238, 364–373 (2017). https://doi.org/10.1016/j.snb.2016.07.021
Q. Rong, Y. Zhang, T. Lv, K. Shen, B. Zi et al., Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core–shell and cage structures. Nanotechnology 29, 145503 (2018). https://doi.org/10.1088/1361-6528/aaabd0
W. Quan, X. Hu, X. Min, J. Qiu, R. Tian et al., A highly sensitive and selective ppb-level acetone sensor based on a Pt-doped 3D porous SnO2 hierarchical structure. Sensors 20, 1150 (2020). https://doi.org/10.3390/s20041150
Y.J. Kwon, H.G. Na, S.Y. Kang, S. Choi, S.S. Kim et al., Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sens. Actuat. B Chem. 227, 157–168 (2016). https://doi.org/10.1016/j.snb.2015.12.024
U. Inpan, P. Leangtanom, D. Phokharatkul, A. Wisitsoraat, S. Phanichphant et al., H2S gas sensor based on Ru-MoO3 nanoflake thick film. J. Nanosci. Nanotechnol. 19, 1780–1785 (2019). https://doi.org/10.1166/jnn.2019.16197
D. Degler, U. Weimar, N. Barsan, Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors 4, 2228–2249 (2019). https://doi.org/10.1021/acssensors.9b00975
L. Sui, Y.-M. Xu, X.-F. Zhang, X.-L. Cheng, S. Gao et al., Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuat. B Chem. 208, 406–414 (2015). https://doi.org/10.1016/j.snb.2014.10.138
Y.H. Cho, Y.N. Ko, Y.C. Kang, I.-D. Kim, J.-H. Lee, Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sens. Actuat. B Chem. 195, 189–196 (2014). https://doi.org/10.1016/j.snb.2014.01.021
A.A. Mane, A.V. Moholkar, Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid-State Electron. 139, 21–30 (2018). https://doi.org/10.1016/j.sse.2017.09.011
W. Jiang, L. Meng, S. Zhang, X. Chuai, Z. Zhou et al., Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sens. Actuat. B Chem. 299, 126888 (2019). https://doi.org/10.1016/j.snb.2019.126888
Q.-Y. Ouyang, L. Li, Q.-S. Wang, Y. Zhang, T.-S. Wang et al., Facile synthesis and enhanced H2S sensing performances of Fe-doped α-MoO3 micro-structures. Sens. Actuat. B Chem. 169, 17–25 (2012). https://doi.org/10.1016/j.snb.2012.01.042
Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, Facile synthesis and enhanced trimethylamine sensing performances of W-doped MoO3 nanobelts. Mater. Sci. Semicond. Process. 66, 33–38 (2017). https://doi.org/10.1016/j.mssp.2017.04.002
R. Xu, N. Zhang, L. Sun, C. Chen, Y. Chen et al., One-step synthesis and the enhanced xylene-sensing properties of Fe-doped MoO3 nanobelts. RSC Adv. 6, 106364–106369 (2016). https://doi.org/10.1039/c6ra22268d
S. Wang, J. Xie, J. Hu, H. Qin, Y. Cao, Fe-doped α-MoO3 nanoarrays: Facile solid-state synthesis and excellent xylene-sensing performance. Appl. Surf. Sci. 512, 145722 (2020). https://doi.org/10.1016/j.apsusc.2020.145722
G. Lei, Z. Wang, J. Xiong, S. Yang, H. Xu et al., The enhanced hydrogen-sensing performance of the Fe-doped MoO3 monolayer: A DFT study. Int. J. Hydrogen Energy 45, 10257–10267 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.238
J. Wang, Q. Zhou, Z. Wei, L. Xu, W. Zeng, Experimental and theoretical studies of Zn-doped MoO3 hierarchical microflower with excellent sensing performances to carbon monoxide. Ceram. Int. 46, 29222–29232 (2020). https://doi.org/10.1016/j.ceramint.2020.08.096
X. Li, D. Jiang, Y. Fan, N. Zhang, C. Liu et al., The effects of Zr-doping on improving the sensitivity and selectivity of a one-dimensional α-MoO3-based xylene gas sensor. Inorg. Chem. Front. 7, 1704–1712 (2020). https://doi.org/10.1039/d0qi00019a
W. Li, S. He, L. Feng, W. Yang, Cr-doped α-MoO3 nanorods for the fast detection of triethylamine using a pulse-heating strategy. Mater. Lett. 250, 143–146 (2019). https://doi.org/10.1016/j.matlet.2019.05.006
Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC Adv. 7, 28366–28372 (2017). https://doi.org/10.1039/c7ra02893h
S. Bai, C. Chen, D. Zhang, R. Luo, D. Li et al., Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped α-MoO3 nanobelts. Sens. Actuat. B Chem. 204, 754–762 (2014). https://doi.org/10.1016/j.snb.2014.08.017
S. Yang, Y. Liu, T. Chen, W. Jin, T. Yang et al., Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol. Appl. Surf. Sci. 393, 377–384 (2017). https://doi.org/10.1016/j.apsusc.2016.10.021
K. Liu, W. Zhang, F. Lei, L. Liang, B. Gu et al., Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy 30, 810–817 (2016). https://doi.org/10.1016/j.nanoen.2016.09.015
P. Qin, G. Fang, F. Cheng, W. Ke, H. Lei et al., Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application. ACS Appl. Mater. Interf. 6, 2963–2973 (2014). https://doi.org/10.1021/am405571a
Y. Zhao, Z. Jin, Z. Liu, Y. Xu, L. Lu et al., Sulfur doped molybdenum oxide quantum dots as efficient fluorescent labels and bacteriostatic. Inorg. Chem. Commun. 122, 108275 (2020). https://doi.org/10.1016/j.inoche.2020.108275
S. Bandaru, G. Saranya, N.J. English, C. Yam, M. Chen, Tweaking the electronic and optical properties of α-MoO3 by sulphur and selenium doping- a density functional theory study. Sci. Rep. 8, 10144 (2018). https://doi.org/10.1038/s41598-018-28522-7
B.A. Davis, B. Chakraborty, N. Kalarikkal, L.M. Ramaniah, Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: a DFT study. J. Magn. Magn. Mater. 502, 166503 (2020). https://doi.org/10.1016/j.jmmm.2020.166503
Y. Linghu, C. Wu, Gas molecules on defective and nonmetal-doped MoS2 monolayers. J. Phys. Chem. C 124, 1511–1522 (2020). https://doi.org/10.1021/acs.jpcc.9b10450
J. Li, H. Liu, H. Fu, L. Xu, H. Jin et al., Synthesis of 1D α-MoO3/0D ZnO heterostructure nanobelts with enhanced gas sensing properties. J. Alloys Compd. 788, 248–256 (2019). https://doi.org/10.1016/j.jallcom.2019.02.086
J. Yang, J. Liu, B. Li, L. Han, Y. Xu, A microcube-like hierarchical heterostructure of α-Fe2O3@α-MoO3 for trimethylamine sensing. Dalt. Trans. 49, 8114–8121 (2020). https://doi.org/10.1039/D0DT01521K
D. Zappa, V. Galstyan, N. Kaur, H.M.M. Munasinghe Arachchige, O. Sisman et al., Metal oxide -based heterostructures for gas sensors- a review. Anal. Chim. Acta 1039, 1–23 (2018)
D. Jiang, W. Wei, F. Li, Y. Li, C. Liu et al., Xylene gas sensor based on α-MoO3/α-Fe2O3 heterostructure with high response and low operating temperature. RSC Adv. 5, 39442–39448 (2015). https://doi.org/10.1039/c5ra05661f
Z. Li, P. Song, Z. Yang, Q. Wang, In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceram. Int. 44, 3364–3370 (2018). https://doi.org/10.1016/j.ceramint.2017.11.126
F. Qu, X. Zhou, B. Zhang, S. Zhang, C. Jiang et al., Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. J. Alloys Compd. 782, 672–678 (2019). https://doi.org/10.1016/j.jallcom.2018.12.258
F. Zhang, X. Dong, X. Cheng, Y. Xu, X. Zhang et al., Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Appl. Mater. Interf. 11, 11755–11762 (2019). https://doi.org/10.1021/acsami.8b22132
S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances. Sens. Actuat. B Chem. 216, 113–120 (2015). https://doi.org/10.1016/j.snb.2015.04.036
S. Bai, C. Chen, M. Cui, R. Luo, A. Chen et al., Rapid synthesis of rGO-MoO3 hybrids and mechanism of enhancing sensing performance to H2S. RSC Adv. 5, 50783–50789 (2015). https://doi.org/10.1039/c5ra06716b
M. MalekAlaie, M. Jahangiri, A.M. Rashidi, A. HaghighiAsl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Mater. Sci. Semicond. Process. 38, 93–100 (2015). https://doi.org/10.1016/j.mssp.2015.03.034
S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin et al., Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. 3, 1868 (2013). https://doi.org/10.1038/srep01868
Y.P. Venkata Subbaiah, K.J. Saji, A. Tiwari, Atomically thin MoS2: a versatile nongraphene 2D material. Adv. Funct. Mater. 26, 2046–2069 (2016). https://doi.org/10.1002/adfm.201504202
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
W. Zhao, J. Pan, Y. Fang, X. Che, D. Wang et al., Metastable MoS2: crystal structure, electronic band structure, synthetic approach and intriguing physical properties. Chem. A Eur. J. 24, 15942–15954 (2018). https://doi.org/10.1002/chem.201801018
R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53, 3054–3057 (2017). https://doi.org/10.1039/c6cc09952a
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen et al., Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012). https://doi.org/10.1021/nn302422x
B. Pal, A. Singh, S.G., P. Mahale, A. Kumar, et al., Chemically exfoliated MoS2 layers: spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase. Phys. Rev. B 96, 195426 (2017). https://doi.org/10.1103/PhysRevB.96.195426
J. Heising, M.G. Kanatzidis, Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999). https://doi.org/10.1021/ja983043c
J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999). https://doi.org/10.1021/ja991644d
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
A. Molina-Sánchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70, 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001
S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). https://doi.org/10.1021/nl301335q
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
S. Najmaei, M. Amani, M.L. Chin, Z. Liu, A.G. Birdwell et al., Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014). https://doi.org/10.1021/nn501701a
K.M. Garadkar, A.A. Patil, P.P. Hankare, P.A. Chate, D.J. Sathe et al., MoS2: preparation and their characterization. J. Alloys Compd. 487, 786–789 (2009). https://doi.org/10.1016/j.jallcom.2009.08.069
H. Gao, H. Gao, J. Suh, J. Suh, M.C. Cao et al., Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20, 4095–4101 (2020). https://doi.org/10.1021/acs.nanolett.9b05247
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014). https://doi.org/10.1038/nmat4080
Y. Li, L. Wang, S. Zhang, X. Dong, Y. Song et al., Cracked monolayer 1T MoS2 with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catal. Sci. Technol. 7, 718–724 (2017). https://doi.org/10.1039/C6CY02649D
J.Y. Kim, S.M. Choi, W.S. Seo, W.S. Cho, Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 31, 3225–3227 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3225
R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson et al., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014). https://doi.org/10.1021/nn405826k
I. Jo, M.T. Pettes, E. Ou, W. Wu, L. Shi, Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104, 201902 (2014). https://doi.org/10.1063/1.4876965
S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013). https://doi.org/10.1021/jp402509w
J.V. Lauritsen, M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nørskov et al., Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 221, 510–522 (2004). https://doi.org/10.1016/j.jcat.2003.09.015
M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg et al., One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 87, 196803 (2001). https://doi.org/10.1103/PhysRevLett.87.196803
H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2 -based heterostructures. Chem. Soc. Rev. 47, 6101–6127 (2018). https://doi.org/10.1039/C8CS00314A
T.H.M. Lau, S. Wu, R. Kato, T.S. Wu, J. Kulhavý et al., Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 9, 7527–7534 (2019). https://doi.org/10.1021/acscatal.9b01503
A. Taufik, Y. Asakura, H. Kato, M. Kakihana, R. Saleh et al., 1T/2H-MoS2 engineered by in-situ ethylene glycol intercalation for improved toluene sensing response at room temperature. Adv. Powder Technol. 31, 1868–1878 (2020). https://doi.org/10.1016/j.apt.2020.02.022
E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3, 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015). https://doi.org/10.1038/srep08052
Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 425 (2013). https://doi.org/10.1186/1556-276X-8-425
D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
Y. Feng, K. Zhang, H. Li, F. Wang, B. Zhou et al., In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy. Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa7183
M. Li, D. Wang, J. Li, Z. Pan, H. Ma et al., Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chin. J. Catal. 38, 597–606 (2017). https://doi.org/10.1016/S1872-2067(17)62779-7
G. Tang, J. Zhang, C. Liu, D. Zhang, Y. Wang et al., Synthesis and tribological properties of flower-like MoS2 microspheres. Ceram. Int. 40, 11575–11580 (2014). https://doi.org/10.1016/j.ceramint.2014.03.115
Y. Zhang, W. Zeng, Y. Li, Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl. Surf. Sci. 455, 276–282 (2018). https://doi.org/10.1016/j.apsusc.2018.05.224
X. Wang, Z. Zhang, Y. Chen, Y. Qu, Y. Lai et al., Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties. J. Alloys Compd. 600, 84–90 (2014). https://doi.org/10.1016/j.jallcom.2014.02.127
H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011). https://doi.org/10.1021/nl202675f
M. Wang, G. Li, H. Xu, Y. Qian, J. Yang, Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interf. 5, 1003–1008 (2013). https://doi.org/10.1021/am3026954
S. Kumari, R. Gusain, N. Kumar, O.P. Khatri, PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J. Ind. Eng. Chem. 42, 87–94 (2016). https://doi.org/10.1016/j.jiec.2016.07.038
Y. Zhang, W. Zeng, Y. Li, The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J. Alloys Compd. 749, 355–362 (2018). https://doi.org/10.1016/j.jallcom.2018.03.307
U.K. Sen, S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interf. 5, 1240–1247 (2013). https://doi.org/10.1021/am3022015
L. Ye, H. Xu, D. Zhang, S. Chen, Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 55, 221–228 (2014). https://doi.org/10.1016/j.materresbull.2014.04.025
Q. Zhou, C. Hong, Y. Yao, S. Hussain, L. Xu et al., Hierarchically MoS2 nanospheres assembled from nanosheets for superior CO gas-sensing properties. Mater. Res. Bull. 101, 132–139 (2018). https://doi.org/10.1016/j.materresbull.2018.01.030
A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, Z. Zhu et al., Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111, 093102 (2017). https://doi.org/10.1063/1.5000825
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012). https://doi.org/10.1002/smll.201101016
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuat. B Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interf. 7, 2952–2959 (2015). https://doi.org/10.1021/am508535x
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi et al., High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5304–5314 (2014). https://doi.org/10.1021/nn5015215
H. Long, L. Chan, A. Harley-Trochimczyk, L.E. Luna, Z. Tang et al., 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interf. 4, 2–9 (2017). https://doi.org/10.1002/admi.201700217
S. Fathipour, M. Remskar, A. Varlec, A. Ajoy, R. Yan et al., Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors. Appl. Phys. Lett. 106, 022114 (2015). https://doi.org/10.1063/1.4906066
K. Qi, S. Yu, Q. Wang, W. Zhang, J. Fan et al., Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. J. Mater. Chem. A 4, 4025–4031 (2016). https://doi.org/10.1039/c5ta10337a
L. Dong, S. Guo, Y. Wang, Q. Zhang, L. Gu et al., Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control. J. Mater. Chem. A 7, 27603–27611 (2019). https://doi.org/10.1039/c9ta08738a
Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi et al., Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 28, 4390–4396 (2016). https://doi.org/10.1021/acs.chemmater.6b01395
Q. Tang, D.E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015). https://doi.org/10.1021/acs.chemmater.5b00986
S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du et al., Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1801345 (2018). https://doi.org/10.1002/aenm.201801345
C. Guo, J. Pan, H. Li, T. Lin, P. Liu et al., Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C 5, 10855–10860 (2017). https://doi.org/10.1039/c7tc03749j
D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei et al., Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5, 2681–2688 (2017). https://doi.org/10.1039/c6ta09409k
Y. Zhang, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Hybrid phase 1T/2H-MoS2 with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale 12, 11908–11915 (2020). https://doi.org/10.1039/d0nr02525a
H. Cao, Z. Bai, Y. Li, Z. Xiao, X. Zhang et al., Solvothermal synthesis of defect-rich mixed 1T–2H MoS2 nanoflowers for enhanced hydrodesulfurization. ACS Sustain. Chem. Eng. 8, 7343–7352 (2020). https://doi.org/10.1021/acssuschemeng.0c00736
K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102–5109 (2017). https://doi.org/10.1039/c7nr01015j
B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H Heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interf. 12, 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
Z. Chen, H. Xu, C. Liu, D. Cao, Q. Ye et al., Good triethylamine sensing properties of Au@MoS2 nanostructures directly grown on ceramic tubes. Mater. Chem. Phys. 245, 122683 (2020). https://doi.org/10.1016/j.matchemphys.2020.122683
H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang et al., A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016). https://doi.org/10.1016/j.ceramint.2016.02.160
D.H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuat. B Chem. 250, 686–691 (2017). https://doi.org/10.1016/j.snb.2017.05.028
C. Kuru, C. Choi, A. Kargar, D. Choi, Y.J. Kim et al., MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2, 1500004 (2015). https://doi.org/10.1002/advs.201500004
J. Jaiswal, P. Tiwari, P. Singh, R. Chandra, Fabrication of highly responsive room temperature H2 sensor based on vertically aligned edge-oriented MoS2 nanostructured thin film functionalized by Pd nanoparticles. Sens. Actuat. B Chem. 325, 128800 (2020). https://doi.org/10.1016/j.snb.2020.128800
J. Park, J. Mun, J.-S. Shin, S.-W. Kang, Highly sensitive two-dimensional MoS2 gas sensor decorated with Pt nanoparticles. R. Soc. Open Sci. 5, 181462 (2018). https://doi.org/10.1098/rsos.181462
S.R. Gottam, C.T. Tsai, L.W. Wang, C.T. Wang, C.C. Lin et al., Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite. Appl. Surf. Sci. 506, 144981 (2020). https://doi.org/10.1016/j.apsusc.2019.144981
L. Chacko, E. Massera, P.M. Aneesh, Enhancement in the selectivity and sensitivity of Ni and Pd functionalized MoS2 toxic gas sensors. J. Electrochem. Soc. 167, 106506 (2020). https://doi.org/10.1149/1945-7111/ab992c
P. Halvaee, S. Dehghani, M. Mohammadzadeh, Room temperature methanol sensors based on rod-shaped nanostructures of MoS2 functionalized with Ag nanoparticles. IEEE Sens. J. 21, 4233–4240 (2021). https://doi.org/10.1109/JSEN.2020.3035753
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
J. Suh, T.E. Park, D.Y. Lin, D. Fu, J. Park et al., Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014). https://doi.org/10.1021/nl503251h
A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016). https://doi.org/10.1021/acsnano.5b06529
M. Li, J. Yao, X. Wu, S. Zhang, B. Xing et al., P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interf. 12, 6276–6282 (2020). https://doi.org/10.1021/acsami.9b19864
L. Shao, Z. Wu, H. Duan, T. Shaymurat, Discriminative and rapid detection of ozone realized by sensor array of Zn2+ doping tailored MoS2 ultrathin nanosheets. Sens. Actuat. B Chem. 258, 937–946 (2018). https://doi.org/10.1016/j.snb.2017.11.166
A. Taufik, Y. Asakura, T. Hasegawa, H. Kato, M. Kakihana et al., Surface engineering of 1T/2H-MoS2 nanoparticles by O2 plasma irradiation as a potential humidity sensor for breathing and skin monitoring applications. ACS Appl. Nano Mater. 3, 7835–7846 (2020). https://doi.org/10.1021/acsanm.0c01352
Y. Chen, F. Su, H. Xie, R. Wang, C. Ding et al., One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 404, 126498 (2021). https://doi.org/10.1016/j.cej.2020.126498
D.N. Sangeetha, M.S. Santosh, M. Selvakumar, Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. J. Alloys Compd. 831, 154745 (2020). https://doi.org/10.1016/j.jallcom.2020.154745
R. Li, L. Yang, T. Xiong, Y. Wu, L. Cao et al., Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sour. 356, 133–139 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.060
P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27, 225403 (2016). https://doi.org/10.1088/0957-4484/27/22/225403
J. Guo, C. Liu, Y. Sun, J. Sun, W. Zhang et al., N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J. Solid State Chem. 263, 84–87 (2018). https://doi.org/10.1016/j.jssc.2018.04.023
A. Taufik, Y. Asakura, T. Hasegawa, S. Yin, MoS2– x Sex nanoparticles for NO detection at room temperature. ACS Appl. Nano Mater. 4, 6861–6871 (2021). https://doi.org/10.1021/acsanm.1c00926
C. Jin, X. Tang, X. Tan, S.C. Smith, Y. Dai et al., A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. J. Mater. Chem. A 7, 1099–1106 (2019). https://doi.org/10.1039/c8ta08407f
J. Zhu, H. Zhang, Y. Tong, L. Zhao, Y. Zhang et al., First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 419, 522–530 (2017). https://doi.org/10.1016/j.apsusc.2017.04.157
D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/c7ta07001b
S. Singh, S. Sharma, R.C. Singh, S. Sharma, Hydrothermally synthesized MoS2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surf. Sci. 532, 147373 (2020). https://doi.org/10.1016/j.apsusc.2020.147373
S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018). https://doi.org/10.1039/c7ta11375g
G. He, D. Huang, Z. Yang, Y. Han, J. Hu et al., Linear humidity response of carbon dot-modified molybdenum disulfide. Phys. Chem. Chem. Phys. 20, 4083–4091 (2018). https://doi.org/10.1039/C7CP07125F
N. Yue, J. Weicheng, W. Rongguo, D. Guomin, H. Yifan, Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing. J. Mater. Chem. A 4, 8198–8203 (2016). https://doi.org/10.1039/c6ta03267b
L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv et al., Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 393, 122325 (2020). https://doi.org/10.1016/j.jhazmat.2020.122325
M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7, 14602–14612 (2019). https://doi.org/10.1039/c9ta03452h
Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interf. 10, 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
W. Wang, Y. Zhen, J. Zhang, Y. Li, H. Zhong et al., SnO2 nanoparticles-modified 3D-multilayer MoS2 nanosheets for ammonia gas sensing at room temperature. Sens. Actuat. B Chem. 321, 128471 (2020). https://doi.org/10.1016/j.snb.2020.128471
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2 -based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13, 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2, 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
A. Ali, O. Koybasi, W. Xing, D.N. Wright, D. Varandani et al., Single digit parts-per-billion NOx detection using MoS2/hBN transistors. Sens. Actuat. A Phys. 315, 112247 (2020). https://doi.org/10.1016/j.sna.2020.112247
Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee et al., Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interf. 11, 38902–38909 (2019). https://doi.org/10.1021/acsami.9b10861
M. Barzegar, A. Iraji zad, A. Tiwari, On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum 167, 90–97 (2019). https://doi.org/10.1016/j.vacuum.2019.05.033
Y. Han, Y. Ma, Y. Liu, S. Xu, X. Chen et al., Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl. Surf. Sci. 493, 613–619 (2019). https://doi.org/10.1016/j.apsusc.2019.07.052
K.D. Bronsema, J.L. De Boer, F. Jellinek, On the structure of molybdenum diselenide and disulfide. ZAAC - J. Inorg. Gen. Chem. 540, 15–17 (1986). https://doi.org/10.1002/zaac.19865400904
A. Eftekhari, Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 8, 1–17 (2017). https://doi.org/10.1016/j.apmt.2017.01.006
F. Jiang, W.-S. Zhao, J. Zhang, Mini-review: Recent progress in the development of MoSe2 based chemical sensors and biosensors. Microelectron. Eng. 225, 111279 (2020). https://doi.org/10.1016/j.mee.2020.111279
D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 3–7 (2014). https://doi.org/10.1063/1.4903358
S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201900138
Z. Yang, D. Zhang, D. Wang, Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens. Actuat. B Chem. 304, 127369 (2020). https://doi.org/10.1016/j.snb.2019.127369
R.K. Jha, J.V. D’Costa, N. Sakhuja, N. Bhat, MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens. Actuat. B Chem. 297, 126687 (2019). https://doi.org/10.1016/j.snb.2019.126687
X. Chen, X. Chen, Y. Han, C. Su, M. Zeng et al., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab35ec
D. Zhang, Q. Li, P. Li, M. Pang, Y. Luo, Fabrication of Pd-decorated MoSe2 nanoflowers and density functional theory simulation toward ammonia sensing. IEEE Electron Device Lett. 40, 616–619 (2019). https://doi.org/10.1109/LED.2019.2901296
D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
Y.F. Lin, Y. Xu, C.Y. Lin, Y.W. Suen, M. Yamamoto et al., Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27, 6612–6619 (2015). https://doi.org/10.1002/adma.201502677
Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8, 155 (2017). https://doi.org/10.3390/mi8050155
E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu et al., Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 3, 1719–1726 (2018). https://doi.org/10.1021/acssensors.8b00461
E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interf. 10, 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
S.Y. Cho, J.Y. Kim, O. Kwon, J. Kim, H.T. Jung, Molybdenum carbide chemical sensors with ultrahigh signal-to-noise ratios and ambient stability. J. Mater. Chem. A 6, 23408–23416 (2018). https://doi.org/10.1039/C8TA07168C
F. Rasch, V. Postica, F. Schütt, Y.K. Mishra, A.S. Nia et al., Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens. Actuat. B Chem. 320, 128363 (2020). https://doi.org/10.1016/j.snb.2020.128363