Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control
Corresponding Author: Xinxing Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 72
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Highlights:
1 A fully self-powered bimodal sensor is designed for patterned-displaying the force trajectories.
2 Outstanding mechanoluminescence is achieved with a stimulation force as low as 0.3 N and 2000 cycles reproducibility.
3 The designed bimodal sensor exhibits good potential for handwriting input to achieve visual intelligent control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- Z. Rao, A. Thukral, P. Yang, Y. Lu, H. Shim et al., All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater. 32(15), 2111232 (2022). https://doi.org/10.1002/adfm.202111232
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- J. Liu, Q. Guo, S. Mao, Z. Chen, X. Zhang et al., Templated synthesis of a 1D Ag nanohybrid in the solid state and its organized network for strain-sensing applications. J. Mater. Chem. C 6(40), 10730–10738 (2018). https://doi.org/10.1039/C8TC02720J
- Y. Wang, X. Huang, X. Zhang, Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12(1), 1291 (2021). https://doi.org/10.1038/s41467-021-21577-7
- Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat (2022). https://doi.org/10.1002/smm2.1141
- Z. Lou, S. Chen, L. Wang, R. Shi, L. Li et al., Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 38, 28–35 (2017). https://doi.org/10.1016/j.nanoen.2017.05.024
- H. Zhang, H. Chen, J.H. Lee, E. Kim, K.Y. Chan et al., Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 32(47), 2208362 (2022). https://doi.org/10.1002/adfm.202208362
- M. Xie, K. Hisano, M. Zhu, T. Toyoshi, M. Pan et al., Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 4(3), 1800626 (2019). https://doi.org/10.1002/admt.201800626
- W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired mxene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong et al., Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015). https://doi.org/10.1002/adma.201501408
- W. Xiong, C. Zhu, D. Guo, C. Hou, Z. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
- O. Yue, X. Wang, X. Liu, M. Hou, M. Zheng et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8(15), 2004377 (2021). https://doi.org/10.1002/advs.202004377
- X. Li, J. Liu, D. Li, S. Huang, K. Huang et al., Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv. Sci. 8(16), 2101295 (2021). https://doi.org/10.1002/advs.202101295
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- P. Zhu, Y. Wang, Y. Wang, H. Mao, Q. Zhang et al., Flexible 3d architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application. Adv. Energy Mater. 10(39), 2001945 (2020). https://doi.org/10.1002/aenm.202001945
- Q. Guo, B. Huang, C. Lu, T. Zhou, G. Su et al., A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties. Mater. Horiz. 6(5), 996–1004 (2019). https://doi.org/10.1039/C8MH01624K
- S. Zeng, D. Zhang, W. Huang, Z. Wang, S.G. Freire et al., Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 7(1), 11802 (2016). https://doi.org/10.1038/ncomms11802
- Y. Sun, Y. Wang, Y. Liu, S. Wu, S. Zhang et al., Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202204467
- J. Park, Y. Lee, M.H. Barbee, S. Cho, S. Cho et al., A hierarchical nanop-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins. Adv. Mater. 31(25), 1808148 (2019). https://doi.org/10.1002/adma.201808148
- H.V. Humeniuk, A. Rosspeintner, G. Licari, V. Kilin, L. Bonacina et al., White-fluorescent dual-emission mechanosensitive membrane probes that function by bending rather than twisting. Angew. Chem. Int. Ed. 57(33), 10559–10563 (2018). https://doi.org/10.1002/anie.201804662
- L. Zhang, K. Shi, Y. Wang, L. Su, G. Yang et al., Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide. Nano Energy 85, 106005 (2021). https://doi.org/10.1016/j.nanoen.2021.106005
- M.M. Ito, A.H. Gibbons, D. Qin, D. Yamamoto, H. Jiang et al., Structural colour using organized microfibrillation in glassy polymer films. Nature 570(7761), 363–367 (2019). https://doi.org/10.1038/s41586-019-1299-8
- X. Li, J. Liu, Q. Guo, X. Zhang, M. Tian, Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18(19), 2201012 (2022). https://doi.org/10.1002/smll.202201012
- F. Kempe, O. Brugner, H. Buchheit, S.N. Momm, F. Riehle et al., A simply synthesized, tough polyarylene with transient mechanochromic response. Angew. Chem. Int. Ed. 57(4), 997–1000 (2018). https://doi.org/10.1002/anie.201709142
- T. Qi, H. Xia, Z. Zhang, S. Kong, W. Peng et al., Improved water resistance of sral2O4: Eu2+, dy3+ phosphor directly achieved in a water-containing medium. Solid State Sci. 65, 88–94 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.01.006
- J. Zhao, Z. Wei, Z. Li, J. Yu, J. Tang et al., Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction. Adv. Funct. Mater. 31(38), 2105480 (2021). https://doi.org/10.1002/adfm.202105480
- Z. Lv, J. Liu, X. Yang, D. Fan, J. Cao et al., Naturally derived wearable strain sensors with enhanced mechanical properties and high sensitivity. ACS Appl. Mater. Interfaces 12(19), 22163–22169 (2020). https://doi.org/10.1021/acsami.0c04341
- J. Liu, F. Zhao, Q. Tao, J. Cao, Y. Yu et al., Visualized simulation for the nanostructure design of flexible strain sensors: from a numerical model to experimental verification. Mater. Horiz. 6(9), 1892–1898 (2019). https://doi.org/10.1039/C9MH00389D
- H.-H. Chou, A. Nguyen, A. Chortos, J.W. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 1–10 (2015). https://doi.org/10.1038/ncomms9011
- X. Ma, C. Wang, R. Wei, J. He, J. Li et al., Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 16(2), 2789–2797 (2022). https://doi.org/10.1021/acsnano.1c09779
- J. Pu, Y. Gao, Q. Cao, G. Fu, X. Chen et al., Vanadium metal-organic framework-derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting. SmartMat 3, 608–618 (2022). https://doi.org/10.1002/smm2.1088
- Z. Yu, G. Cai, X. Liu, D. Tang, Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal. Chem. 93(5), 2916–2925 (2021). https://doi.org/10.1021/acs.analchem.0c04501
- X. Huang, Y. Wang, X. Zhang, Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107379
- Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- X. Zhao, Z. Wang, Z. Liu, S. Yao, J. Zhang et al., Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 96, 107067 (2022). https://doi.org/10.1016/j.nanoen.2022.107067
- R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin et al., Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45, 193–202 (2018). https://doi.org/10.1016/j.nanoen.2017.12.048
- A. Qasem, P. Xiong, Z. Ma, M. Peng, Z. Yang, Recent advances in mechanoluminescence of doped zinc sulfides. Laser Photonics Rev. 15(12), 2100276 (2021). https://doi.org/10.1002/lpor.202100276
- H. Zhou, Y. Du, C. Wu, Y. Jiang, F. Wang et al., Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfide based on load effects. J. Lumin. 203, 683–688 (2018). https://doi.org/10.1016/j.jlumin.2018.07.018
- J. Liu, Q. Guo, X. Zhang, J. Gai, C. Zhang, Multistage responsive materials for real-time, reversible, and sustainable light-writing. Adv. Funct. Mater. 31(50), 2106673 (2021). https://doi.org/10.1002/adfm.202106673
- H. Wang, S. Chen, X. Zhu, B. Yuan, X. Sun et al., Phase transition science and engineering of gallium-based liquid metal. Matter 5(7), 2054–2085 (2022). https://doi.org/10.1016/j.matt.2022.05.031
- X. Huang, J. Liu, P. Zhou, G. Su, T. Zhou et al., Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting. Small 18(7), 2104048 (2022). https://doi.org/10.1002/smll.202104048
- X. Yang, G. Su, X. Huang, J. Liu, T. Zhou et al., Noncovalent assembly enabled strong yet tough materials with room-temperature malleability and healability. ACS Nano 16(8), 13002–13013 (2022). https://doi.org/10.1021/acsnano.2c05518
- W. Zhang, J.Z. Ou, S.Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24(24), 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
- Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- H. Wang, X. Chen, Z. Tian, Z. Jiang, W. Yu et al., Efficient color manipulation of zinc sulfide-based mechanoluminescent elastomers for visualized sensing and anti-counterfeiting. J. Lumin. 228, 117590 (2020). https://doi.org/10.1016/j.jlumin.2020.117590
- C. Li, Q. He, Y. Wang, Z. Wang, Z. Wang et al., Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13(1), 3914 (2022). https://doi.org/10.1038/s41467-022-31705-6
- Y. Mao, Y. Kubota, J. Gong, T. Kurose, A. Ishigam et al., Mechanical performance and visual fracture warning function of mechanochromic stimuli-recovery polymer networks. Macromolecules 54(18), 8664–8674 (2021). https://doi.org/10.1021/acs.macromol.1c00904
- Y. Ding, B. So, J. Cao, L. Wondraczek, Ultrasound-induced mechanoluminescence and optical thermometry toward stimulus-responsive materials with simultaneous trigger response and read-out functions. Adv. Sci. 9(23), 2201631 (2022). https://doi.org/10.1002/advs.202201631
- W. Wang, M. Li, P. Zhou, Z. Yan, D. Wang, Design and synthesis of mechanochromic poly (ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polym. Chem. 13(15), 2155–2164 (2022). https://doi.org/10.1039/D2PY00085G
- Y. Mao, Y. Kubota, T. Kurose, A. Ishigami, K. Seshimo et al., Energy dissipation and mechanoresponsive color evaluation of a poly (n-hexyl methacrylate) soft material enhanced by a mechanochromic cross-linker with dynamic covalent bonds. Macromolecules 53(21), 9313–9324 (2020). https://doi.org/10.1021/acs.macromol.0c01770
- B. Chen, N. Yang, Q. Jiang, W. Chen, Y. Yang, Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy 44, 468–475 (2018). https://doi.org/10.1016/j.nanoen.2017.12.026
- L. Gao, X. Chen, S. Lu, H. Zhou, W. Xie et al., Enhancing the output performance of triboelectric nanogenerator via grating-electrode-enabled surface plasmon excitation. Adv. Energy Mater. 9(44), 1902725 (2019). https://doi.org/10.1002/aenm.201902725
- R. Li, H. Zhang, L. Wang, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21(4), 1514 (2021). https://doi.org/10.3390/s21041514
- X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
- X. Liu, Y. Shang, J. Zhang, C. Zhang, Ionic liquid-assisted 3d printing of self-polarized beta-pvdf for flexible piezoelectric energy harvesting. ACS Appl. Mater. Interfaces 13(12), 14334–14341 (2021). https://doi.org/10.1021/acsami.1c03226
- M. Ha, S. Lim, S. Cho, Y. Lee, S. Na et al., Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 12(4), 3964–3974 (2018). https://doi.org/10.1021/acsnano.8b01557
- W. Jiang, Mnist-mix: a multi-language handwritten digit recognition dataset. IOP SciNotes 1(2), 025002 (2020). https://doi.org/10.1088/2633-1357/abad0e
- A. Madakannu, A. Selvaraj, Digi-net: a deep convolutional neural network for multi-format digit recognition. Neural Comput. Appl. 32(15), 11373–11383 (2020). https://doi.org/10.1007/s00521-019-04632-9
- C. Dai, Y. Wang, Y. Shan, C. Ye, Z. Lv et al., Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 10(1), 136–148 (2023). https://doi.org/10.1039/D2MH01034H
- C. Dai, C. Ye, J. Ren, S. Yang, L. Cao et al., Humanoid ionotronic skin for smart object recognition and sorting. ACS Mater. Lett. 5, 189–201 (2022). https://doi.org/10.1021/acsmaterialslett.2c00783
- Q. Han, C. Gui, J. Xu, G. Lacidogna, A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 226, 734–742 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.315
- L. Lang, L. Tiancai, A. Shan, T. Xiangyan, An improved random forest algorithm and its application to wind pressure prediction. Int. J. Intell. Syst. 36(8), 4016–4032 (2021). https://doi.org/10.1002/int.22448
- J. Abellan, C.J. Mantas, J.G. Castellano, S. Moral-Garcia, Increasing diversity in random forest learning algorithm via imprecise probabilities. Expert Syst. Appl. 97, 228–243 (2018). https://doi.org/10.1016/j.eswa.2017.12.029
References
S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
Z. Rao, A. Thukral, P. Yang, Y. Lu, H. Shim et al., All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater. 32(15), 2111232 (2022). https://doi.org/10.1002/adfm.202111232
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
J. Liu, Q. Guo, S. Mao, Z. Chen, X. Zhang et al., Templated synthesis of a 1D Ag nanohybrid in the solid state and its organized network for strain-sensing applications. J. Mater. Chem. C 6(40), 10730–10738 (2018). https://doi.org/10.1039/C8TC02720J
Y. Wang, X. Huang, X. Zhang, Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12(1), 1291 (2021). https://doi.org/10.1038/s41467-021-21577-7
Q. Ding, Z. Zhou, H. Wang, Z. Wu, K. Tao et al., Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat (2022). https://doi.org/10.1002/smm2.1141
Z. Lou, S. Chen, L. Wang, R. Shi, L. Li et al., Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 38, 28–35 (2017). https://doi.org/10.1016/j.nanoen.2017.05.024
H. Zhang, H. Chen, J.H. Lee, E. Kim, K.Y. Chan et al., Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 32(47), 2208362 (2022). https://doi.org/10.1002/adfm.202208362
M. Xie, K. Hisano, M. Zhu, T. Toyoshi, M. Pan et al., Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 4(3), 1800626 (2019). https://doi.org/10.1002/admt.201800626
W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired mxene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong et al., Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015). https://doi.org/10.1002/adma.201501408
W. Xiong, C. Zhu, D. Guo, C. Hou, Z. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
O. Yue, X. Wang, X. Liu, M. Hou, M. Zheng et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8(15), 2004377 (2021). https://doi.org/10.1002/advs.202004377
X. Li, J. Liu, D. Li, S. Huang, K. Huang et al., Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv. Sci. 8(16), 2101295 (2021). https://doi.org/10.1002/advs.202101295
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
P. Zhu, Y. Wang, Y. Wang, H. Mao, Q. Zhang et al., Flexible 3d architectured piezo/thermoelectric bimodal tactile sensor array for e-skin application. Adv. Energy Mater. 10(39), 2001945 (2020). https://doi.org/10.1002/aenm.202001945
Q. Guo, B. Huang, C. Lu, T. Zhou, G. Su et al., A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties. Mater. Horiz. 6(5), 996–1004 (2019). https://doi.org/10.1039/C8MH01624K
S. Zeng, D. Zhang, W. Huang, Z. Wang, S.G. Freire et al., Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 7(1), 11802 (2016). https://doi.org/10.1038/ncomms11802
Y. Sun, Y. Wang, Y. Liu, S. Wu, S. Zhang et al., Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202204467
J. Park, Y. Lee, M.H. Barbee, S. Cho, S. Cho et al., A hierarchical nanop-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins. Adv. Mater. 31(25), 1808148 (2019). https://doi.org/10.1002/adma.201808148
H.V. Humeniuk, A. Rosspeintner, G. Licari, V. Kilin, L. Bonacina et al., White-fluorescent dual-emission mechanosensitive membrane probes that function by bending rather than twisting. Angew. Chem. Int. Ed. 57(33), 10559–10563 (2018). https://doi.org/10.1002/anie.201804662
L. Zhang, K. Shi, Y. Wang, L. Su, G. Yang et al., Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide. Nano Energy 85, 106005 (2021). https://doi.org/10.1016/j.nanoen.2021.106005
M.M. Ito, A.H. Gibbons, D. Qin, D. Yamamoto, H. Jiang et al., Structural colour using organized microfibrillation in glassy polymer films. Nature 570(7761), 363–367 (2019). https://doi.org/10.1038/s41586-019-1299-8
X. Li, J. Liu, Q. Guo, X. Zhang, M. Tian, Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18(19), 2201012 (2022). https://doi.org/10.1002/smll.202201012
F. Kempe, O. Brugner, H. Buchheit, S.N. Momm, F. Riehle et al., A simply synthesized, tough polyarylene with transient mechanochromic response. Angew. Chem. Int. Ed. 57(4), 997–1000 (2018). https://doi.org/10.1002/anie.201709142
T. Qi, H. Xia, Z. Zhang, S. Kong, W. Peng et al., Improved water resistance of sral2O4: Eu2+, dy3+ phosphor directly achieved in a water-containing medium. Solid State Sci. 65, 88–94 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.01.006
J. Zhao, Z. Wei, Z. Li, J. Yu, J. Tang et al., Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction. Adv. Funct. Mater. 31(38), 2105480 (2021). https://doi.org/10.1002/adfm.202105480
Z. Lv, J. Liu, X. Yang, D. Fan, J. Cao et al., Naturally derived wearable strain sensors with enhanced mechanical properties and high sensitivity. ACS Appl. Mater. Interfaces 12(19), 22163–22169 (2020). https://doi.org/10.1021/acsami.0c04341
J. Liu, F. Zhao, Q. Tao, J. Cao, Y. Yu et al., Visualized simulation for the nanostructure design of flexible strain sensors: from a numerical model to experimental verification. Mater. Horiz. 6(9), 1892–1898 (2019). https://doi.org/10.1039/C9MH00389D
H.-H. Chou, A. Nguyen, A. Chortos, J.W. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 1–10 (2015). https://doi.org/10.1038/ncomms9011
X. Ma, C. Wang, R. Wei, J. He, J. Li et al., Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 16(2), 2789–2797 (2022). https://doi.org/10.1021/acsnano.1c09779
J. Pu, Y. Gao, Q. Cao, G. Fu, X. Chen et al., Vanadium metal-organic framework-derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting. SmartMat 3, 608–618 (2022). https://doi.org/10.1002/smm2.1088
Z. Yu, G. Cai, X. Liu, D. Tang, Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal. Chem. 93(5), 2916–2925 (2021). https://doi.org/10.1021/acs.analchem.0c04501
X. Huang, Y. Wang, X. Zhang, Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107379
Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
X. Zhao, Z. Wang, Z. Liu, S. Yao, J. Zhang et al., Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 96, 107067 (2022). https://doi.org/10.1016/j.nanoen.2022.107067
R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin et al., Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45, 193–202 (2018). https://doi.org/10.1016/j.nanoen.2017.12.048
A. Qasem, P. Xiong, Z. Ma, M. Peng, Z. Yang, Recent advances in mechanoluminescence of doped zinc sulfides. Laser Photonics Rev. 15(12), 2100276 (2021). https://doi.org/10.1002/lpor.202100276
H. Zhou, Y. Du, C. Wu, Y. Jiang, F. Wang et al., Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfide based on load effects. J. Lumin. 203, 683–688 (2018). https://doi.org/10.1016/j.jlumin.2018.07.018
J. Liu, Q. Guo, X. Zhang, J. Gai, C. Zhang, Multistage responsive materials for real-time, reversible, and sustainable light-writing. Adv. Funct. Mater. 31(50), 2106673 (2021). https://doi.org/10.1002/adfm.202106673
H. Wang, S. Chen, X. Zhu, B. Yuan, X. Sun et al., Phase transition science and engineering of gallium-based liquid metal. Matter 5(7), 2054–2085 (2022). https://doi.org/10.1016/j.matt.2022.05.031
X. Huang, J. Liu, P. Zhou, G. Su, T. Zhou et al., Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting. Small 18(7), 2104048 (2022). https://doi.org/10.1002/smll.202104048
X. Yang, G. Su, X. Huang, J. Liu, T. Zhou et al., Noncovalent assembly enabled strong yet tough materials with room-temperature malleability and healability. ACS Nano 16(8), 13002–13013 (2022). https://doi.org/10.1021/acsnano.2c05518
W. Zhang, J.Z. Ou, S.Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24(24), 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
H. Wang, X. Chen, Z. Tian, Z. Jiang, W. Yu et al., Efficient color manipulation of zinc sulfide-based mechanoluminescent elastomers for visualized sensing and anti-counterfeiting. J. Lumin. 228, 117590 (2020). https://doi.org/10.1016/j.jlumin.2020.117590
C. Li, Q. He, Y. Wang, Z. Wang, Z. Wang et al., Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13(1), 3914 (2022). https://doi.org/10.1038/s41467-022-31705-6
Y. Mao, Y. Kubota, J. Gong, T. Kurose, A. Ishigam et al., Mechanical performance and visual fracture warning function of mechanochromic stimuli-recovery polymer networks. Macromolecules 54(18), 8664–8674 (2021). https://doi.org/10.1021/acs.macromol.1c00904
Y. Ding, B. So, J. Cao, L. Wondraczek, Ultrasound-induced mechanoluminescence and optical thermometry toward stimulus-responsive materials with simultaneous trigger response and read-out functions. Adv. Sci. 9(23), 2201631 (2022). https://doi.org/10.1002/advs.202201631
W. Wang, M. Li, P. Zhou, Z. Yan, D. Wang, Design and synthesis of mechanochromic poly (ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polym. Chem. 13(15), 2155–2164 (2022). https://doi.org/10.1039/D2PY00085G
Y. Mao, Y. Kubota, T. Kurose, A. Ishigami, K. Seshimo et al., Energy dissipation and mechanoresponsive color evaluation of a poly (n-hexyl methacrylate) soft material enhanced by a mechanochromic cross-linker with dynamic covalent bonds. Macromolecules 53(21), 9313–9324 (2020). https://doi.org/10.1021/acs.macromol.0c01770
B. Chen, N. Yang, Q. Jiang, W. Chen, Y. Yang, Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy 44, 468–475 (2018). https://doi.org/10.1016/j.nanoen.2017.12.026
L. Gao, X. Chen, S. Lu, H. Zhou, W. Xie et al., Enhancing the output performance of triboelectric nanogenerator via grating-electrode-enabled surface plasmon excitation. Adv. Energy Mater. 9(44), 1902725 (2019). https://doi.org/10.1002/aenm.201902725
R. Li, H. Zhang, L. Wang, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21(4), 1514 (2021). https://doi.org/10.3390/s21041514
X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
X. Liu, Y. Shang, J. Zhang, C. Zhang, Ionic liquid-assisted 3d printing of self-polarized beta-pvdf for flexible piezoelectric energy harvesting. ACS Appl. Mater. Interfaces 13(12), 14334–14341 (2021). https://doi.org/10.1021/acsami.1c03226
M. Ha, S. Lim, S. Cho, Y. Lee, S. Na et al., Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 12(4), 3964–3974 (2018). https://doi.org/10.1021/acsnano.8b01557
W. Jiang, Mnist-mix: a multi-language handwritten digit recognition dataset. IOP SciNotes 1(2), 025002 (2020). https://doi.org/10.1088/2633-1357/abad0e
A. Madakannu, A. Selvaraj, Digi-net: a deep convolutional neural network for multi-format digit recognition. Neural Comput. Appl. 32(15), 11373–11383 (2020). https://doi.org/10.1007/s00521-019-04632-9
C. Dai, Y. Wang, Y. Shan, C. Ye, Z. Lv et al., Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 10(1), 136–148 (2023). https://doi.org/10.1039/D2MH01034H
C. Dai, C. Ye, J. Ren, S. Yang, L. Cao et al., Humanoid ionotronic skin for smart object recognition and sorting. ACS Mater. Lett. 5, 189–201 (2022). https://doi.org/10.1021/acsmaterialslett.2c00783
Q. Han, C. Gui, J. Xu, G. Lacidogna, A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 226, 734–742 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.315
L. Lang, L. Tiancai, A. Shan, T. Xiangyan, An improved random forest algorithm and its application to wind pressure prediction. Int. J. Intell. Syst. 36(8), 4016–4032 (2021). https://doi.org/10.1002/int.22448
J. Abellan, C.J. Mantas, J.G. Castellano, S. Moral-Garcia, Increasing diversity in random forest learning algorithm via imprecise probabilities. Expert Syst. Appl. 97, 228–243 (2018). https://doi.org/10.1016/j.eswa.2017.12.029