3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies
Corresponding Author: Yinghong Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 279
Abstract
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation. In addition, realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging. In this study, the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing. Particularly, the investigation focuses on optimization of pore geometry, size, dislocation configuration and material thickness, thus establishing a clear correlation between structural parameters and shielding property. Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs, and proposed the failure shielding size (Df ≈λ/8 − λ/5) and critical inclined angle (θf ≈43° − 48°), which could be used as new benchmarks for tunable electromagnetic shielding. In addition, the proper regulation of the material thickness could remarkably enhance the maximum shielding capability (85 − 95 dB) and absorption coefficient A (over 0.83). The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range (over 2.4 GHz), opening up novel pathways for individualized and diversified shielding solutions.
Highlights:
1 The stable periodic porous shielding materials were prepared by combining the strategies of 3D printing and metamaterial design.
2 The relationship between porous material structure and electromagnetic interference shielding efficiency (EMI SE) effectiveness was deeply explored, revealing the important structural parameters for realizing tunable EMI SE property.
3 The optimized design of the periodic porous shielding box achieves effective EMI shielding in a wide wavelength range (over 2.4 GHz).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Iqbal, P. Sambyal, C. Koo, Electromagnetic interference shielding: 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 30, 2070307 (2020). https://doi.org/10.1002/adfm.202070307
- F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, 1907411 (2020). https://doi.org/10.1002/adma.201907411
- S.K. Srivastava, K. Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review. J. Mater. Chem. A 10, 7431–7496 (2022). https://doi.org/10.1039/d1ta09522f
- B. Wei, L. Zhang, S. Yang, Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 404, 126437 (2021). https://doi.org/10.1016/j.cej.2020.126437
- J. Lee, J. Kim, J. Lee, Y. Son, Y. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901488 (2019). https://doi.org/10.1002/adfm.201901448
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2024). https://doi.org/10.1007/s40820-023-01288-y
- S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
- J. Jing, Y. Xiong, S. Shi, H. Pei, Y. Chen et al., Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 207, 108732 (2021). https://doi.org/10.1016/j.compscitech.2021.108732
- L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
- R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401 (2004). https://doi.org/10.1002/adma.200306460
- A. Ghaffarkhah, S. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
- J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31, 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
- Y. Xie, Z. Li, J. Tang, P. Li, W. Chen et al., Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. J. Mater. Chem. C 9, 9702 (2021). https://doi.org/10.1039/D1TC01923F
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- A. Isari, A. Ghaffarkhah, S. Hashemi, H. Yousefian, O. Rojas et al., A journey from structured emulsion templates to multifunctional aerogels. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402365
- M. Croizer, Q. Tricas, P. Besnier, S. Member, X. Castel et al., Control of shielding effectiveness of optically transparent films by modification of the edge termination geometry. IEEE T. Electromagn. C 62, 2431–2440 (2020). https://doi.org/10.1109/TEMC.2020.2982644
- C. Christos, Principles and Techniques of Electromagnetic Compatibility. CRC Press, (2022).
- M. Sarto, S. Greco, A. Tamburrano, Shielding effectiveness of protective metallic wire meshes: EM modeling and validation. IEEE T. Electromagn. C 56, 615–621 (2014). https://doi.org/10.1109/temc.2013.2292715
- B. Kai, EMC and Functional Safety of Automotive Electronics. IET Digital Library, (2018).
- X. Sun, B. Wei, Y. Li, J. Yang, A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range. IEEE T. Electromagn. C 64, 102–110 (2022). https://doi.org/10.1109/temc.2021.3104119
- G. Eriksson, E. Salinas, Shielding properties of welded and unwelded wire mesh enclosures. IEEE T. Electromagn. C 64, 1703–1707 (2022). https://doi.org/10.1109/TEMC.2022.3202095
- M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32, 2202057 (2022). https://doi.org/10.1002/adfm.202202057
- Q. Wang, H. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- Y. Xie, P. Li, J. Tang, B. Wei, W. Chen et al., Highly thermally conductive and superior electromagnetic interference shielding composites via in situ microwave-assisted reduction/exfoliation of expandable graphite. Compos. Part A: Appl. 149, 106517 (2021). https://doi.org/10.1016/j.compositesa.2021.106517
- Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, 2202982 (2022). https://doi.org/10.1002/adma.202202982
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
- X. Li, M. Sheng, S. Gong, H. Wu, X. Chen et al., Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 430, 132928 (2022). https://doi.org/10.1016/j.cej.2021.132928
- M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: Nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304473
- A. Isari, A. Ghaffarkhah, S. Hashemi, S. Wuttke, M. Arjmand, Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36, 2310683 (2024). https://doi.org/10.1002/adma.202310683
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- Y. Jiang, F. Guo, Y. Liu, Z. Xu, C. Gao, Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 1, 304–323 (2021). https://doi.org/10.1002/sus2.27
- Q. Lv, X. Tao, S. Shi, Y. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B Eng. 230, 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, 1907499 (2020). https://doi.org/10.1002/adma.201907499
- S. Hashemi, A. Ghaffarkhah, M. Goodarzi, A. Nazemi, G. Banvillet et al., Liquid-templating aerogels. Adv. Mater. 35, 2302826 (2023). https://doi.org/10.1002/adma.202302826
- H. Tan, Y. Choong, C. Kuo, H. Low, C. Chua, 3D printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 127, 100945 (2022). https://doi.org/10.1016/j.pmatsci.2022.100945
- S. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mulhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017). https://doi.org/10.1021/acs.chemrev.7b00074
- S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen et al., Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 59, 15565–15575 (2020). https://doi.org/10.1021/acs.iecr.0c02400
- S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8, 7962–7972 (2020). https://doi.org/10.1021/acssuschemeng.0c01877
- M. Saadi, A. Maguire, N. Pottackal, M. Thakur, M. Ikram et al., Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855
- Z. Eckel, C. Zhou, J. Martin, Additive manufacturing of polymer-derived ceramics. Science 351, 58–62 (2016). https://doi.org/10.1126/science.aad2688
- C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives ofadditive manufacturing for functional polymeric materials and devices. SusMat 1, 127–147 (2021). https://doi.org/10.1002/sus2.11
- H. Pei, J. Jing, Y. Chen, J. Guo, N. Chen, 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin. Nano Energy 109, 108303 (2023). https://doi.org/10.1016/j.nanoen.2023.108303
- T. Xue, Y. Yang, D. Yu, Q. Wali, J. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- Y. Wang, H. Zhao, J. Cheng, B. Liu, Q. Fu et al., Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 14, 76 (2022). https://doi.org/10.1007/s40820-022-00817-5
- Q. Lv, Z. Peng, Y. Meng, H. Pei, Y. Chen et al., Three-dimensional printing to fabricate graphene-modified polyolefin elastomer flexible composites with tailorable porous structures for electromagnetic interference shielding and thermal management application. Ind. Eng. Chem. Res. 61, 16733–16746 (2022). https://doi.org/10.1021/acs.iecr.2c03086
- S. Lee, N. Nguyen, W. Kim, M. Kim, V. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly[(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
- Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
- L. PE, Selection of Engineering Materials and Adhesives. CRC Press, (2005).
- S. Ryu, Y. Han, S. Kwon, T. Kim, B. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
- Z. Peng, Q. Lv, J. Jing, H. Pei, Y. Chen et al., FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos. Part B Eng. 251, 110491 (2023). https://doi.org/10.1016/j.compositesb.2022.110491
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 1, 413–431 (2021). https://doi.org/10.1002/sus2.21
References
A. Iqbal, P. Sambyal, C. Koo, Electromagnetic interference shielding: 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 30, 2070307 (2020). https://doi.org/10.1002/adfm.202070307
F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, 1907411 (2020). https://doi.org/10.1002/adma.201907411
S.K. Srivastava, K. Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review. J. Mater. Chem. A 10, 7431–7496 (2022). https://doi.org/10.1039/d1ta09522f
B. Wei, L. Zhang, S. Yang, Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 404, 126437 (2021). https://doi.org/10.1016/j.cej.2020.126437
J. Lee, J. Kim, J. Lee, Y. Son, Y. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901488 (2019). https://doi.org/10.1002/adfm.201901448
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2024). https://doi.org/10.1007/s40820-023-01288-y
S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
J. Jing, Y. Xiong, S. Shi, H. Pei, Y. Chen et al., Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 207, 108732 (2021). https://doi.org/10.1016/j.compscitech.2021.108732
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401 (2004). https://doi.org/10.1002/adma.200306460
A. Ghaffarkhah, S. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
J. Shu, W. Cao, M. Cao, Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31, 2100470 (2021). https://doi.org/10.1002/adfm.202100470
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
Y. Xie, Z. Li, J. Tang, P. Li, W. Chen et al., Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. J. Mater. Chem. C 9, 9702 (2021). https://doi.org/10.1039/D1TC01923F
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
A. Isari, A. Ghaffarkhah, S. Hashemi, H. Yousefian, O. Rojas et al., A journey from structured emulsion templates to multifunctional aerogels. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402365
M. Croizer, Q. Tricas, P. Besnier, S. Member, X. Castel et al., Control of shielding effectiveness of optically transparent films by modification of the edge termination geometry. IEEE T. Electromagn. C 62, 2431–2440 (2020). https://doi.org/10.1109/TEMC.2020.2982644
C. Christos, Principles and Techniques of Electromagnetic Compatibility. CRC Press, (2022).
M. Sarto, S. Greco, A. Tamburrano, Shielding effectiveness of protective metallic wire meshes: EM modeling and validation. IEEE T. Electromagn. C 56, 615–621 (2014). https://doi.org/10.1109/temc.2013.2292715
B. Kai, EMC and Functional Safety of Automotive Electronics. IET Digital Library, (2018).
X. Sun, B. Wei, Y. Li, J. Yang, A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range. IEEE T. Electromagn. C 64, 102–110 (2022). https://doi.org/10.1109/temc.2021.3104119
G. Eriksson, E. Salinas, Shielding properties of welded and unwelded wire mesh enclosures. IEEE T. Electromagn. C 64, 1703–1707 (2022). https://doi.org/10.1109/TEMC.2022.3202095
M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32, 2202057 (2022). https://doi.org/10.1002/adfm.202202057
Q. Wang, H. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
Y. Xie, P. Li, J. Tang, B. Wei, W. Chen et al., Highly thermally conductive and superior electromagnetic interference shielding composites via in situ microwave-assisted reduction/exfoliation of expandable graphite. Compos. Part A: Appl. 149, 106517 (2021). https://doi.org/10.1016/j.compositesa.2021.106517
Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, 2202982 (2022). https://doi.org/10.1002/adma.202202982
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
X. Li, M. Sheng, S. Gong, H. Wu, X. Chen et al., Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 430, 132928 (2022). https://doi.org/10.1016/j.cej.2021.132928
M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: Nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304473
A. Isari, A. Ghaffarkhah, S. Hashemi, S. Wuttke, M. Arjmand, Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36, 2310683 (2024). https://doi.org/10.1002/adma.202310683
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Inter. 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
Y. Jiang, F. Guo, Y. Liu, Z. Xu, C. Gao, Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 1, 304–323 (2021). https://doi.org/10.1002/sus2.27
Q. Lv, X. Tao, S. Shi, Y. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B Eng. 230, 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, 1907499 (2020). https://doi.org/10.1002/adma.201907499
S. Hashemi, A. Ghaffarkhah, M. Goodarzi, A. Nazemi, G. Banvillet et al., Liquid-templating aerogels. Adv. Mater. 35, 2302826 (2023). https://doi.org/10.1002/adma.202302826
H. Tan, Y. Choong, C. Kuo, H. Low, C. Chua, 3D printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 127, 100945 (2022). https://doi.org/10.1016/j.pmatsci.2022.100945
S. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mulhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017). https://doi.org/10.1021/acs.chemrev.7b00074
S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen et al., Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 59, 15565–15575 (2020). https://doi.org/10.1021/acs.iecr.0c02400
S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8, 7962–7972 (2020). https://doi.org/10.1021/acssuschemeng.0c01877
M. Saadi, A. Maguire, N. Pottackal, M. Thakur, M. Ikram et al., Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855
Z. Eckel, C. Zhou, J. Martin, Additive manufacturing of polymer-derived ceramics. Science 351, 58–62 (2016). https://doi.org/10.1126/science.aad2688
C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives ofadditive manufacturing for functional polymeric materials and devices. SusMat 1, 127–147 (2021). https://doi.org/10.1002/sus2.11
H. Pei, J. Jing, Y. Chen, J. Guo, N. Chen, 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin. Nano Energy 109, 108303 (2023). https://doi.org/10.1016/j.nanoen.2023.108303
T. Xue, Y. Yang, D. Yu, Q. Wali, J. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
Y. Wang, H. Zhao, J. Cheng, B. Liu, Q. Fu et al., Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 14, 76 (2022). https://doi.org/10.1007/s40820-022-00817-5
Q. Lv, Z. Peng, Y. Meng, H. Pei, Y. Chen et al., Three-dimensional printing to fabricate graphene-modified polyolefin elastomer flexible composites with tailorable porous structures for electromagnetic interference shielding and thermal management application. Ind. Eng. Chem. Res. 61, 16733–16746 (2022). https://doi.org/10.1021/acs.iecr.2c03086
S. Lee, N. Nguyen, W. Kim, M. Kim, V. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly[(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
L. PE, Selection of Engineering Materials and Adhesives. CRC Press, (2005).
S. Ryu, Y. Han, S. Kwon, T. Kim, B. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
Z. Peng, Q. Lv, J. Jing, H. Pei, Y. Chen et al., FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos. Part B Eng. 251, 110491 (2023). https://doi.org/10.1016/j.compositesb.2022.110491
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 1, 413–431 (2021). https://doi.org/10.1002/sus2.21