Hierarchical Manufacturing of Anisotropic and High-Efficiency Electromagnetic Interference Shielding Modules for Smart Electronics
Corresponding Author: Yinghong Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 181
Abstract
To shield electronics from complicated electromagnetic environments caused by wireless electromagnetic waves, achieving elaborately structural manufacturing while not sacrificing electromagnetic interference shielding performances remains crucial challenges. Herein, we propose a hierarchical manufacturing method that combines the use of 3D printing shear flow field and layer-by-layer assembly for fabricating the structurally customizable and multifunctional polylactic acid@graphene nanoparticle (PLA@GNs) materials. The dynamic behavior of polymer fluids is firstly explored via computational fluid dynamic simulation, and a Weissenberg number is employed to quantitatively analyze the disordered-to-ordered structural evolution of molecular chains and nanoparticles, allowing to tailor the micro-scale ordered structures. Subsequently, the macro-scale 3D architectures of PLA@GNs modules are fabricated by layer-by-layer assembly. Owing to the aligned GNs, the shielding performance reaches 41.2 dB, simultaneously accompanied by a directional thermal conductivity of 3.2 W m−1 K−1. Moreover, the potential application of 3D-printed shielding modules in specific civilian frequency bands such as 4G (1800–2100 MHz), Bluetooth (2402–2480 MHz), and 5G (3300–3800 MHz) is fully demonstrated. Overall, this work not only establishes a universal methodology about 3D printing shear flow field-driven orientation of two-dimensional nanoparticles within polymer fluids, but also gives a scientific method for advanced manufacturing of the next-generation electromagnetic functional modules for smart electronics.
Highlights:
1 A universal methodology regarding 3D printing shear flow field-driven orientation of two-dimensional graphene nanoparticles within polymer fluids is established via computational fluid dynamics simulation.
2 A hierarchical manufacturing strategy is purposed to assembly polylactic acid@graphene nanoparticle (PLA@GNs) modules with anisotropic structural characteristics for contributing on the electromagnetic compatibility and heat dissipation of electronics.
3 The exceptional functionalities of 3D-printed modules including high-efficiency Electromagnetic shielding performance (41.2 dB) and directional thermal conductivity (3.2 W m−1 K−1) are achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3(1), 20–29 (2020). https://doi.org/10.1038/s41928-019-0355-6
- C.-Z. Qi, P. Min, X. Zhou, M. Jin, X. Sun et al., Multifunctional asymmetric bilayer aerogels for highly efficient electromagnetic interference shielding with ultrahigh electromagnetic wave absorption. Nano-Micro Lett. 17(1), 291 (2025). https://doi.org/10.1007/s40820-025-01800-6
- J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17(1), 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- M. Chen, J. Zhu, K. Zhang, H. Zhou, Y. Gao et al., Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano-Micro Lett. 17(1), 80 (2024). https://doi.org/10.1007/s40820-024-01583-2
- Y. Deng, Y. Chen, W. Liu, L. Wu, Z. Wang et al., Transparent electromagnetic interference shielding materials using MXene. Carbon Energy 6(11), e593 (2024). https://doi.org/10.1002/cey2.593
- M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
- M. Zhou, Z. Yu, Q. Yan, X. Zhang, Asymmetric structural design for absorption-dominated electromagnetic interference shielding composites. Adv. Funct. Mater. 35(23), 2423884 (2025). https://doi.org/10.1002/adfm.202423884
- X. Xie, M. Lu, G. Li, G. Gao, J. Kang et al., Anti-impact electromagnetic shielding hydrogel with solvent-driven tunability. Chem. Eng. J. 505, 159114 (2025). https://doi.org/10.1016/j.cej.2024.159114
- S. Jiao, Y. Wang, W. Che, F. Pan, Z. Sui et al., Perspective of aramid-nanofiber-based electromagnetic interference shielding materials. J. Mater. Sci. Technol. 253, 179–193 (2026). https://doi.org/10.1016/j.jmst.2025.08.009
- S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16(1), 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
- M. Wei, N. Wu, B. Li, J. Liu, F. Pan et al., From MXene to multimodal-responsive smart, durable electromagnetic interference shielding textiles. Adv. Funct. Mater. 35(28), 2424312 (2025). https://doi.org/10.1002/adfm.202424312
- S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8(21), 7962–7972 (2020). https://doi.org/10.1021/acssuschemeng.0c01877
- Y. Zhao, H. Qi, X. Dong, Y. Yang, W. Zhai, Customizable resilient multifunctional graphene aerogels via blend-spinning assisted freeze casting. ACS Nano 17(16), 15615–15628 (2023). https://doi.org/10.1021/acsnano.3c02491
- W. Huang, X. Liu, Y. Wang, J. Feng, J. Huang et al., Ultra-broadband and ultra-high electromagnetic interference shielding performance of aligned and compact MXene films. Nano-Micro Lett. 17(1), 234 (2025). https://doi.org/10.1007/s40820-025-01750-z
- K. Zhang, Z. Huang, M. Yang, M. Liu, Y. Zhou et al., Recent progress in melt pyrolysis: fabrication and applications of high-value carbon materials from abundant sources. SusMat 3(5), 558–580 (2023). https://doi.org/10.1002/sus2.157
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15(1), 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- X. Zhang, W. Luo, Y. Chen, Q. Guo, J. Luo et al., Highly thermal conductive and electromagnetic shielding polymer nanocomposites from waste masks. Nano-Micro Lett. 17(1), 263 (2025). https://doi.org/10.1007/s40820-025-01796-z
- F. Lin, G. Yang, C. Niu, Y. Wang, Z. Zhu et al., Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material. Adv. Funct. Mater. 28(46), 1805255 (2018). https://doi.org/10.1002/adfm.201805255
- V. Ghai, S. Pashazadeh, H. Ruan, R. Kádár, Orientation of graphene nanosheets in magnetic fields. Prog. Mater. Sci. 143, 101251 (2024). https://doi.org/10.1016/j.pmatsci.2024.101251
- I. Levchenko, O. Baranov, M. Keidar, C. Riccardi, H.E. Roman et al., Additive technologies and materials for the next-generation CubeSats and small satellites. Adv. Funct. Mater. 34(45), 2407602 (2024). https://doi.org/10.1002/adfm.202407602
- A. Cano-Vicent, M.M. Tambuwala, S.S. Hassan, D. Barh, A.A.A. Aljabali et al., Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021). https://doi.org/10.1016/j.addma.2021.102378
- J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 (2020). https://doi.org/10.1016/j.cej.2020.126218
- Z. Peng, Q. Lv, J. Jing, H. Pei, Y. Chen et al., FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos. Part B Eng. 251, 110491 (2023). https://doi.org/10.1016/j.compositesb.2022.110491
- Q. Lv, Z. Peng, H. Pei, X. Zhang, Y. Chen et al., 3D printing of periodic porous metamaterials for tunable electromagnetic shielding across broad frequencies. Nano-Micro Lett. 16(1), 279 (2024). https://doi.org/10.1007/s40820-024-01502-5
- W. Xu, S. Jambhulkar, D. Ravichandran, Y. Zhu, M. Kakarla et al., 3D printing-enabled nanop alignment: a review of mechanisms and applications. Small 17(45), 2100817 (2021). https://doi.org/10.1002/smll.202100817
- Z. Luo, G. Tang, H. Ravanbakhsh, W. Li, M. Wang et al., Vertical extrusion cryo(bio)printing for anisotropic tissue manufacturing. Adv. Mater. 34(12), e2108931 (2022). https://doi.org/10.1002/adma.202108931
- Q. Lv, Z. Peng, Y. Meng, H. Pei, Y. Chen et al., Three-dimensional printing to fabricate graphene-modified polyolefin elastomer flexible composites with tailorable porous structures for electromagnetic interference shielding and thermal management application. Ind. Eng. Chem. Res. 61(45), 16733–16746 (2022). https://doi.org/10.1021/acs.iecr.2c03086
- M.M. Mrokowska, A. Krztoń-Maziopa, Viscoelastic and shear-thinning effects of aqueous exopolymer solution on disk and sphere settling. Sci. Rep. 9(1), 7897 (2019). https://doi.org/10.1038/s41598-019-44233-z
- S.G. Hatzikiriakos, Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012). https://doi.org/10.1016/j.progpolymsci.2011.09.004
- N. Othman, B. Jazrawi, P. Mehrkhodavandi, S.G. Hatzikiriakos, Wall slip and melt fracture of poly(lactides). Rheol. Acta 51(4), 357–369 (2012). https://doi.org/10.1007/s00397-011-0613-7
- C. Liu, X. Yu, Y. Li, X. Zhao, Q. Chen et al., Flow-induced crystalline precursors in entangled poly(vinyl alcohol) aqueous solutions. Polymer 229, 123960 (2021). https://doi.org/10.1016/j.polymer.2021.123960
- S. Bakrani Balani, F. Chabert, V. Nassiet, A. Cantarel, Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019). https://doi.org/10.1016/j.addma.2018.10.012
- S. Sharma, M. Goswami, A. Deb, B. Padhan, S. Chattopadhyay, Structural deformation/instability of the co-extrudate rubber profiles due to die swell: experimental and CFD studies with 3D models. Chem. Eng. J. 424, 130504 (2021). https://doi.org/10.1016/j.cej.2021.130504
- T. Wu, X. Huan, H. Zhang, L. Wu, G. Sui et al., The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation. J. Colloid Interface Sci. 638, 392–402 (2023). https://doi.org/10.1016/j.jcis.2023.02.014
- P. Li, Z. Wang, Y. Qi, G. Cai, Y. Zhao et al., Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat. Commun. 15, 409 (2024). https://doi.org/10.1038/s41467-024-44692-7
- Z. Lei, K. Zhu, F. Lv, M. Hu, X. Liu et al., Aramid nanofiber assisted preparation of 3D-oriented graphite/silicone composite slices with high through-plane thermal conductivity and efficient electromagnetic interference shielding. Compos. Sci. Technol. 243, 110246 (2023). https://doi.org/10.1016/j.compscitech.2023.110246
- M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17(9), 3168–3178 (2024). https://doi.org/10.1039/d3ee04360f
- Y. Shmueli, Y.-C. Lin, X. Zuo, Y. Guo, S. Lee et al., In-situ X-ray scattering study of isotactic polypropylene/graphene nanocomposites under shear during fused deposition modeling 3D printing. Compos. Sci. Technol. 196, 108227 (2020). https://doi.org/10.1016/j.compscitech.2020.108227
- Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
- H. Feng, J. Hong, J. Zhang, P. He, H. Zhou et al., Enhanced polarization via Joule heating in wood-derived carbon materials for absorption-dominated EMI shielding. Mater. Horiz. 11(2), 468–479 (2024). https://doi.org/10.1039/d3mh01332d
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
- S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen et al., Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 59(35), 15565–15575 (2020). https://doi.org/10.1021/acs.iecr.0c02400
- T. Goyal, S. Kaushal, Handover optimization scheme for LTE-Advance networks based on AHP-TOPSIS and Q-learning. Comput. Commun. 133, 67–76 (2019). https://doi.org/10.1016/j.comcom.2018.10.011
- Y. Liu, N. Wu, Z. Sui, Y. Zhang, S. Zheng et al., Aramid nanofiber-assisted dual crosslinked MXene for large-area, ultrathin, ultraflexible, oxidation-resistant electromagnetic interference shielding and electro-/ photo-thermal conversion. Nano Res. 18(8), 94907531 (2025). https://doi.org/10.26599/nr.2025.94907531
- R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. 34(31), 2307499 (2024). https://doi.org/10.1002/adfm.202307499
- B. Hu, H. Guo, J. Li, T. Li, M. Cao et al., Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding. Compos. Part B Eng. 266, 110998 (2023). https://doi.org/10.1016/j.compositesb.2023.110998
- H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 34(38), 2270266 (2022). https://doi.org/10.1002/adma.202270266
- Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett. 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
- J. Wang, W. Li, X. Zhang, A mechanically strong and highly thermally conductive graphene skeleton constructed by polyamide acid welding and syneresis for polydimethylsiloxane composites. Adv. Compos. Hybrid Mater. 7(2), 73 (2024). https://doi.org/10.1007/s42114-024-00882-x
References
S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3(1), 20–29 (2020). https://doi.org/10.1038/s41928-019-0355-6
C.-Z. Qi, P. Min, X. Zhou, M. Jin, X. Sun et al., Multifunctional asymmetric bilayer aerogels for highly efficient electromagnetic interference shielding with ultrahigh electromagnetic wave absorption. Nano-Micro Lett. 17(1), 291 (2025). https://doi.org/10.1007/s40820-025-01800-6
J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17(1), 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
M. Chen, J. Zhu, K. Zhang, H. Zhou, Y. Gao et al., Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano-Micro Lett. 17(1), 80 (2024). https://doi.org/10.1007/s40820-024-01583-2
Y. Deng, Y. Chen, W. Liu, L. Wu, Z. Wang et al., Transparent electromagnetic interference shielding materials using MXene. Carbon Energy 6(11), e593 (2024). https://doi.org/10.1002/cey2.593
M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
M. Zhou, Z. Yu, Q. Yan, X. Zhang, Asymmetric structural design for absorption-dominated electromagnetic interference shielding composites. Adv. Funct. Mater. 35(23), 2423884 (2025). https://doi.org/10.1002/adfm.202423884
X. Xie, M. Lu, G. Li, G. Gao, J. Kang et al., Anti-impact electromagnetic shielding hydrogel with solvent-driven tunability. Chem. Eng. J. 505, 159114 (2025). https://doi.org/10.1016/j.cej.2024.159114
S. Jiao, Y. Wang, W. Che, F. Pan, Z. Sui et al., Perspective of aramid-nanofiber-based electromagnetic interference shielding materials. J. Mater. Sci. Technol. 253, 179–193 (2026). https://doi.org/10.1016/j.jmst.2025.08.009
S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16(1), 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
M. Wei, N. Wu, B. Li, J. Liu, F. Pan et al., From MXene to multimodal-responsive smart, durable electromagnetic interference shielding textiles. Adv. Funct. Mater. 35(28), 2424312 (2025). https://doi.org/10.1002/adfm.202424312
S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8(21), 7962–7972 (2020). https://doi.org/10.1021/acssuschemeng.0c01877
Y. Zhao, H. Qi, X. Dong, Y. Yang, W. Zhai, Customizable resilient multifunctional graphene aerogels via blend-spinning assisted freeze casting. ACS Nano 17(16), 15615–15628 (2023). https://doi.org/10.1021/acsnano.3c02491
W. Huang, X. Liu, Y. Wang, J. Feng, J. Huang et al., Ultra-broadband and ultra-high electromagnetic interference shielding performance of aligned and compact MXene films. Nano-Micro Lett. 17(1), 234 (2025). https://doi.org/10.1007/s40820-025-01750-z
K. Zhang, Z. Huang, M. Yang, M. Liu, Y. Zhou et al., Recent progress in melt pyrolysis: fabrication and applications of high-value carbon materials from abundant sources. SusMat 3(5), 558–580 (2023). https://doi.org/10.1002/sus2.157
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15(1), 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
X. Zhang, W. Luo, Y. Chen, Q. Guo, J. Luo et al., Highly thermal conductive and electromagnetic shielding polymer nanocomposites from waste masks. Nano-Micro Lett. 17(1), 263 (2025). https://doi.org/10.1007/s40820-025-01796-z
F. Lin, G. Yang, C. Niu, Y. Wang, Z. Zhu et al., Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material. Adv. Funct. Mater. 28(46), 1805255 (2018). https://doi.org/10.1002/adfm.201805255
V. Ghai, S. Pashazadeh, H. Ruan, R. Kádár, Orientation of graphene nanosheets in magnetic fields. Prog. Mater. Sci. 143, 101251 (2024). https://doi.org/10.1016/j.pmatsci.2024.101251
I. Levchenko, O. Baranov, M. Keidar, C. Riccardi, H.E. Roman et al., Additive technologies and materials for the next-generation CubeSats and small satellites. Adv. Funct. Mater. 34(45), 2407602 (2024). https://doi.org/10.1002/adfm.202407602
A. Cano-Vicent, M.M. Tambuwala, S.S. Hassan, D. Barh, A.A.A. Aljabali et al., Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021). https://doi.org/10.1016/j.addma.2021.102378
J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 (2020). https://doi.org/10.1016/j.cej.2020.126218
Z. Peng, Q. Lv, J. Jing, H. Pei, Y. Chen et al., FDM-3D printing LLDPE/BN@GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding. Compos. Part B Eng. 251, 110491 (2023). https://doi.org/10.1016/j.compositesb.2022.110491
Q. Lv, Z. Peng, H. Pei, X. Zhang, Y. Chen et al., 3D printing of periodic porous metamaterials for tunable electromagnetic shielding across broad frequencies. Nano-Micro Lett. 16(1), 279 (2024). https://doi.org/10.1007/s40820-024-01502-5
W. Xu, S. Jambhulkar, D. Ravichandran, Y. Zhu, M. Kakarla et al., 3D printing-enabled nanop alignment: a review of mechanisms and applications. Small 17(45), 2100817 (2021). https://doi.org/10.1002/smll.202100817
Z. Luo, G. Tang, H. Ravanbakhsh, W. Li, M. Wang et al., Vertical extrusion cryo(bio)printing for anisotropic tissue manufacturing. Adv. Mater. 34(12), e2108931 (2022). https://doi.org/10.1002/adma.202108931
Q. Lv, Z. Peng, Y. Meng, H. Pei, Y. Chen et al., Three-dimensional printing to fabricate graphene-modified polyolefin elastomer flexible composites with tailorable porous structures for electromagnetic interference shielding and thermal management application. Ind. Eng. Chem. Res. 61(45), 16733–16746 (2022). https://doi.org/10.1021/acs.iecr.2c03086
M.M. Mrokowska, A. Krztoń-Maziopa, Viscoelastic and shear-thinning effects of aqueous exopolymer solution on disk and sphere settling. Sci. Rep. 9(1), 7897 (2019). https://doi.org/10.1038/s41598-019-44233-z
S.G. Hatzikiriakos, Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012). https://doi.org/10.1016/j.progpolymsci.2011.09.004
N. Othman, B. Jazrawi, P. Mehrkhodavandi, S.G. Hatzikiriakos, Wall slip and melt fracture of poly(lactides). Rheol. Acta 51(4), 357–369 (2012). https://doi.org/10.1007/s00397-011-0613-7
C. Liu, X. Yu, Y. Li, X. Zhao, Q. Chen et al., Flow-induced crystalline precursors in entangled poly(vinyl alcohol) aqueous solutions. Polymer 229, 123960 (2021). https://doi.org/10.1016/j.polymer.2021.123960
S. Bakrani Balani, F. Chabert, V. Nassiet, A. Cantarel, Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019). https://doi.org/10.1016/j.addma.2018.10.012
S. Sharma, M. Goswami, A. Deb, B. Padhan, S. Chattopadhyay, Structural deformation/instability of the co-extrudate rubber profiles due to die swell: experimental and CFD studies with 3D models. Chem. Eng. J. 424, 130504 (2021). https://doi.org/10.1016/j.cej.2021.130504
T. Wu, X. Huan, H. Zhang, L. Wu, G. Sui et al., The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation. J. Colloid Interface Sci. 638, 392–402 (2023). https://doi.org/10.1016/j.jcis.2023.02.014
P. Li, Z. Wang, Y. Qi, G. Cai, Y. Zhao et al., Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat. Commun. 15, 409 (2024). https://doi.org/10.1038/s41467-024-44692-7
Z. Lei, K. Zhu, F. Lv, M. Hu, X. Liu et al., Aramid nanofiber assisted preparation of 3D-oriented graphite/silicone composite slices with high through-plane thermal conductivity and efficient electromagnetic interference shielding. Compos. Sci. Technol. 243, 110246 (2023). https://doi.org/10.1016/j.compscitech.2023.110246
M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17(9), 3168–3178 (2024). https://doi.org/10.1039/d3ee04360f
Y. Shmueli, Y.-C. Lin, X. Zuo, Y. Guo, S. Lee et al., In-situ X-ray scattering study of isotactic polypropylene/graphene nanocomposites under shear during fused deposition modeling 3D printing. Compos. Sci. Technol. 196, 108227 (2020). https://doi.org/10.1016/j.compscitech.2020.108227
Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
H. Feng, J. Hong, J. Zhang, P. He, H. Zhou et al., Enhanced polarization via Joule heating in wood-derived carbon materials for absorption-dominated EMI shielding. Mater. Horiz. 11(2), 468–479 (2024). https://doi.org/10.1039/d3mh01332d
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen et al., Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 59(35), 15565–15575 (2020). https://doi.org/10.1021/acs.iecr.0c02400
T. Goyal, S. Kaushal, Handover optimization scheme for LTE-Advance networks based on AHP-TOPSIS and Q-learning. Comput. Commun. 133, 67–76 (2019). https://doi.org/10.1016/j.comcom.2018.10.011
Y. Liu, N. Wu, Z. Sui, Y. Zhang, S. Zheng et al., Aramid nanofiber-assisted dual crosslinked MXene for large-area, ultrathin, ultraflexible, oxidation-resistant electromagnetic interference shielding and electro-/ photo-thermal conversion. Nano Res. 18(8), 94907531 (2025). https://doi.org/10.26599/nr.2025.94907531
R. Xing, G. Xu, N. Qu, R. Zhou, J. Yang et al., 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. 34(31), 2307499 (2024). https://doi.org/10.1002/adfm.202307499
B. Hu, H. Guo, J. Li, T. Li, M. Cao et al., Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding. Compos. Part B Eng. 266, 110998 (2023). https://doi.org/10.1016/j.compositesb.2023.110998
H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 34(38), 2270266 (2022). https://doi.org/10.1002/adma.202270266
Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett. 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
J. Wang, W. Li, X. Zhang, A mechanically strong and highly thermally conductive graphene skeleton constructed by polyamide acid welding and syneresis for polydimethylsiloxane composites. Adv. Compos. Hybrid Mater. 7(2), 73 (2024). https://doi.org/10.1007/s42114-024-00882-x