Green Fabrication of Freestanding Piezoceramic Films for Energy Harvesting and Virus Detection
Corresponding Author: Zhengbao Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 131
Abstract
Most electronics such as sensors, actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy. Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching, which comes at the sacrifice of the substrate materials, film cracks, and environmental contamination. Here, we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple, green, and cost-effective manner. The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface. The fabricated lead-free film, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT), shows a high piezoelectric coefficient d33 = 209 ± 10 pm V−1 and outstanding flexibility of maximum strain 2%. The freestanding feature enables a wide application scenario, including micro energy harvesting, and covid-19 spike protein detection. We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.
Highlights:
1 Freestanding lead-free piezoceramic thin films can be derived via water peeling.
2 The d33 value of the freestanding BCZT thin film reaches 209 pm V−1.
3 The freestanding piezoceramic films obtain versatile application scenarios such as energy harvest and virus detection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2023). https://doi.org/10.1126/sciadv.abe5683
- D.Y. Park, D.J. Joe, D.H. Kim, H.H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017). https://doi.org/10.1002/adma.201702308
- J.H. Han, K.-I. Park, C.K. Jeong, Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19(6), 1444 (2019). https://doi.org/10.3390/s19061444
- D.Y. Hyeon, K.-I. Park, Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the mica substrate. Energy Technol. 7, 1900638 (2019). https://doi.org/10.1002/ente.201900638
- T. Wang, R.-C. Peng, W. Peng, G. Dong, C. Zhou et al., 2–2 Type PVDF-based composites interlayered by epitaxial (111)-oriented BTO films for high energy storage density. Adv. Funct. Mater. 32(10), 2108496 (2021). https://doi.org/10.1002/adfm.202108496
- B. Peng, R. Peng, Y. Zhang, G. Dong, Z. Zhou, Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes. Sci. Adv. 6, eaba5847 (2020). https://doi.org/10.1126/sciadv.aba584
- T. Xu, J. Miao, Z. Wang, L. Yu, C.M. Li, Micro-piezoelectric immunoassay chip for simultaneous detection of Hepatitis B virus and α-fetoprotein. Sens. Actuators B Chem. 151, 370 (2011). https://doi.org/10.1016/j.snb.2010.08.013
- H. Ma, X. Xiao, Y. Wang, Y. Sun, B. Wang et al., Wafer-scale freestanding vanadium dioxide film. Sci. Adv. 7, eabk3438 (2022). https://doi.org/10.1126/sciadv.abk3438
- T.D. Nguyen, N. Deshmukh, J.M. Nagarah, T. Kramer, P.K. Purohit et al., Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587 (2012). https://doi.org/10.1038/nnano.2012.112
- X. Wu, X. Li, J. Ping, Y. Ying, Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy 90, 106592 (2021). https://doi.org/10.1016/j.nanoen.2021.106592
- S. Dai, X. Li, C. Jiang, J. Ping, Y. Ying, Triboelectric nanogenerators for smart agriculture. InfoMat 5, e12391 (2023). https://doi.org/10.1002/inf2.12391
- M.A. Gabris, J. Ping, Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 90, 106494 (2021). https://doi.org/10.1016/j.nanoen.2021.106494
- S. Liu, Y. Shan, Y. Hong, Y. Jin, W. Lin et al., 3D conformal fabrication of piezoceramic films. Adv. Sci. 9(18), 2106030 (2022). https://doi.org/10.1002/advs.202106030
- K. Il Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514 (2014). https://doi.org/10.1002/adma.201305659
- H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 3, e1603170 (2022). https://doi.org/10.1126/sciadv.1603170
- Z. Zhang, S. Liu, Q. Pan, Y. Hong, Y. Shan et al., Van der Waals exfoliation processed biopiezoelectric submucosa ultrathin films. Adv. Mater. 34(26), 2200864 (2022). https://doi.org/10.1002/adma.202200864
- S. Liu, Z. Zhang, Y. Shan, Y. Hong, F. Farooqui et al., A flexible and lead-free BCZT thin film nanogenerator for biocompatible energy harvesting. Mater. Chem. Front. 5, 4682 (2021). https://doi.org/10.1039/D1QM00145K
- S. Liu, D. Zou, X. Yu, Z. Wang, Z. Yang, Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol–gel process on 2D mica. ACS Appl. Mater. Interfaces 12(49), 54991 (2020). https://doi.org/10.1021/acsami.0c16973
- W. Ming, B. Huang, S. Zheng, Y. Bai, J. Wang et al., Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci. Adv. 8, eabq1232 (2023). https://doi.org/10.1126/sciadv.abq1232
- M. Shehzad, Y. Wang, Flexible and transparent flexoelectric microphone. Adv. Mater. Technol. 8, 2200908 (2023). https://doi.org/10.1002/admt.202200908
- Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu et al., All-ceramic flexible piezoelectric energy harvester. Adv. Funct. Mater. 32, 2209297 (2022). https://doi.org/10.1002/adfm.202209297
- D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 43, 351 (2018). https://doi.org/10.1016/j.nanoen.2017.11.037
- A. Koma, Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72 (1992). https://doi.org/10.1016/0040-6090(92)90872-9
- J. Jie, B. Yugandhar, H. Chun-Wei, D.T. Hien, L. Heng-Jui et al., Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 3, e1700121 (2017). https://doi.org/10.1126/sciadv.170012
- Y. Zhang, M. Xie, J. Roscow, C. Bowen, Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. Mater. Res. Bull. 112, 426 (2019). https://doi.org/10.1016/j.materresbull.2018.08.031
- A.A. Griffith, G.I. Taylor, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 221, 163 (1921). https://doi.org/10.1098/rsta.1921.0006
- K. Kendall, Thin-film peeling-the elastic term. J. Phys. D-Appl. Phys. 8, 1449 (1975). https://doi.org/10.1088/0022-3727/8/13/005
- K. Kendall, The adhesion and surface energy of elastic solids. J. Phys. D-Appl. Phys. 4, 1186 (1971). https://doi.org/10.1088/0022-3727/4/8/320
- S. Khodaparast, F. Boulogne, C. Poulard, H.A. Stone, Water-based peeling of thin hydrophobic films. Phys. Rev. Lett. 119, 154502 (2017). https://doi.org/10.1103/PhysRevLett.119.154502
- H.D. Phan, Y. Kim, J. Lee, R. Liu, Y. Choi et al., Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate. Adv. Mater. 29, 1603928 (2017). https://doi.org/10.1002/adma.201603928
- H.S. Kum, H. Lee, S. Kim, S. Lindemann, W. Kong et al., Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75 (2020). https://doi.org/10.1038/s41586-020-1939-z
- S.W. Song, S. Lee, J.K. Choe, N.-H. Kim, J. Kang et al., Direct 2D-to-3D transformation of pen drawings. Sci. Adv. 7, eabf3804 (2022). https://doi.org/10.1126/sciadv.abf3804
- D.S. Wie, Y. Zhang, M.K. Kim, B. Kim, S. Park et al., Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics. Proc. Natl. Acad. Sci. 115, E7236 (2018). https://doi.org/10.1073/pnas.1806640115
- Y. Zhang, M. Yin, Y. Baek, K. Lee, G. Zangari et al., Capillary transfer of soft films. Proc. Natl. Acad. Sci. 117, 5210 (2020). https://doi.org/10.1073/pnas.2000340117
- O. Guillon, F. Thiebaud, D. Perreux, Tensile fracture of soft and hard PZT. Int. J. Fract. 117, 235 (2002). https://doi.org/10.1023/A:1022072500963
- C.K. Jeong, K.-I. Park, J.H. Son, G.-T. Hwang, S.H. Lee et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035 (2014). https://doi.org/10.1039/C4EE02435D
- Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.Q. Chen et al., Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546 (2018). https://doi.org/10.1039/C8TA03617A
- X. Jiang, D. Wang, M. Sun, N. Zheng, S. Jia et al., Microstructure and electric properties of BCZT thin films with seed layers. RSC Adv. 7, 49962 (2017). https://doi.org/10.1039/C7RA10101E
- G. Kang, K. Yao, J. Wang, Advances in sintering research. J. Am. Ceram. Soc. 95, 986 (2012). https://doi.org/10.1111/j.1551-2916.2012.05312.x
- S.R. Reddy, V.V. Bhanu Prasad, S. Bysakh, V. Shanker, J. Joardar et al., Lead-reduced Bi(Ni2/3Ta1/3)O3-PbTiO3 perovskite ceramics with high Curie temperature and performance. J. Am. Ceram. Soc. 102, 1277 (2019). https://doi.org/10.1111/jace.15962
- A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, E. Quandt, Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3)–0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposited thin films. J. Appl. Phys. 109, 104101 (2011). https://doi.org/10.1063/1.3572056
- N.D. Scarisoreanu, F. Craciun, V. Ion, R. Birjega, A. Bercea et al., Lead-free piezoelectric (Ba, Ca)(Zr, Ti)O3 thin films for biocompatible and flexible devices. ACS Appl. Mater. Interfaces 9, 266 (2017). https://doi.org/10.1021/acsami.6b14774
- W.L. Li, T.D. Zhang, Y.F. Hou, Y. Zhao, D. Xu et al., Giant piezoelectric properties of BZT–0.5BCT thin films induced by nanodomain structure. RSC Adv. 4, 56933 (2014). https://doi.org/10.1039/C4RA08280J
- B.C. Luo, D.Y. Wang, M.M. Duan, S. Li, Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 thin films. Appl. Phys. Lett. 103, 122903 (2013). https://doi.org/10.1063/1.4821918
- B.C. Luo, D.Y. Wang, M.M. Duan, S. Li, Growth and characterization of lead-free piezoelectric BaZr0.2Ti0.8O3–Ba0.7Ca0.3TiO3 thin films on Si substrates. Appl. Surf. Sci. 270, 377 (2013). https://doi.org/10.1016/j.apsusc.2013.01.033
- F. Narita, Z. Wang, H. Kurita, Z. Li, Y. Shi et al., A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses. Adv. Mater. 33, 2005448 (2021). https://doi.org/10.1002/adma.202005448
- Y.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt et al., Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 89, 31 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.006
- Abdullah, A. Rasheed, A. Younis, M. A. Khan, in 2021 IEEE 15th International Conference on Nano/Molecular Medicine and Engineering (2021), pp. 34–37
- G. Li, Z. Qiu, Y. Wang, Y. Hong, Y. Wan et al., PEDOT:PSS/grafted-PDMS electrodes for fully organic and intrinsically stretchable skin-like electronics. ACS Appl. Mater. Interfaces 11, 10373 (2019). https://doi.org/10.1021/acsami.8b20255
- J.S. Lee, B.H. Shin, B.Y. Yoo, S.-Y. Nam, M. Lee et al., Modulation of foreign body reaction against PDMS implant by grafting topographically different poly(acrylic acid) micropatterns. Macromol. Biosci. 19, 1900206 (2019). https://doi.org/10.1002/mabi.201900206
- A. Ahmed, I. Hassan, T. Ibn-Mohammed, H. Mostafa, I.M. Reaney et al., Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10, 653 (2017). https://doi.org/10.1039/C7EE00158D
- T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D. Wang et al., Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495 (2016). https://doi.org/10.1039/C6EE02429G
References
H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7, eabe5683 (2023). https://doi.org/10.1126/sciadv.abe5683
D.Y. Park, D.J. Joe, D.H. Kim, H.H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017). https://doi.org/10.1002/adma.201702308
J.H. Han, K.-I. Park, C.K. Jeong, Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19(6), 1444 (2019). https://doi.org/10.3390/s19061444
D.Y. Hyeon, K.-I. Park, Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the mica substrate. Energy Technol. 7, 1900638 (2019). https://doi.org/10.1002/ente.201900638
T. Wang, R.-C. Peng, W. Peng, G. Dong, C. Zhou et al., 2–2 Type PVDF-based composites interlayered by epitaxial (111)-oriented BTO films for high energy storage density. Adv. Funct. Mater. 32(10), 2108496 (2021). https://doi.org/10.1002/adfm.202108496
B. Peng, R. Peng, Y. Zhang, G. Dong, Z. Zhou, Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes. Sci. Adv. 6, eaba5847 (2020). https://doi.org/10.1126/sciadv.aba584
T. Xu, J. Miao, Z. Wang, L. Yu, C.M. Li, Micro-piezoelectric immunoassay chip for simultaneous detection of Hepatitis B virus and α-fetoprotein. Sens. Actuators B Chem. 151, 370 (2011). https://doi.org/10.1016/j.snb.2010.08.013
H. Ma, X. Xiao, Y. Wang, Y. Sun, B. Wang et al., Wafer-scale freestanding vanadium dioxide film. Sci. Adv. 7, eabk3438 (2022). https://doi.org/10.1126/sciadv.abk3438
T.D. Nguyen, N. Deshmukh, J.M. Nagarah, T. Kramer, P.K. Purohit et al., Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587 (2012). https://doi.org/10.1038/nnano.2012.112
X. Wu, X. Li, J. Ping, Y. Ying, Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy 90, 106592 (2021). https://doi.org/10.1016/j.nanoen.2021.106592
S. Dai, X. Li, C. Jiang, J. Ping, Y. Ying, Triboelectric nanogenerators for smart agriculture. InfoMat 5, e12391 (2023). https://doi.org/10.1002/inf2.12391
M.A. Gabris, J. Ping, Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 90, 106494 (2021). https://doi.org/10.1016/j.nanoen.2021.106494
S. Liu, Y. Shan, Y. Hong, Y. Jin, W. Lin et al., 3D conformal fabrication of piezoceramic films. Adv. Sci. 9(18), 2106030 (2022). https://doi.org/10.1002/advs.202106030
K. Il Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514 (2014). https://doi.org/10.1002/adma.201305659
H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng et al., Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 3, e1603170 (2022). https://doi.org/10.1126/sciadv.1603170
Z. Zhang, S. Liu, Q. Pan, Y. Hong, Y. Shan et al., Van der Waals exfoliation processed biopiezoelectric submucosa ultrathin films. Adv. Mater. 34(26), 2200864 (2022). https://doi.org/10.1002/adma.202200864
S. Liu, Z. Zhang, Y. Shan, Y. Hong, F. Farooqui et al., A flexible and lead-free BCZT thin film nanogenerator for biocompatible energy harvesting. Mater. Chem. Front. 5, 4682 (2021). https://doi.org/10.1039/D1QM00145K
S. Liu, D. Zou, X. Yu, Z. Wang, Z. Yang, Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol–gel process on 2D mica. ACS Appl. Mater. Interfaces 12(49), 54991 (2020). https://doi.org/10.1021/acsami.0c16973
W. Ming, B. Huang, S. Zheng, Y. Bai, J. Wang et al., Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci. Adv. 8, eabq1232 (2023). https://doi.org/10.1126/sciadv.abq1232
M. Shehzad, Y. Wang, Flexible and transparent flexoelectric microphone. Adv. Mater. Technol. 8, 2200908 (2023). https://doi.org/10.1002/admt.202200908
Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu et al., All-ceramic flexible piezoelectric energy harvester. Adv. Funct. Mater. 32, 2209297 (2022). https://doi.org/10.1002/adfm.202209297
D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 43, 351 (2018). https://doi.org/10.1016/j.nanoen.2017.11.037
A. Koma, Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216, 72 (1992). https://doi.org/10.1016/0040-6090(92)90872-9
J. Jie, B. Yugandhar, H. Chun-Wei, D.T. Hien, L. Heng-Jui et al., Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 3, e1700121 (2017). https://doi.org/10.1126/sciadv.170012
Y. Zhang, M. Xie, J. Roscow, C. Bowen, Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. Mater. Res. Bull. 112, 426 (2019). https://doi.org/10.1016/j.materresbull.2018.08.031
A.A. Griffith, G.I. Taylor, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 221, 163 (1921). https://doi.org/10.1098/rsta.1921.0006
K. Kendall, Thin-film peeling-the elastic term. J. Phys. D-Appl. Phys. 8, 1449 (1975). https://doi.org/10.1088/0022-3727/8/13/005
K. Kendall, The adhesion and surface energy of elastic solids. J. Phys. D-Appl. Phys. 4, 1186 (1971). https://doi.org/10.1088/0022-3727/4/8/320
S. Khodaparast, F. Boulogne, C. Poulard, H.A. Stone, Water-based peeling of thin hydrophobic films. Phys. Rev. Lett. 119, 154502 (2017). https://doi.org/10.1103/PhysRevLett.119.154502
H.D. Phan, Y. Kim, J. Lee, R. Liu, Y. Choi et al., Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate. Adv. Mater. 29, 1603928 (2017). https://doi.org/10.1002/adma.201603928
H.S. Kum, H. Lee, S. Kim, S. Lindemann, W. Kong et al., Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75 (2020). https://doi.org/10.1038/s41586-020-1939-z
S.W. Song, S. Lee, J.K. Choe, N.-H. Kim, J. Kang et al., Direct 2D-to-3D transformation of pen drawings. Sci. Adv. 7, eabf3804 (2022). https://doi.org/10.1126/sciadv.abf3804
D.S. Wie, Y. Zhang, M.K. Kim, B. Kim, S. Park et al., Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics. Proc. Natl. Acad. Sci. 115, E7236 (2018). https://doi.org/10.1073/pnas.1806640115
Y. Zhang, M. Yin, Y. Baek, K. Lee, G. Zangari et al., Capillary transfer of soft films. Proc. Natl. Acad. Sci. 117, 5210 (2020). https://doi.org/10.1073/pnas.2000340117
O. Guillon, F. Thiebaud, D. Perreux, Tensile fracture of soft and hard PZT. Int. J. Fract. 117, 235 (2002). https://doi.org/10.1023/A:1022072500963
C.K. Jeong, K.-I. Park, J.H. Son, G.-T. Hwang, S.H. Lee et al., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035 (2014). https://doi.org/10.1039/C4EE02435D
Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.Q. Chen et al., Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546 (2018). https://doi.org/10.1039/C8TA03617A
X. Jiang, D. Wang, M. Sun, N. Zheng, S. Jia et al., Microstructure and electric properties of BCZT thin films with seed layers. RSC Adv. 7, 49962 (2017). https://doi.org/10.1039/C7RA10101E
G. Kang, K. Yao, J. Wang, Advances in sintering research. J. Am. Ceram. Soc. 95, 986 (2012). https://doi.org/10.1111/j.1551-2916.2012.05312.x
S.R. Reddy, V.V. Bhanu Prasad, S. Bysakh, V. Shanker, J. Joardar et al., Lead-reduced Bi(Ni2/3Ta1/3)O3-PbTiO3 perovskite ceramics with high Curie temperature and performance. J. Am. Ceram. Soc. 102, 1277 (2019). https://doi.org/10.1111/jace.15962
A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, E. Quandt, Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3)–0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposited thin films. J. Appl. Phys. 109, 104101 (2011). https://doi.org/10.1063/1.3572056
N.D. Scarisoreanu, F. Craciun, V. Ion, R. Birjega, A. Bercea et al., Lead-free piezoelectric (Ba, Ca)(Zr, Ti)O3 thin films for biocompatible and flexible devices. ACS Appl. Mater. Interfaces 9, 266 (2017). https://doi.org/10.1021/acsami.6b14774
W.L. Li, T.D. Zhang, Y.F. Hou, Y. Zhao, D. Xu et al., Giant piezoelectric properties of BZT–0.5BCT thin films induced by nanodomain structure. RSC Adv. 4, 56933 (2014). https://doi.org/10.1039/C4RA08280J
B.C. Luo, D.Y. Wang, M.M. Duan, S. Li, Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 thin films. Appl. Phys. Lett. 103, 122903 (2013). https://doi.org/10.1063/1.4821918
B.C. Luo, D.Y. Wang, M.M. Duan, S. Li, Growth and characterization of lead-free piezoelectric BaZr0.2Ti0.8O3–Ba0.7Ca0.3TiO3 thin films on Si substrates. Appl. Surf. Sci. 270, 377 (2013). https://doi.org/10.1016/j.apsusc.2013.01.033
F. Narita, Z. Wang, H. Kurita, Z. Li, Y. Shi et al., A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses. Adv. Mater. 33, 2005448 (2021). https://doi.org/10.1002/adma.202005448
Y.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt et al., Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 89, 31 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.006
Abdullah, A. Rasheed, A. Younis, M. A. Khan, in 2021 IEEE 15th International Conference on Nano/Molecular Medicine and Engineering (2021), pp. 34–37
G. Li, Z. Qiu, Y. Wang, Y. Hong, Y. Wan et al., PEDOT:PSS/grafted-PDMS electrodes for fully organic and intrinsically stretchable skin-like electronics. ACS Appl. Mater. Interfaces 11, 10373 (2019). https://doi.org/10.1021/acsami.8b20255
J.S. Lee, B.H. Shin, B.Y. Yoo, S.-Y. Nam, M. Lee et al., Modulation of foreign body reaction against PDMS implant by grafting topographically different poly(acrylic acid) micropatterns. Macromol. Biosci. 19, 1900206 (2019). https://doi.org/10.1002/mabi.201900206
A. Ahmed, I. Hassan, T. Ibn-Mohammed, H. Mostafa, I.M. Reaney et al., Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10, 653 (2017). https://doi.org/10.1039/C7EE00158D
T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D. Wang et al., Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495 (2016). https://doi.org/10.1039/C6EE02429G