Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility
Corresponding Author: Chaoliang Tan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 109
Abstract
The lack of stable p-type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p-type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p-type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm2 V−1 s−1 at room temperature, that may lay the foundation for the future high-performance p-type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility.
Highlights:
1 The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate.
2 The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm2 V−1 s−1 at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
- A. Kis, How we made the 2D transistor. Nat. Electron. 4, 853 (2021). https://doi.org/10.1038/s41928-021-00675-w
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- C. Chang, W. Chen, Y. Chen, Y.H. Chen, Y. Chen et al., Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37(12), 2108017 (2021). https://doi.org/10.3866/PKU.WHXB202108017
- Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12, 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
- J. Zha, M. Luo, M. Ye, T. Ahmed, X. Yu et al., Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 32(15), 2111970 (2022). https://doi.org/10.1002/adfm.202111970
- Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
- M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3(4), 362–396 (2021). https://doi.org/10.1002/inf2.12161
- J. Pang, A. Bachmatiuk, F. Yang, H. Liu, W. Zhou et al., Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 13, 191 (2021). https://doi.org/10.1007/s40820-021-00721-4
- J. Pang, Y. Wang, X. Yang, L. Zhang, Y. Li et al., A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 3(3), 1497–1505 (2022). https://doi.org/10.1039/D1MA00757B
- Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
- W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013). https://doi.org/10.1063/1.4789365
- Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu et al., High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698
- K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017). https://doi.org/10.1021/acs.nanolett.6b04576
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/NNANO.2010.279
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/NNANO.2014.35
- J. Na, Y.T. Lee, J.A. Lim, D.K. Hwang, G.T. Kim et al., Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8(11), 11753–11762 (2014). https://doi.org/10.1021/nn5052376
- X. Li, Z. Yu, X. Xiong, T. Li, T. Gao et al., High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5(6), eaau3194 (2019). https://doi.org/10.1126/sciadv.aau3194
- Y. Du, H. Liu, Y. Deng, P.D. Ye, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014). https://doi.org/10.1021/nn502553m
- J.O. Island, G.A. Steele, H.S.J. Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
- G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12, 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
- D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan et al., Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
- T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
- J.S. Lee, S.H. Choi, S.J. Yun, Y.I. Kim, S. Boandoh et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362(6416), 817–821 (2018). https://doi.org/10.1126/science.aau2132
- P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
- W. Pacuski, M. Grzeszczyk, K. Nogajewski, A. Bogucki, K. Oreszczuk et al., Narrow excitonic lines and large-scale homogeneity of transition-metal dichalcogenide monolayers grown by molecular beam epitaxy on hexagonal boron nitride. Nano Lett. 20(5), 3058–3066 (2020). https://doi.org/10.1021/acs.nanolett.9b04998
- W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013). https://doi.org/10.1038/nmat3695
- S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang et al., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). https://doi.org/10.1038/ncomms7499
- M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
- M. Peng, R. Xie, Z. Wang, P. Wang, F. Wang et al., Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 7(16), eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358
- A. Koma, S. Tanaka, Etch pits and crystal structure of tellurium. Phys. Status Solidi B 40(1), 239–248 (1970). https://doi.org/10.1002/pssb.19700400125
- C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for P-type field-effect transistors and circuits. Nat. Nanotechnol. 15, 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
- C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020). https://doi.org/10.1002/adma.202001329
- X. Zhang, J. Jiang, A.A. Suleiman, B. Jin, X. Hu et al., Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater. 29(49), 1906585 (2019). https://doi.org/10.1002/adfm.201906585
- Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
- K. Liu, B. Jin, W. Han, X. Chen, P. Gong et al., A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021). https://doi.org/10.1038/s41928-021-00683-w
- M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo et al., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015). https://doi.org/10.1038/srep10699
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 40336–44041 (2014). https://doi.org/10.1021/nn501226z
- H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad et al., High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9(10), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611
- P.R. Pudasaini, M.G. Stanford, A. Oyedele, A.T. Wong, A.N. Hoffman et al., High performance top-gated multilayer WSe2 field effect transistors. Nanotechnology 28(47), 475202 (2017). https://doi.org/10.1088/1361-6528/aa8081
- Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
- Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
- P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han et al., Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 12, 1958–1966 (2020). https://doi.org/10.1039/C9NR09129G
- E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu et al., Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015). https://doi.org/10.1038/ncomms7991
- F. Cui, C. Wang, X. Li, G. Wang, K. Liu et al., Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 28(25), 5019–5024 (2016). https://doi.org/10.1002/adma.201600722
- F. Liao, Z. Guo, Y. Wang, Y. Xie, S. Zhang et al., High-performance logic and memory devices based on a dual-gated MoS2 architecture. ACS Appl. Electron. Mater. 2(1), 111–119 (2020). https://doi.org/10.1021/acsaelm.9b00628
- J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021). https://doi.org/10.1002/adma.202101036
- Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 3(12), 1900349 (2019). https://doi.org/10.1002/smtd.201900349
- Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der Waals integration of bismuth quantum dots–decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15(47), 1903233 (2019). https://doi.org/10.1002/smll.201903233
- H. Choi, K. Cho, C. Frisbie, H. Sirringhaus, V. Podzorov, Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17(1), 2–7 (2018). https://doi.org/10.1038/nmat5035
- A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang et al., Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 4(3), 447–450 (2004). https://doi.org/10.1021/nl035185x
- J. Guo, L. Wang, Y. Yu, P. Wang, Y. Huang et al., SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 31(49), 1902962 (2019). https://doi.org/10.1002/adma.201902962
- J. Kwon, Y.K. Hong, G. Han, I. Omkaram, W. Choi et al., Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27(13), 2224–2230 (2015). https://doi.org/10.1002/adma.201404367
- B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
- H.W. Guo, Z. Hu, Z.B. Liu, J.G. Tian, Stacking of 2D materials. Adv. Funct. Mater. 31(4), 2007810 (2021). https://doi.org/10.1002/adfm.202007810
References
K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
A. Kis, How we made the 2D transistor. Nat. Electron. 4, 853 (2021). https://doi.org/10.1038/s41928-021-00675-w
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
C. Chang, W. Chen, Y. Chen, Y.H. Chen, Y. Chen et al., Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37(12), 2108017 (2021). https://doi.org/10.3866/PKU.WHXB202108017
Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12, 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
J. Zha, M. Luo, M. Ye, T. Ahmed, X. Yu et al., Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 32(15), 2111970 (2022). https://doi.org/10.1002/adfm.202111970
Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3(4), 362–396 (2021). https://doi.org/10.1002/inf2.12161
J. Pang, A. Bachmatiuk, F. Yang, H. Liu, W. Zhou et al., Applications of carbon nanotubes in the internet of things era. Nano-Micro Lett. 13, 191 (2021). https://doi.org/10.1007/s40820-021-00721-4
J. Pang, Y. Wang, X. Yang, L. Zhang, Y. Li et al., A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 3(3), 1497–1505 (2022). https://doi.org/10.1039/D1MA00757B
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102(4), 042104 (2013). https://doi.org/10.1063/1.4789365
Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu et al., High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698
K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017). https://doi.org/10.1021/acs.nanolett.6b04576
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/NNANO.2010.279
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/NNANO.2014.35
J. Na, Y.T. Lee, J.A. Lim, D.K. Hwang, G.T. Kim et al., Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8(11), 11753–11762 (2014). https://doi.org/10.1021/nn5052376
X. Li, Z. Yu, X. Xiong, T. Li, T. Gao et al., High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5(6), eaau3194 (2019). https://doi.org/10.1126/sciadv.aau3194
Y. Du, H. Liu, Y. Deng, P.D. Ye, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014). https://doi.org/10.1021/nn502553m
J.O. Island, G.A. Steele, H.S.J. Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12, 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan et al., Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
J.S. Lee, S.H. Choi, S.J. Yun, Y.I. Kim, S. Boandoh et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362(6416), 817–821 (2018). https://doi.org/10.1126/science.aau2132
P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
W. Pacuski, M. Grzeszczyk, K. Nogajewski, A. Bogucki, K. Oreszczuk et al., Narrow excitonic lines and large-scale homogeneity of transition-metal dichalcogenide monolayers grown by molecular beam epitaxy on hexagonal boron nitride. Nano Lett. 20(5), 3058–3066 (2020). https://doi.org/10.1021/acs.nanolett.9b04998
W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013). https://doi.org/10.1038/nmat3695
S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang et al., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). https://doi.org/10.1038/ncomms7499
M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
M. Peng, R. Xie, Z. Wang, P. Wang, F. Wang et al., Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 7(16), eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358
A. Koma, S. Tanaka, Etch pits and crystal structure of tellurium. Phys. Status Solidi B 40(1), 239–248 (1970). https://doi.org/10.1002/pssb.19700400125
C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for P-type field-effect transistors and circuits. Nat. Nanotechnol. 15, 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020). https://doi.org/10.1002/adma.202001329
X. Zhang, J. Jiang, A.A. Suleiman, B. Jin, X. Hu et al., Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater. 29(49), 1906585 (2019). https://doi.org/10.1002/adfm.201906585
Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang et al., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
K. Liu, B. Jin, W. Han, X. Chen, P. Gong et al., A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021). https://doi.org/10.1038/s41928-021-00683-w
M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo et al., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015). https://doi.org/10.1038/srep10699
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 40336–44041 (2014). https://doi.org/10.1021/nn501226z
H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad et al., High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9(10), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611
P.R. Pudasaini, M.G. Stanford, A. Oyedele, A.T. Wong, A.N. Hoffman et al., High performance top-gated multilayer WSe2 field effect transistors. Nanotechnology 28(47), 475202 (2017). https://doi.org/10.1088/1361-6528/aa8081
Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han et al., Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 12, 1958–1966 (2020). https://doi.org/10.1039/C9NR09129G
E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu et al., Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015). https://doi.org/10.1038/ncomms7991
F. Cui, C. Wang, X. Li, G. Wang, K. Liu et al., Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 28(25), 5019–5024 (2016). https://doi.org/10.1002/adma.201600722
F. Liao, Z. Guo, Y. Wang, Y. Xie, S. Zhang et al., High-performance logic and memory devices based on a dual-gated MoS2 architecture. ACS Appl. Electron. Mater. 2(1), 111–119 (2020). https://doi.org/10.1021/acsaelm.9b00628
J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021). https://doi.org/10.1002/adma.202101036
Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 3(12), 1900349 (2019). https://doi.org/10.1002/smtd.201900349
Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der Waals integration of bismuth quantum dots–decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15(47), 1903233 (2019). https://doi.org/10.1002/smll.201903233
H. Choi, K. Cho, C. Frisbie, H. Sirringhaus, V. Podzorov, Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17(1), 2–7 (2018). https://doi.org/10.1038/nmat5035
A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang et al., Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 4(3), 447–450 (2004). https://doi.org/10.1021/nl035185x
J. Guo, L. Wang, Y. Yu, P. Wang, Y. Huang et al., SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 31(49), 1902962 (2019). https://doi.org/10.1002/adma.201902962
J. Kwon, Y.K. Hong, G. Han, I. Omkaram, W. Choi et al., Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 27(13), 2224–2230 (2015). https://doi.org/10.1002/adma.201404367
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
H.W. Guo, Z. Hu, Z.B. Liu, J.G. Tian, Stacking of 2D materials. Adv. Funct. Mater. 31(4), 2007810 (2021). https://doi.org/10.1002/adfm.202007810