Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future
Corresponding Author: Young Gun Ko
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 213
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal–organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Highlights:
1 This review summarizes the quarter-century of reticular chemistry.
2 Preparation strategies and characterization of reticular framework nanoparticles (RF-NPs) are systematically reviewed.
3 Biomedicine, gas valorization, energy storage and other newer applications of RF-NPs are involved
4 Future potential and challenges of RF-NPs are prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Feng, R.D. Astumian, J.F. Stoddart, Controlling dynamics in extended molecular frameworks. Nat. Rev. Chem. 6, 705 (2022). https://doi.org/10.1038/s41570-022-00412-7
- H.L. Boström, A.L. Goodwin, Hybrid perovskites, metal–organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 54, 1288 (2021). https://doi.org/10.1021/acs.accounts.0c00797
- L. Pfeifer, S. Crespi, P. Meulen, J. Kemmink, R.M. Scheek et al., Controlling forward and backward rotary molecular motion on demand. Nat. Commun. 13, 2124 (2022). https://doi.org/10.1038/s41467-022-29820-5
- G. Sadeghi, Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 46, 222 (2022). https://doi.org/10.1016/j.ensm.2022.01.017
- Q. Mu, K. Cui, Z.J. Wang, T. Matsuda, W. Cui et al., Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 13, 6213 (2022). https://doi.org/10.1038/s41467-022-34044-8
- A. Haake, R. Tutika, G.M. Schloer, M.D. Bartlett, E.J. Markvicka, On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing. Adv. Mater. 34, 2200182 (2022). https://doi.org/10.1002/adma.202200182
- Y. Yang, Z. Guo, W. Liu, Special superwetting materials from bioinspired to intelligent surface for on-demand oil/water separation: a comprehensive review. Small 18, 2204624 (2022). https://doi.org/10.1002/smll.202204624
- D.M. Lee, N. Rubab, I. Hyun, W. Kang, Y.J. Kim et al., Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 8, eabl8423 (2022). https://doi.org/10.1126/sciadv.abl8423
- S. Canossa, Z. Ji, C. Gropp, Z. Rong, E. Ploetz et al., System of sequences in multivariate reticular structures. Nat. Rev. Mater. 8, 2733 (2023). https://doi.org/10.1038/s41578-022-00482-5
- Y. Liu, H. Wu, R. Li, J. Wang, Y. Kong et al., MOF–COF “Alloy” membranes for efficient propylene/propane separation. Adv. Mater. 34, 2201423 (2022). https://doi.org/10.1002/adma.202201423
- C.X. Chen, Y.Y. Xiong, X. Zhong, P.C. Lan, Z.W. Wei et al., Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew. Chem. Int. Ed. 134, e202114071 (2022). https://doi.org/10.1002/anie.202114071
- Y. Li, L. Liu, T. Meng, L. Wang, Z. Xie, Structural engineering of ionic MOF@COF heterointerface for exciton-boosting sunlight-driven photocatalytic filter. ACS Nano 17, 2932 (2023). https://doi.org/10.1021/acsnano.2c11339
- P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G. Maloney et al., Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
- S.K. Ghosh, W. Kaneko, D. Kiriya, M. Ohba, S. Kitagawa, A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations. Angew. Chem. Int. Ed. 47, 8843 (2008). https://doi.org/10.1002/anie.200802803
- D. Ongari, L. Talirz, B. Smit, Too many materials and too many applications: an experimental problem waiting for a computational solution. ACS Cent. Sci. 6, 1890 (2020). https://doi.org/10.1021/acscentsci.0c00988
- O.M. Yaghi, M.J. Kalmutzki, C.S. Diercks, Introduction to Reticular Chemistry: Metal-organic Frameworks and Covalent Organic Frameworks (John Wiley & Sons, 2019), pp. 16–29.
- A.G. Slater, M.A. Little, A. Pulido, S.Y. Chong, D.L. Holden et al., Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nat. Chem. 9, 17 (2017). https://doi.org/10.1038/nchem.2663
- A.G. Slater, P.S. Reiss, A. Pulido, M.A. Little, D.L. Holden et al., Computationally-guided synthetic control over pore size in isostructural porous organic cages. ACS Cent. Sci. 3, 734 (2017). https://doi.org/10.1021/acscentsci.7b00145
- D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257 (2009). https://doi.org/10.1039/B817735J
- A. Schoedel, M. Li, D. Li, M. O’Keeffe, O.M. Yaghi, Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116, 12466 (2016). https://doi.org/10.1021/acs.chemrev.6b00346
- C.K. Brozek, M. Dincă, Cation exchange at the secondary building units of metal–organic frameworks. Chem. Soc. Rev. 43, 5456 (2014). https://doi.org/10.1039/C4CS00002A
- N. Kundu, S. Sarkar, Porous organic frameworks for carbon dioxide capture and storage. J. Environ. Chem. Eng. 9, 105090 (2021). https://doi.org/10.1016/j.jece.2021.105090
- S. Chuhadiya, D. Suthar, S.L. Patel, M.S. Dhaka, Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: a review. Coord. Chem. Rev. 446, 214115 (2021). https://doi.org/10.1016/j.ccr.2021.214115
- Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng et al., Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
- Y. Zhang, S.N. Riduan, J. Wang, Redox active metal–and covalent organic frameworks for energy storage: Balancing porosity and electrical conductivity. Chem. Eur. J. 23, 16419 (2017). https://doi.org/10.1002/chem.201702919
- S. Zhang, M.K. Taylor, L. Jiang, H. Ren, G. Zhu, Light hydrocarbon separations using porous organic framework materials. Chem. Eur. J. 26, 3205 (2020). https://doi.org/10.1002/chem.201904455
- X. Zhang, J. Lu, J. Zhang, Porosity enhancement of carbazolic porous organic frameworks using dendritic building blocks for gas storage and separation. Chem. Mater. 26, 4023 (2014). https://doi.org/10.1021/cm501717c
- S. Laha, T.K. Maji, Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting. Adv. Funct. Mater. 32, 2203093 (2022). https://doi.org/10.1002/adfm.202203093
- L. Sheng, K. Yang, J. Chen, D. Zhu, L. Wang et al., A protophilic MOF enables Ni-rich lithium-battery stable cycling in a high water/acid content. Adv. Mater. 35, 2212292 (2023). https://doi.org/10.1002/adma.202212292
- J. Dong, Y. Liu, Y. Cui, Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem. Commun. 50, 14949 (2014). https://doi.org/10.1039/C4CC07648F
- Z.J. Lin, J. Lü, L. Li, H.F. Li, R. Cao, Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. J. Catal. 355, 131 (2017). https://doi.org/10.1016/j.jcat.2017.09.014
- K. Shao, H.M. Wen, C.C. Liang, X. Xiao, X.W. Gu et al., Engineering supramolecular binding sites in a chemically stable metal-organic framework for simultaneous high C2H2 storage and separation. Angew. Chem. Int. Ed. 61, e202211523 (2022). https://doi.org/10.1002/anie.202211523
- D.M. Polyukhov, N.A. Kudriavykh, S.A. Gromilov, A.S. Kiryutin, A.S. Poryvaev et al., Efficient MOF-catalyzed ortho–para hydrogen conversion for practical liquefaction and energy storage. ACS Energy Lett. 7, 4336 (2022). https://doi.org/10.1021/acsenergylett.2c02149
- P. Qin, S. Okur, Y. Jiang, L. Heinke, A MOF-based electronic nose for carbon dioxide sensing with enhanced affinity and selectivity by ionic-liquid embedment. J. Mater. Chem. A 10, 25347 (2022). https://doi.org/10.1039/D2TA06324G
- Y.M. Jo, Y.K. Jo, J.H. Lee, H.W. Jang, I.S. Hwang et al., MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 1, 2206842 (2022). https://doi.org/10.1002/adma.202206842
- J. Yang, X. Yin, L. Zhang, X. Zhang, Y. Lin et al., Defective Fe metal–organic frameworks enhance metabolic profiling for high-accuracy diagnosis of human cancers. Adv. Mater. 34, 2201422 (2022). https://doi.org/10.1002/adma.202201422
- C.R. Quijia, R.C. Alves, G. Hanck-Silva, R.C. Galvao Frem, G. Arroyos et al., Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit. Rev. Microbiol. 48, 161 (2022). https://doi.org/10.1080/1040841X.2021.1950120
- X. Pan, N. Wu, S. Tian, J. Guo, C. Wang et al., Inhalable MOF-derived nanops for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater. 32, 2112145 (2022). https://doi.org/10.1002/adfm.202112145
- S. Mallakpour, E. Nikkhoo, C.M. Hussain, Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 451, 214262 (2022). https://doi.org/10.1016/j.ccr.2021.214262
- W. Xu, B. Tu, Q. Liu, Y. Shu, C.C. Liang et al., Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764 (2020). https://doi.org/10.1038/s41578-020-0225-x
- Y. Feng, Y. Xu, S. Liu, D. Wu, Z. Su et al., Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 459, 214414 (2022). https://doi.org/10.1016/j.ccr.2022.214414
- B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian et al., Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819 (2016). https://doi.org/10.1002/adma.201601133
- H. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014). https://doi.org/10.1039/C4CS90059F
- A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005). https://doi.org/10.1126/science.1120411
- R. Liu, K.T. Tan, Y. Gong, Y. Chen, Z. Li et al., Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120 (2021). https://doi.org/10.1039/D0CS00620C
- X. Guan, F. Chen, Q. Fang, S. Qiu, Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357 (2020). https://doi.org/10.1039/C9CS00911F
- R.B. Lin, Y. He, P. Li, H. Wang, W. Zhou et al., Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362 (2019). https://doi.org/10.1039/C8CS00155C
- I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58, 11160 (2019). https://doi.org/10.1002/anie.201902147
- W.X. Zhang, Y.Y. Yang, S.B. Zai, S. Weng Ng, X.M. Chen, Syntheses, structures and magnetic properties of dinuclear copper(II)–lanthanide(III) complexes bridged by 2-hydroxymethyl-1-methylimidazole. Eur JIC 5, 679–685 (2008). https://doi.org/10.1002/ejic.200701041
- P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053 (2015). https://doi.org/10.1021/acs.accounts.5b00369
- D. Nam, J. Kim, W. Choe, Evolution of Zr nodes in metal–organic frameworks. Trends Chem. 5, 339–352 (2023). https://doi.org/10.1016/j.trechm.2023.02.009
- Y. Wu, M. Xie, J.K. Jin, Z.Y. Zhang, H. Hu et al., A copper iodide cluster-based metal–organic polyhedra for photocatalytic click chemistry. Small Struct. 3, 2100155 (2022). https://doi.org/10.1002/sstr.202100155
- H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276 (1999). https://doi.org/10.1038/46248
- M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002). https://doi.org/10.1126/science.1067208
- A.R. Millward, O.M. Yaghi, Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005). https://doi.org/10.1021/ja0570032
- X. Huang, J. Zhang, X. Chen, [Zn(bim)2] · (H2O)1.67: a metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 48, 1531 (2003). https://doi.org/10.1007/BF03183954
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
- H. Hayashi, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Zeolite A imidazolate frameworks. Nat. Mater. 6, 501 (2007). https://doi.org/10.1038/nmat1927
- R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa et al., High-Throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939 (2008). https://doi.org/10.1126/science.1152516
- H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor et al., Designed synthesis of 3D covalent organic frameworks. Science 316, 268 (2007). https://doi.org/10.1126/science.1139915
- F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe et al., A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570 (2009). https://doi.org/10.1021/ja8096256
- C. Gropp, T. Ma, N. Hanikel, O.M. Yaghi, Design of higher valency in covalent organic frameworks. Science 370, eabd6406 (2020). https://doi.org/10.1126/science.abd6406
- L. Peng, Q. Guo, C. Song, S. Ghosh, H. Xu et al., Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021). https://doi.org/10.1038/s41467-021-24842-x
- Y. He, S. Xiang, B. Chen, A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570 (2011). https://doi.org/10.1021/ja2066016
- M. Simard, D. Su, J.D. Wuest, Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696 (1991). https://doi.org/10.1021/ja00012a057
- P. Brunet, M. Simard, J.D. Wuest, Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity. J. Am. Chem. Soc. 119, 2737 (1997). https://doi.org/10.1021/ja963905e
- P. Li, Y. He, J. Guang, L. Weng, J.C.G. Zhao et al., A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols. J. Am. Chem. Soc. 136, 547 (2014). https://doi.org/10.1021/ja4129795
- P. Li, Y. He, Y. Zhao, L. Weng, H. Wang et al., A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed. 54, 574 (2015). https://doi.org/10.1002/anie.201410077
- H. Wang, B. Li, H. Wu, T.L. Hu, Z. Yao et al., A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963 (2015). https://doi.org/10.1021/jacs.5b05644
- W. Yang, F. Yang, T.L. Hu, S.C. King, H. Wang et al., Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: permanent porosity and proton conduction. Cryst. Growth Des. 16, 5831 (2016). https://doi.org/10.1021/acs.cgd.6b00924
- S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang et al., Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017). https://doi.org/10.1038/ncomms15356
- H. Wang, Z. Bao, H. Wu, R.B. Lin, W. Zhou et al., Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chem. Commun. 53, 11150 (2017). https://doi.org/10.1039/C7CC06187K
- M. O’Keeffe, Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38, 1215 (2009). https://doi.org/10.1039/B802802H
- Z. Yao, B. Sánchez-Lengeling, N.S. Bobbitt, B.J. Bucior, S.G.H. Kumar et al., Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76 (2021). https://doi.org/10.1038/s42256-020-00271-1
- H. Jiang, D. Alezi, M. Eddaoudi, A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466 (2021). https://doi.org/10.1038/s41578-021-00287-y
- Z. Chen, K.O. Kirlikovali, P. Li, O.K. Farha, Reticular chemistry for highly porous metal–organic frameworks: The chemistry and applications. Acc. Chem. Res. 55, 579 (2022). https://doi.org/10.1021/acs.accounts.1c00707
- Z. Chen, S.L. Hanna, L.R. Redfern, D. Alezi, T. Islamoglu et al., Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 386, 32 (2019). https://doi.org/10.1016/j.ccr.2019.01.017
- D. Feng, T.F. Liu, J. Su, M. Bosch, Z. Wei et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015). https://doi.org/10.1038/ncomms6979
- Q. Liu, Y. Song, Y. Ma, Y. Zhou, H. Cong et al., Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 141, 488 (2018). https://doi.org/10.1021/jacs.8b11230
- V. Guillerm, D. Kim, J.F. Eubank, R. Luebke, X. Liu et al., A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141 (2014). https://doi.org/10.1039/C4CS00135D
- H. Jiang, S.M. Moosavi, J. Czaban-Jóźwiak, B. Torre, A. Shkurenko et al., Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal-organic frameworks. Matter 6, 285 (2023). https://doi.org/10.1016/j.matt.2022.10.004
- V. Guillerm, L. Lukasz, Y. Belmabkhout, A.J. Cairns, V. D’elia et al., Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673 (2014). https://doi.org/10.1038/nchem.1982
- R. Xu, Y. Kang, W. Zhang, X. Zhang, B. Pan, Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61, e202115443 (2022). https://doi.org/10.1002/anie.202115443
- X. Zhang, X. Shi, Q. Zhao, Y. Li, J. Wang et al., Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. Chem. Eng. J. 427, 131573 (2022). https://doi.org/10.1016/j.cej.2021.131573
- M.M. Pan, Y. Ouyang, Y.L. Song, L.Q. Si, M. Jiang et al., Au3+-functionalized UiO-67 metal-organic framework nanops: O2•− and •OH generating nanozymes and their antibacterial functions. Small 18, 2200548 (2022). https://doi.org/10.1002/smll.202200548
- D.K. Yoo, S.H. Jhung, Selective CO2 adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. J. Mater. Chem. A 10, 8856 (2022). https://doi.org/10.1039/D1TA09772E
- H. Chen, X. Yuan, L. Jiang, H. Wang, H. Yu et al., Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Appl. Catal. B Environ. 302, 120823 (2022). https://doi.org/10.1016/j.apcatb.2021.120823
- Z. Ai, L. Jiao, J. Wang, H.L. Jiang, Generation of hierarchical pores in metal–organic frameworks by introducing rigid modulator. CCS Chem. 4, 3705 (2022). https://doi.org/10.31635/ccschem.022.202201974
- C.C. Lee, C.I. Chen, Y.T. Liao, K.C.W. Wu, C.C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715 (2019). https://doi.org/10.1002/advs.201801715
- K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang et al., Ordered macro-microporous metal-organic framework single crystals. Science 359, 206 (2018). https://doi.org/10.1126/science.aao340
- D.M. Proserpio, Polycatenation weaves a 3D web. Nat. Chem. 2, 435 (2010). https://doi.org/10.1038/nchem.674
- Y.L. Li, E.V. Alexandrov, Q. Yin, L. Li, Z.B. Fang et al., Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 142, 7218 (2020). https://doi.org/10.1021/jacs.0c02406
- J.Q. Zhao, L.L. Mao, G.H. Zhang, S.Z. Zhan, H. Xiao et al., A polycatenated hydrogen-bonded organic framework based on embraced macrocyclic building blocks for fluorescence detection of nitrobenzene in water. J. Mater. Chem. A 11, 4672 (2023). https://doi.org/10.1039/D2TA09379K
- D.M. Chen, X.J. Zhang, Stepwise and hysteretic sorption of CO2 in polycatenated metal–organic frameworks. Cryst. Eng. Comm. 21, 4696 (2019). https://doi.org/10.1039/C9CE00760A
- C. Hu, Y. Bai, M. Hou, Y. Wang, L. Wang et al., Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci. Adv. 6, 5785 (2020). https://doi.org/10.1126/sciadv.aax5785
- K. Li, J. Yang, J. Gu, Hierarchically porous MOFs synthesized by soft-template strategies. Acc. Chem. Res. 55, 2235 (2022). https://doi.org/10.1021/acs.accounts.2c00262
- D. Lyu, W. Xu, Y. Wang, Low-symmetry MOF-based patchy colloids and their precise linking via site-selective liquid bridging to form supra-colloidal and supra-framework architectures. Angew. Chem. Int. Ed. 134, e202115076 (2022). https://doi.org/10.1002/ange.202115076
- K. Yang, Y. Cui, L. Wan, Q. Zhang, B. Zhang, MOF-derived magnetic-dielectric balanced Co@ ZnO@ N-doped carbon composite materials for strong microwave absorption. Carbon 190, 366 (2022). https://doi.org/10.1016/j.carbon.2022.01.032
- J. Chen, Z. Zhu, G. Monge, W.N. Wang, Unraveling the role of operating pressure in the rapid formation of Cu-BDC MOF via a microdroplet approach. Chem. Eng. J. 447, 137544 (2022). https://doi.org/10.1016/j.cej.2022.137544
- Z. Zheng, H.L. Nguyen, N. Hanikel, K.K.Y. Li, Z. Zhou et al., High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136 (2023). https://doi.org/10.1038/s41596-022-00756-w
- J. Chen, Y. Li, The road to MOF-related functional materials and beyond: desire, design, decoration, and development. Chem. Rec. 16, 1456 (2016). https://doi.org/10.1002/tcr.201500304
- X. Peng, P.M. Pelz, Q. Zhang, P. Chen, L. Cao et al., Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat. Commun. 13, 5197 (2022). https://doi.org/10.1038/s41467-022-32330-z
- Y. Shen, T. Pan, P. Wu, J. Huang, H. Li et al., Regulating electronic status of platinum nanops by metal–organic frameworks for selective catalysis. CCS Chem. 3, 1607 (2021). https://doi.org/10.31635/ccschem.020.202000278
- J. Klinowski, F.A.A. Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans. 40, 321 (2011). https://doi.org/10.1039/C0DT00708K
- D. Prochowicz, K. Sokolowski, I. Justyniak, A. Kornowicz, D. Fairen-Jimenez et al., A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chem. Commun. 51, 4032 (2015). https://doi.org/10.1039/C4CC09917F
- W. Zhao, P. Yan, H. Yang, M. Bahri, A.M. James et al., Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 1, 87 (2022). https://doi.org/10.1038/s44160-021-00005-0
- F. Abbasloo, S.A. Khosravani, M. Ghaedi, K. Dashtian, E. Hosseini et al., Sonochemical-solvothermal synthesis of guanine embedded copper-based metal-organic framework (MOF) and its effect on oprD gene expression in clinical and standard strains of Pseudomonas aeruginosa. Ultrason. Sonochem. 42, 237 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.035
- J.O. Kim, W.T. Koo, H. Kim, C. Park, T. Lee et al., Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat. Commun. 12, 4294 (2021). https://doi.org/10.1038/s41467-021-24571-1
- S. Zhou, O. Shekhah, J. Jia, J. Czaban, P.M. Bhatt et al., Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882 (2021). https://doi.org/10.1038/s41560-021-00881-y
- S.Q. Zhu, J.C. Shu, M.S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14, 7322 (2022). https://doi.org/10.1039/D2NR01024K
- Y. Jiao, S. Cheng, F. Wu, X. Pan, A. Xie et al., MOF−Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Compos. Part B Eng. 211, 108643 (2021). https://doi.org/10.1016/j.compositesb.2021.108643
- C. Zhang, L. Xin, J. Li, J. Cao, Y. Sun et al., Metal–organic framework (MOF)-based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy. Adv. Healthc. Mater. 11, 2101946 (2022). https://doi.org/10.1002/adhm.202101946
- L. Du, B. Zhang, W. Deng, Y. Cheng, L. Xu et al., Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 12, 2200501 (2022). https://doi.org/10.1002/aenm.202200501
- A.M. Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489 (2012). https://doi.org/10.1021/cg300552w
- U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626 (2006). https://doi.org/10.1039/B511962F
- X. Wang, J. Yang, X. Shi, Z. Zhang, C. Yin et al., Electrosynthesis of ionic covalent organic frameworks for charge-selective separation of molecules. Small 18, 2107108 (2022). https://doi.org/10.1002/smll.202107108
- S.H. Jhung, J.H. Lee, P.M. Forster, G. Férey, A.K. Cheetham et al., Microwave synthesis of hybrid inorganic–organic porous materials: phase-selective and rapid crystallization. Chem. Eur. J. 12, 7899 (2006). https://doi.org/10.1002/chem.200600270
- B. Grenu, J. Torres, J. García-González, S. Muñoz-Pina, R. de Los Reyes et al., Microwave-assisted synthesis of covalent organic frameworks: a review. Chemsuschem 14, 208 (2021). https://doi.org/10.1002/cssc.202001865
- A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. Cryst. Eng. Comm. 8, 211 (2006). https://doi.org/10.1039/B513750K
- S.S.Y. Chui, S.M.F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148 (1999). https://doi.org/10.1126/science.283.5405.1148
- P. Horcajada, S. Surblé, C. Serre, D.Y. Hong, Y.K. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 2820 (2007). https://doi.org/10.1039/B704325B
- H.R. Abid, H. Tian, H.M. Ang, M.O. Tade, C.E. Buckley et al., Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 187, 415 (2012). https://doi.org/10.1016/j.cej.2012.01.104
- J. Lü, C. Perez-Krap, M. Suyetin, N.H. Alsmail, Y. Yan et al., A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity. J. Am. Chem. Soc. 136, 12828 (2014). https://doi.org/10.1021/ja506577g
- L. Xu, S.Y. Ding, J. Liu, J. Sun, W. Wang et al., Highly crystalline covalent organic frameworks from flexible building blocks. Chem. Commun. 52, 4706 (2016). https://doi.org/10.1039/C6CC01171C
- J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Metal–organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater. 116, 727 (2008). https://doi.org/10.1016/j.micromeso.2008.04.033
- N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204 (2009). https://doi.org/10.1021/cm802981m
- K.M. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal− organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261 (2009). https://doi.org/10.1021/ja906198y
- H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei et al., The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51, 12178 (2015). https://doi.org/10.1039/C5CC04680G
- Z. Ni, R.I. Masel, Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394 (2006). https://doi.org/10.1021/ja0635231
- T. Xing, Y. Lou, Q. Bao, J. Chen, Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation. Cryst. Eng. Comm. 16, 8994 (2014). https://doi.org/10.1039/C4CE00947A
- H.Y. Cho, D.A. Yang, J. Kim, S.Y. Jeong, W.S. Ahn, CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35 (2012). https://doi.org/10.1016/j.cattod.2011.08.019
- P.J. Beldon, L. Fábián, R.S. Stein, A. Thirumurugan, A.K. Cheetham et al., Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. 122, 9834 (2010). https://doi.org/10.1002/ange.201005547
- W. Yuan, A.L. Garay, A. Pichon, R. Clowes, C.D. Wood et al., Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Cryst. Eng. Comm. 12, 4063 (2010). https://doi.org/10.1039/C0CE00486C
- B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine et al., Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328 (2013). https://doi.org/10.1021/ja4017842
- L. Xu, J. Xu, B. Shan, X. Wang, C. Gao, TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355 (2017). https://doi.org/10.1016/j.memsci.2016.12.039
- W.K. Qin, D.H. Si, Q. Yin, X.Y. Gao, Q.Q. Huang et al., Reticular synthesis of hydrogen-bonded organic frameworks and their derivatives via mechanochemistry. Angew. Chem. Int. Ed. 134, e202202089 (2022). https://doi.org/10.1002/anie.202202089
- R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels et al., Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580 (2009). https://doi.org/10.1021/cm900069f
- S. Zhou, Y. Wei, L. Li, Y. Duan, Q. Hou et al., Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 4, 1393 (2018). https://doi.org/10.1126/sciadv.aau1393
- N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans et al., High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. J. Mater. Chem. A 1, 5827 (2013). https://doi.org/10.1039/C3TA10419B
- J. Feng, X.Y. Yan, Z.Y. Ji, T.F. Liu, R. Cao, Fabrication of lanthanide-functionalized hydrogen-bonded organic framework films for ratiometric temperature sensing by electrophoretic deposition. ACS Appl. Mater. Interfaces 12, 29854 (2020). https://doi.org/10.1021/acsami.0c08354
- Y. Liu, Y. Wei, M. Liu, Y. Bai, X. Wang et al., Electrochemical synthesis of large area two-dimensional metal–organic framework films on copper anodes. Angew. Chem. Int. Ed. 60, 2887 (2021). https://doi.org/10.1002/anie.202012971
- W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336 (2008). https://doi.org/10.1039/B814740J
- Z.Q. Li, L.G. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63, 78 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
- D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465 (2012). https://doi.org/10.1039/C1EE02234B
- H.Y. Cho, J. Kim, S.N. Kim, W.S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180 (2013). https://doi.org/10.1016/j.micromeso.2012.11.012
- J. Kim, S.T. Yang, S.B. Choi, J. Sim, J. Kim et al., Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 21, 3070 (2011). https://doi.org/10.1039/C0JM03318A
- S.T. Yang, J. Kim, H.Y. Cho, S. Kim, W.S. Ahn, Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2, 10179 (2012). https://doi.org/10.1039/C2RA21531D
- Z.X. Cai, Y. Xia, Y. Ito, M. Ohtani, H. Sakamoto et al., General synthesis of MOF nanotubes via hydrogen-bonded organic frameworks toward efficient hydrogen evolution electrocatalysts. ACS Nano 16, 20851 (2022). https://doi.org/10.1021/acsnano.2c08245
- Z. Pu, T. Liu, G. Zhang, Z. Chen, D.S. Li et al., General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 12, 2200293 (2022). https://doi.org/10.1002/aenm.202200293
- H. Jiang, Q. Wang, H. Wang, Y. Chen, M. Zhang, Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 80, 24 (2016). https://doi.org/10.1016/j.catcom.2016.03.013
- S. Zhou, O. Shekhah, A. Ramírez, P. Lyu, E. Abou-Hamad et al., Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706 (2022). https://doi.org/10.1038/s41586-022-04763-5
- Z. Qin, H. Li, X. Yang, L. Chen, Y. Li et al., Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Appl. Catal. B Environ. 307, 121163 (2022). https://doi.org/10.1016/j.apcatb.2022.121163
- K. Li, Y. Zhao, J. Yang, J. Gu, Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat. Commun. 13, 1879 (2022). https://doi.org/10.1038/s41467-022-29535-7
- G. Lu, H. Wei, C. Shen, F. Zhou, M. Zhang et al., Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS Appl. Mater. Interfaces 14, 45476 (2022). https://doi.org/10.1021/acsami.2c13613
- M.H. Pham, G.T. Vuong, A.T. Vu, T.O. Do, Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals. Langmuir 27, 15261 (2011). https://doi.org/10.1021/la203570h
- K. Li, J. Yang, R. Huang, S. Lin, J. Gu, Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and Hofmeister ion. Angew. Chem. Int. Ed. 132, 14228 (2020). https://doi.org/10.1002/ange.202006124
- J. Yang, K. Li, J. Gu, Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA. ACS Mater. Lett. 4, 385 (2022). https://doi.org/10.1021/acsmaterialslett.1c00797
- A.K. Bindra, D. Wang, Y. Zhao, Metal-organic frameworks meet polymers: From synthesis strategies to healthcare applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300700
- Y. Wu, H. Du, P. Li, X. Zhang, Y. Yin et al., Heterogeneous electrocatalysis of carbon dioxide to methane. Methane 2, 148 (2023). https://doi.org/10.3390/methane2020012
- N. Nagarjun, M. Jacob, P. Varalakshmi, A. Dhakshinamoorthy, UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Mol. Catal. 499, 111277 (2021). https://doi.org/10.1016/j.mcat.2020.111277
- H. Chen, C. Liu, W. Guo, Z. Wang, Y. Shi et al., Functionalized UiO-66 (Ce) for photocatalytic organic transformation: the role of active sites modulated by ligand functionalization. Catal. Sci. Technol. 12, 1812 (2022). https://doi.org/10.1039/D1CY02344F
- N. Wang, X. Li, M.K. Hu, W. Wei, S.H. Zhou et al., Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B Environ. 316, 121667 (2022). https://doi.org/10.1016/j.apcatb.2022.121667
- Y. Deng, Q. Zhang, C. Shi, R. Toyoda, D.H. Qu et al., Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Sci. Adv. 8, eabk3286 (2022). https://doi.org/10.1126/sciadv.abk328
- X. Li, J. Wang, X. Liu, L. Liu, D. Cha et al., Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 141, 12021 (2019). https://doi.org/10.1021/jacs.9b04896
- S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
- C. Toncelli, R.I. Malini, D. Jankowska, F. Spano, H. Cölfen et al., Optical glucose sensing using ethanolamine–polyborate complexes. J. Mater. Chem. B 6, 816 (2018). https://doi.org/10.1039/C7TB01790A
- L. Liu, N. Wang, C. Zhu, X. Liu, Y. Zhu et al., Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819 (2020). https://doi.org/10.1002/anie.201909834
- D. Sun, L.W. Wong, H.Y. Wong, K.H. Lai, L. Ye et al., Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design. Angew. Chem. Int. Ed. 135, e202216008 (2023). https://doi.org/10.1002/ange.202216008
- E. Bello-Jurado, D. Schwalbe-Koda, M. Nero, C. Paris, T. Uusimäki et al., Tunable CHA/AEI zeolite intergrowths with a priori biselective organic structure-directing agents: Controlling enrichment and implications for selective catalytic reduction of NOx. Angew. Chem. Int. Ed. 61, e202201837 (2022). Doi: https://doi.org/10.1002/anie.202201837
- M. Ma, L. Wang, H. Wang, H. Xiong, X. Chen et al., Real-space imaging of the node–linker coordination on the interfaces between self-assembled metal–organic frameworks. Nano Lett. 22, 9928 (2022). https://doi.org/10.1021/acs.nanolett.2c03375
- B. Shen, H. Wang, H. Xiong, X. Chen, E.G. Bosch et al., Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 607, 703 (2022). https://doi.org/10.1038/s41586-022-04876-x
- B. Shen, X. Chen, K. Shen, H. Xiong, F. Wei, Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 11, 2692 (2020). https://doi.org/10.1038/s41467-020-16531-y
- G. Li, H. Zhang, Y. Han, 4D-STEM ptychography for electron-beam-sensitive materials. ACS Cent. Sci. 8, 1579 (2022). https://doi.org/10.1021/acscentsci.2c01137
- K.C. Bustillo, S.E. Zeltmann, M. Chen, J. Donohue, J. Ciston et al., 4D-STEM of beam-sensitive materials. Acc. Chem. Res. 54, 2543 (2021). https://doi.org/10.1021/acs.accounts.1c00073
- C. Ophus, Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563 (2019). https://doi.org/10.1017/S1431927619000497
- J.W. Osterrieth, J. Rampersad, D. Madden, N. Rampal, L. Skoric et al., How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, 2201502 (2022). https://doi.org/10.1002/adma.202201502
- L. Yan, Y. Zhao, S. Zhang, E. Guo, C. Han et al., Controllable exfoliation of MOF-derived Van der waals superstructure into ultrathin 2D B/N Co-doped porous carbon nanosheets: a superior catalyst for ambient ammonia electrosynthesis. Small 19, 2300239 (2023). https://doi.org/10.1002/smll.202300239
- X. Gu, G. Han, Q. Yang, D. Liu, Confinement–unconfinement transformation of ILs in IL@MOF composite with multiple adsorption sites for efficient water capture and release. Adv. Mater. Interfaces 9, 2102354 (2022). https://doi.org/10.1002/admi.202102354
- M.A. Molina, N.R. Habib, I. Díaz, M. Sánchez-Sánchez, Surfactant-induced hierarchically porous MOF-based catalysts prepared under sustainable conditions and their ability to remove bisphenol A from aqueous solutions. Catal. Today 394, 117 (2022). https://doi.org/10.1016/j.cattod.2021.10.019
- F. Pederzoli, G. Tosi, M.A. Vandelli, D. Belletti, F. Forni et al., Protein corona and nanops: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1467 (2017). https://doi.org/10.1002/wnan.1467
- V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of Nanop Tracking Analysis (NTA) by NanoSight for the measurement of nanops and protein aggregates. Pharm. Res. 27, 796 (2010). https://doi.org/10.1007/s11095-010-0073-2
- F. Caputo, J. Clogston, L. Calzolai, M. Rösslein, A. Prina-Mello, Measuring p size distribution of nanop enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Controlled Release 299, 31 (2019). https://doi.org/10.1016/j.jconrel.2019.02.030
- R. Vogel, A.K. Pal, S. Jambhrunkar, P. Patel, S.S. Thakur et al., High-resolution single p zeta potential characterization of biological nanops using tunable resistive pulse sensing. Sci. Rep. 7, 17479 (2017). https://doi.org/10.1038/s41598-017-14981-x
- S. Bhattacharjee, DLS and zeta potential – What they are and what they are not? J. Controlled Release 235, 337 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017
- P.M. Carvalho, M.R. Felício, N.C. Santos, S. Gonçalves, M.M. Domingues, Application of light scattering techniques to nanop characterization and development. Front. Chem. 6, 237 (2018). https://doi.org/10.3389/fchem.2018.00237
- R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic press, 2013). pp. 59–74
- M. Liu, C. Shang, T. Zhao, H. Yu, Y. Kou et al., Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework. Nat. Commun. 14, 1211 (2023). https://doi.org/10.1038/s41467-023-36832-2
- L. Liu, D. Zhang, Y. Zhu, Y. Han, Bulk and local structures of metal–organic frameworks unravelled by high-resolution electron microscopy. Commun. Chem. 3, 99 (2020). https://doi.org/10.1038/s42004-020-00361-6
- K. Alt, F. Carraro, E. Jap, M. Linares-Moreau, R. Riccò et al., Self-assembly of oriented antibody-decorated metal–organic framework nanocrystals for active-targeting applications. Adv. Mater. 34, 2106607 (2022). https://doi.org/10.1002/adma.202106607
- N. Yanai, M. Sindoro, J. Yan, S. Granick, Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J. Am. Chem. Soc. 135, 34 (2013). https://doi.org/10.1021/ja309361d
- J. Cao, W. Ma, K. Lyu, L. Zhuang, H. Cong et al., Twist and sliding dynamics between interpenetrated frames in Ti-MOF revealing high proton conductivity. Chem. Sci. 11, 3978 (2020). https://doi.org/10.1039/C9SC06500H
- S. Yao, Y. Jiao, C. Lv, Y. Kong, S. Ramakrishna et al., Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis. J. Colloid Interface Sci. 623, 1111 (2022). https://doi.org/10.1016/j.jcis.2022.04.126
- B. Cui, G. Fu, Process of metal–organic framework (MOF)/covalent–organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 14, 1679 (2022). https://doi.org/10.1039/D1NR07614K
- S. Yang, V.V. Karve, A. Justin, I. Kochetygov, J. Espin et al., Enhancing MOF performance through the introduction of polymer guests. Coord. Chem. Rev. 427, 213525 (2021). https://doi.org/10.1016/j.ccr.2020.213525
- H.L. Nguyen, F. Gándara, H. Furukawa, T.L. Doan, K.E. Cordova et al., A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. J. Am. Chem. Soc. 138, 4330 (2016). https://doi.org/10.1021/jacs.6b01233
- H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng et al., MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021). https://doi.org/10.1038/s41467-020-20298-7
- Y. Peng, M. Zhao, B. Chen, Z. Zhang, Y. Huang et al., Hybridization of MOFs and COFs: a new strategy for construction of MOF@ COF core–shell hybrid materials. Adv. Mater. 30, 1705454 (2018). https://doi.org/10.1002/adma.201705454
- F.M. Zhang, J.L. Sheng, Z.D. Yang, X.J. Sun, H.L. Tang et al., Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 57, 12106 (2018). https://doi.org/10.1002/anie.201806862
- L. Feng, K.Y. Wang, X.L. Lv, T.H. Yan, J.R. Li et al., Modular total synthesis in reticular chemistry. J. Am. Chem. Soc. 142, 3069 (2020). https://doi.org/10.1021/jacs.9b12408
- F. Li, D. Wang, Q.J. Xing, G. Zhou, S.S. Liu et al., Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B Environ. 243, 621 (2019). https://doi.org/10.1016/j.apcatb.2018.10.043
- B.T. Liu, X.H. Pan, D.Y. Zhang, R. Wang, J.Y. Chen et al., Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem. Int. Ed. 60, 25701 (2021). https://doi.org/10.1002/anie.202110028
- J. Wang, Y. Mao, R. Zhang, Y. Zeng, C. Li et al., In situ assembly of hydrogen-bonded organic framework on metal–organic framework: An effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022). https://doi.org/10.1002/advs.202204036
- C. Yu, H. Li, Y. Wang, J. Suo, X. Guan et al., Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew. Chem. Int. Ed. 61, e202117101 (2022). https://doi.org/10.1002/anie.202117101
- Z. Ji, R. Freund, C.S. Diercks, P. Hirschle, O.M. Yaghi et al., From molecules to frameworks to superframework crystals. Adv. Mater. 33, 2103808 (2021). https://doi.org/10.1002/adma.202103808
- B. Lerma-Berlanga, C.R. Ganivet, N. Almora-Barrios, R. Vismara, J.A. Navarro et al., Tetrazine linkers as plug-and-play tags for general metal-organic framework functionalization and C60 Conjugation. Angew. Chem. Int. Ed. 61, e202208139 (2022). https://doi.org/10.1002/anie.202208139
- B. Yu, L. Li, S. Liu, H. Wang, H. Liu et al., Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem. Int. Ed. 133, 9065 (2021). https://doi.org/10.1002/ange.202016710
- F. Haase, P. Hirschle, R. Freund, S. Furukawa, Z. Ji et al., Beyond frameworks: Structuring reticular materials across nano-, meso-, and bulk regimes. Angew. Chem. Int. Ed. 59, 22350 (2020). https://doi.org/10.1002/anie.201914461
- G. Cheng, A. Zhang, Z. Zhao, Z. Chai, B. Hu et al., Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 66, 19 (2021). https://doi.org/10.1016/j.scib.2021.05.012
- Y. Jiang, Y. Hu, B. Luan, L. Wang, R. Krishna et al., Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF. Nat. Commun. 14, 401 (2023). https://doi.org/10.1038/s41467-023-35984-5
- Z. Li, J. Liu, L. Feng, Y. Pan, J. Tang et al., Monolithic MOF-based metal–insulator–metal resonator for filtering and sensing. Nano Lett. 321, 2 (2023). https://doi.org/10.1021/acs.nanolett.2c04428
- H. Sepehrmansourie, H. Alamgholiloo, N.N. Pesyan, M.A. Zolfigol, A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 321, 122082 (2023). https://doi.org/10.1016/j.apcatb.2022.122082
- I. Hussain, M.Z. Ansari, C. Lamiel, T. Hussain, M.S. Javed et al., In situ grown heterostructure based on MOF-derived carbon containing n-type Zn–In–S and dry-oxidative p-Type CuO as pseudocapacitive electrode materials. ACS Energy Lett. 8, 4 (2023). https://doi.org/10.1021/acsenergylett.3c00221
- S. Bao, Q. Tan, S. Wang, J. Guo, K. Lv et al., TpBD COF@ZnIn2S4 nanosheets: A novel S-scheme heterojunction with enhanced photoreactivity for hydrogen production. Appl. Catal. B Environ. 330, 122624 (2023). https://doi.org/10.1016/j.apcatb.2023.122624
- Y.J. Chen, Y.Y. Wen, W.H. Li, Z.H. Fu, G.E. Wang et al., TiO2@COF nanowire arrays: a “Filter Amplifier” heterojunction strategy to reverse the redox nature. Nano Lett. 13, 8 (2023). https://doi.org/10.1021/acs.nanolett.3c00804
- K. Van Der Wijst, F. Bosello, S. Dasgupta, L. Drouet, J. Emmerling et al., New damage curves and multimodel analysis suggest lower optimal temperature. Nat. Clim. Change 13, 434 (2023). https://doi.org/10.1038/s41558-023-01636-1
- Y. Yang, L. Li, R.B. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933 (2021). https://doi.org/10.1038/s41557-021-00740-z
- O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705 (2003). https://doi.org/10.1038/nature01650
- A.V. Anyushin, A. Kondinski, T.N. Parac-Vogt, Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem. Soc. Rev. 49, 382 (2020). https://doi.org/10.1039/C8CS00854J
- H. Furukawa, J. Kim, K.E. Plass, O.M. Yaghi, Crystal structure, dissolution, and deposition of a 5 nm functionalized metal−organic great rhombicuboctahedron. J. Am. Chem. Soc. 128, 26 (2006). https://doi.org/10.1021/ja062491e
- H.L. Nguyen, Reticular materials for artificial photoreduction of CO2. Adv. Energy Mater. 10, 46 (2020). https://doi.org/10.1002/aenm.202002091
- C.E. Diesendruck, N.R. Sottos, J.S. Moore, S.R. White, Biomimetic self-healing. Angew. Chem. Int. Ed. 54, 36 (2015). https://doi.org/10.1002/anie.201500484
- G.J. Parker, Biomimetically-inspired photonic nanomaterials. J. Mater. Sci. Mater. Electron. 21, 965 (2010). https://doi.org/10.1007/s10854-010-0164-1
- P.O. Saboe, E. Conte, S. Chan, H. Feroz, B. Ferlez et al., Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces. J. Mater. Chem. A 4, 15457 (2016). https://doi.org/10.1039/C6TA07148A
- X. Ma, A.C. Hortelão, T. Patino, S. Sanchez, Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 10 (2016). https://doi.org/10.1021/acsnano.6b04108
- T. Man, C. Xu, X.Y. Liu, D. Li, C.K. Tsung et al., Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 13, 305 (2022). https://doi.org/10.1038/s41467-022-27983-9
- H. Cao, Y. Gao, H. Jia, L. Zhang, J. Liu et al., Macrophage-membrane-camouflaged nonviral gene vectors for the treatment of multidrug-resistant bacterial sepsis. Nano Lett. 22, 19 (2022). https://doi.org/10.1021/acs.nanolett.2c02560
- W. Wang, L. Zhang, Q. Deng, Z. Liu, J. Ren et al., Yeast@MOF bioreactor as a tumor metabolic symbiosis disruptor for the potent inhibition of metabolically heterogeneous tumors. Nano Today 42, 101331 (2022). https://doi.org/10.1016/j.nantod.2021.101331
- G. Chen, X. Fang, Q. Chen, J. Zhang, Z. Zhong et al., Boronic acid decorated defective metal–organic framework nanoreactors for high-efficiency carbohydrates separation and labeling. Adv. Funct. Mater. 27, 38 (2017). https://doi.org/10.1002/adfm.201702126
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 6149 (2013). https://doi.org/10.1126/science.1230444
- P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa et al., Application of metal and metal oxide nanops@MOFs. Coord. Chem. Rev. 307, 237 (2016). https://doi.org/10.1016/j.ccr.2015.08.002
- M. Liu, M. Yang, X. Wan, Z. Tang, L. Jiang et al., From nanoscopic to macroscopic materials by stimuli-responsive nanop aggregation. Adv. Mater. 35, 20 (2022). https://doi.org/10.1002/adma.202208995
- X. Yan, H. Peng, Y. Xiang, J. Wang, L. Yu et al., Recent advances on host–guest material systems toward organic room temperature phosphorescence. Small 18, 2104073 (2022). https://doi.org/10.1002/smll.202104073
- Y. Dong, J. Zhang, Y. Yang, J. Wang, B. Hu et al., Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 97, 107184 (2022). https://doi.org/10.1016/j.nanoen.2022.107184
- L. Wei, T. Sun, Z. Shi, Z. Xu, W. Wen et al., Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat. Commun. 13, 7936 (2022). https://doi.org/10.1038/s41467-022-35674-8
- F. Xie, H. Wang, J. Li, Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter 5, 8 (2022). https://doi.org/10.1016/j.matt.2022.06.043
- W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch et al., Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 36 (2019). https://doi.org/10.1021/jacs.9b06589
- S.H. Goh, H.S. Lau, W.F. Yong, Metal–organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small 18, 20 (2022). https://doi.org/10.1002/smll.202107536
- P. Wied, F. Carraro, J.M. Bolivar, C.J. Doonan, P. Falcaro et al., Combining a genetically engineered oxidase with hydrogen-bonded organic frameworks (HOFs) for highly efficient biocomposites. Angew. Chem. Int. Ed. 61, 16 (2022). https://doi.org/10.1002/anie.202117345
- K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
- S. Huang, G. Chen, G. Ouyang, Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem. Soc. Rev. 51, 6824 (2022). https://doi.org/10.1039/D1CS01011E
- G. Chen, S. Huang, X. Kou, F. Zhu, G. Ouyang, Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement. Angew. Chem. Int. Ed. 132, 33 (2020). https://doi.org/10.1002/ange.202005529
- M. Rabe, D. Verdes, S. Seeger, Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87 (2011). https://doi.org/10.1016/j.cis.2010.12.007
- R. Greifenstein, T. Ballweg, T. Hashem, E. Gottwald, D. Achauer et al., MOF-hosted enzymes for continuous flow catalysis in aqueous and organic solvents. Angew. Chem. Int. Ed. 61, 18 (2022). https://doi.org/10.1002/anie.202117144
- S. Wang, M. Kai, Y. Duan, Z. Zhou, R.H. Fang et al., Membrane cholesterol depletion enhances enzymatic activity of cell-membrane-coated metal-organic-framework nanops. Angew. Chem. Int. Ed. 134, 24 (2022). https://doi.org/10.1002/ange.202203115
- R. Tian, H. Ma, W. Ye, Y. Li, S. Wang et al., Se-Containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 32, 36 (2022). https://doi.org/10.1002/adfm.202204025
- T. Zoungrana, G.H. Findenegg, W. Norde, Structure, stability, and activity of adsorbed enzymes. J. Colloid Interface Sci. 190, 437 (1997). https://doi.org/10.1006/jcis.1997.4895
- W. Liang, H. Xu, F. Carraro, N.K. Maddigan, Q. Li et al., Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J. Am. Chem. Soc. 141, 6 (2019). https://doi.org/10.1021/jacs.8b10302
- R.A. Sperling, W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanops. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 368, 1915 (2010). https://doi.org/10.1098/rsta.2009.0273
- M. Yan, K. Liang, D. Zhao, B. Kong, Core-shell structured micro-nanomotors: construction, shell functionalization, applications, and perspectives. Small 18, 2102887 (2022). https://doi.org/10.1002/smll.202102887
- L.S. Lin, J. Song, H.H. Yang, X. Chen, Yolk-Shell nanostructures: design, synthesis, and biomedical applications. Adv. Mater. 30, 1704639 (2018). https://doi.org/10.1002/adma.201704639
- S. Wang, W. Morris, Y. Liu, C.M. McGuirk, Y. Zhou et al., Surface-specific functionalization of nanoscale metal–organic frameworks. Angew. Chem. Int. Ed. 54, 49 (2015). https://doi.org/10.1002/anie.201506888
- S. Wang, C.M. McGuirk, A. d’Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanops. Adv. Mater. 30, 37 (2018). https://doi.org/10.1002/adma.201800202
- W. Han, Y. Chen, Y. Jiao, S. Liang, W. Li et al., ZIF-derived frame-in-cage hybrids of ZnSe–CdSe embedded within a N-doped carbon matrix for efficient photothermal conversion of CO2 into fuel. J. Mater. Chem. A 10, 17642 (2022). https://doi.org/10.1039/D2TA03219H
- S. Zhang, W. Xia, Q. Yang, Y.V. Kaneti, X. Xu et al., Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 396, 125154 (2020). https://doi.org/10.1016/j.cej.2020.125154
- J.-F. Qin, J.-Y. Xie, N. Wang, B. Dong, T.-S. Chen et al., Surface construction of loose Co(OH)2 shell derived from ZIF-67 nanocube for efficient oxygen evolution. J. Colloid Interface Sci. 562, 279 (2020). https://doi.org/10.1016/j.jcis.2019.12.033
- S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32, 31 (2020). https://doi.org/10.1002/adma.202002235
- B.T. Liu, X.H. Pan, D.Y. Nie, X.J. Hu, E.P. Liu et al., Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 32, 48 (2020). https://doi.org/10.1002/adma.202005912
- M.M. Modena, B. Rühle, T.P. Burg, S. Wuttke, Nanop characterization: nanop characterization: what to measure? Adv. Mater. 31, 32 (2019). https://doi.org/10.1002/adma.201970226
- B. Fadeel, L. Farcal, B. Hardy, S. Vázquez-Campos, D. Hristozov et al., Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537 (2018). https://doi.org/10.1038/s41565-018-0185-0
- M. Faria, M. Börnmalm, K.J. Thurecht, S.J. Kent, R.G. Parton et al., Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777 (2018). https://doi.org/10.1038/s41565-018-0246-4
- B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J.M. De La Fuente et al., Interfacing engineered nanops with biological systems: Anticipating adverse nano–bio interactions. Small 9, 1573 (2013). https://doi.org/10.1002/smll.201201229
- C. Corbo, R. Molinaro, A. Parodi, N.E. Toledano Furman, F. Salvatore et al., The impact of nanop protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81 (2016). https://doi.org/10.2217/nnm.15.188
- J.T. Buchman, M.J. Gallagher, C.-T. Yang, X. Zhang, M.O. Krause et al., Research highlights: examining the effect of shape on nanop interactions with organisms. Environ. Sci. Nano 3, 696 (2016). https://doi.org/10.1039/C6EN90015A
- E. Bellido, T. Hidalgo, M.V. Lozano, M. Guillevic, R. Simón-Vázquez et al., Heparin-engineered mesoporous iron metal-organic framework nanops: toward stealth drug nanocarriers. Adv. Healthc. Mater. 4, 8 (2015). https://doi.org/10.1002/adhm.201400755
- W.J. Rieter, K.M. Pott, K.M. Taylor, W. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 35 (2008). https://doi.org/10.1021/ja803383k
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172 (2010). https://doi.org/10.1038/nmat2608
- P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin et al., Metal–organic frameworks in biomedicine. Chem. Rev. 112, 2 (2012). https://doi.org/10.1021/cr200256v
- S. Ahmadi, V. Jajarmi, M. Ashrafizadeh, A. Zarrabi, J.T. Haponiuk, M.R. Saeb et al., Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. J. Hazard. Mater. 436, 129259 (2022). https://doi.org/10.1016/j.jhazmat.2022.129259
- R. Singh, A. Prasad, B. Kumar, S. Kumari, R.K. Sahu et al., Potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect 7, 36 (2022). https://doi.org/10.1002/slct.202201288
- R. Ettlinger, U. Lächelt, R. Gref, P. Horcajada, T. Lammers et al., Toxicity of metal–organic framework nanops: from essential analyses to potential applications. Chem. Soc. Rev. 51, 464 (2022). https://doi.org/10.1039/D1CS00918D
- G. Chen, S. Huang, X. Kou, S. Wei, S. Huang et al., A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks. Angew. Chem. Int. Ed. 58, 5 (2019). https://doi.org/10.1002/anie.201813060
- D. Wang, D. Jana, Y. Zhao, Metal–organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 53, 1389 (2020). https://doi.org/10.1021/acs.accounts.0c00268
- Y. Shu, Q. Ye, T. Dai, Q. Xu, X. Hu, Encapsulation of luminescent guests to construct luminescent metal–organic frameworks for chemical sensing. ACS Sens. 6, 641 (2021). https://doi.org/10.1021/acssensors.0c02562
- Q. Zhao, Z. Gong, Z. Li, J. Wang, J. Zhang et al., Target reprogramming lysosomes of CD8+ T cells by a mineralized metal–organic framework for cancer immunotherapy. Adv. Mater. 33, 17 (2021). https://doi.org/10.1002/adma.202100616
- I. Abánades Lázaro, C.J. Wells, R.S. Forgan, Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 132, 13 (2020). https://doi.org/10.1002/ange.201915848
- X. Dai, Y. Chen, Computational biomaterials: computational simulations for biomedicine. Adv. Mater. 35, 2204798 (2023). https://doi.org/10.1002/adma.202204798
- M. Busch, M.M. Hoeper, C. von Kaisenberg, T. Stueber, K. Stahl, Covid-19 associated ARDS in pregnant women and timing of delivery: a single center experience. Crit. Care 26, 275 (2022). https://doi.org/10.1186/s13054-022-04145-3
- Y. Deng, Y. Wang, X. Xiao, B.J. Saucedo, Z. Zhu et al., Progress in hybridization of covalent organic frameworks and metal–organic frameworks. Small 18, 2202928 (2022). https://doi.org/10.1002/smll.202202928
- P. Gao, T. Zheng, B. Cui, X. Liu, W. Pan et al., Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chem. Commun. 57, 13309 (2021). https://doi.org/10.1039/D1CC04414A
- X. Zhang, Y. Lu, D. Jia, W. Qiu, X. Ma et al., Acidic microenvironment responsive polymeric MOF-based nanops induce immunogenic cell death for combined cancer therapy. J. Nanobiotechnol. 19, 455 (2021). https://doi.org/10.1186/s12951-021-01217-4
- D. Yu, H. Zhang, Z. Liu, C. Liu, X. Du et al., Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 134, e202201485 (2022). https://doi.org/10.1002/ange.202201485
- Q. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lü et al., An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed. 130, e201800354 (2018). https://doi.org/10.1002/ange.201800354
- M. Ding, W. Liu, R. Gref, Nanoscale MOFs: from synthesis to drug delivery and theranostics applications. Adv. Drug Deliv. Rev. 190, 114496 (2022). https://doi.org/10.1016/j.addr.2022.114496
- H. Song, J. Wang, B. Xiong, J. Hu, P. Zeng et al., Biologically safe, versatile, and smart bismuthene functionalized with a drug delivery system based on red phosphorus quantum dots for cancer theranostics. Angew. Chem. Int. Ed. 134, e2117679 (2022). https://doi.org/10.1002/ange.202117679
- X. Wen, R. Zhang, Y. Hu, L. Wu, H. Bai et al., Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat. Commun. 14, 800 (2023). https://doi.org/10.1038/s41467-023-36469-1
- A.C. Mckinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 36 (2010). https://doi.org/10.1002/anie.201000048
- L.-G. Ding, S. Wang, B.-J. Yao, W.-X. Wu, J.-L. Kan et al., Covalent organic framework based multifunctional self-sanitizing face masks. J. Mater. Chem. A 10, 3346 (2022). https://doi.org/10.1039/D1TA08743F
- C. Bertram, G. Luderer, F. Creutzig, N. Bauer, F. Ueckerdt et al., COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Change 11, 193 (2021). https://doi.org/10.1038/s41558-021-00987-x
- J.D. Hughes, A reality check on the shale revolution. Nature 494, 307 (2013). https://doi.org/10.1038/494307a
- T.E. Rufford, S. Smart, G.C. Watson, B.F. Graham, J. Boxall et al., The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94, 123 (2012). https://doi.org/10.1016/j.petrol.2012.06.016
- G. Nazir, A. Rehman, S. Hussain, S. Aftab, K. Heo et al., Recent advances and reliable assessment of solid-state materials for hydrogen storage: a step forward toward a sustainable H2 economy. Adv. Sustain. Syst. 6, 2200276 (2022). https://doi.org/10.1002/adsu.202200276
- E. Klontzas, E. Tylianakis, G.E. Froudakis, Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett. 10, 452 (2010). https://doi.org/10.1021/nl903068a
- Y. Pramudya, J.L. Mendoza-Cortes, Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0–700 bar at 298 K. J. Am. Chem. Soc. 138, 46 (2016). https://doi.org/10.1021/jacs.6b0880
References
L. Feng, R.D. Astumian, J.F. Stoddart, Controlling dynamics in extended molecular frameworks. Nat. Rev. Chem. 6, 705 (2022). https://doi.org/10.1038/s41570-022-00412-7
H.L. Boström, A.L. Goodwin, Hybrid perovskites, metal–organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 54, 1288 (2021). https://doi.org/10.1021/acs.accounts.0c00797
L. Pfeifer, S. Crespi, P. Meulen, J. Kemmink, R.M. Scheek et al., Controlling forward and backward rotary molecular motion on demand. Nat. Commun. 13, 2124 (2022). https://doi.org/10.1038/s41467-022-29820-5
G. Sadeghi, Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 46, 222 (2022). https://doi.org/10.1016/j.ensm.2022.01.017
Q. Mu, K. Cui, Z.J. Wang, T. Matsuda, W. Cui et al., Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 13, 6213 (2022). https://doi.org/10.1038/s41467-022-34044-8
A. Haake, R. Tutika, G.M. Schloer, M.D. Bartlett, E.J. Markvicka, On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing. Adv. Mater. 34, 2200182 (2022). https://doi.org/10.1002/adma.202200182
Y. Yang, Z. Guo, W. Liu, Special superwetting materials from bioinspired to intelligent surface for on-demand oil/water separation: a comprehensive review. Small 18, 2204624 (2022). https://doi.org/10.1002/smll.202204624
D.M. Lee, N. Rubab, I. Hyun, W. Kang, Y.J. Kim et al., Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 8, eabl8423 (2022). https://doi.org/10.1126/sciadv.abl8423
S. Canossa, Z. Ji, C. Gropp, Z. Rong, E. Ploetz et al., System of sequences in multivariate reticular structures. Nat. Rev. Mater. 8, 2733 (2023). https://doi.org/10.1038/s41578-022-00482-5
Y. Liu, H. Wu, R. Li, J. Wang, Y. Kong et al., MOF–COF “Alloy” membranes for efficient propylene/propane separation. Adv. Mater. 34, 2201423 (2022). https://doi.org/10.1002/adma.202201423
C.X. Chen, Y.Y. Xiong, X. Zhong, P.C. Lan, Z.W. Wei et al., Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew. Chem. Int. Ed. 134, e202114071 (2022). https://doi.org/10.1002/anie.202114071
Y. Li, L. Liu, T. Meng, L. Wang, Z. Xie, Structural engineering of ionic MOF@COF heterointerface for exciton-boosting sunlight-driven photocatalytic filter. ACS Nano 17, 2932 (2023). https://doi.org/10.1021/acsnano.2c11339
P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G. Maloney et al., Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
S.K. Ghosh, W. Kaneko, D. Kiriya, M. Ohba, S. Kitagawa, A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations. Angew. Chem. Int. Ed. 47, 8843 (2008). https://doi.org/10.1002/anie.200802803
D. Ongari, L. Talirz, B. Smit, Too many materials and too many applications: an experimental problem waiting for a computational solution. ACS Cent. Sci. 6, 1890 (2020). https://doi.org/10.1021/acscentsci.0c00988
O.M. Yaghi, M.J. Kalmutzki, C.S. Diercks, Introduction to Reticular Chemistry: Metal-organic Frameworks and Covalent Organic Frameworks (John Wiley & Sons, 2019), pp. 16–29.
A.G. Slater, M.A. Little, A. Pulido, S.Y. Chong, D.L. Holden et al., Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nat. Chem. 9, 17 (2017). https://doi.org/10.1038/nchem.2663
A.G. Slater, P.S. Reiss, A. Pulido, M.A. Little, D.L. Holden et al., Computationally-guided synthetic control over pore size in isostructural porous organic cages. ACS Cent. Sci. 3, 734 (2017). https://doi.org/10.1021/acscentsci.7b00145
D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257 (2009). https://doi.org/10.1039/B817735J
A. Schoedel, M. Li, D. Li, M. O’Keeffe, O.M. Yaghi, Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116, 12466 (2016). https://doi.org/10.1021/acs.chemrev.6b00346
C.K. Brozek, M. Dincă, Cation exchange at the secondary building units of metal–organic frameworks. Chem. Soc. Rev. 43, 5456 (2014). https://doi.org/10.1039/C4CS00002A
N. Kundu, S. Sarkar, Porous organic frameworks for carbon dioxide capture and storage. J. Environ. Chem. Eng. 9, 105090 (2021). https://doi.org/10.1016/j.jece.2021.105090
S. Chuhadiya, D. Suthar, S.L. Patel, M.S. Dhaka, Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: a review. Coord. Chem. Rev. 446, 214115 (2021). https://doi.org/10.1016/j.ccr.2021.214115
Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng et al., Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
Y. Zhang, S.N. Riduan, J. Wang, Redox active metal–and covalent organic frameworks for energy storage: Balancing porosity and electrical conductivity. Chem. Eur. J. 23, 16419 (2017). https://doi.org/10.1002/chem.201702919
S. Zhang, M.K. Taylor, L. Jiang, H. Ren, G. Zhu, Light hydrocarbon separations using porous organic framework materials. Chem. Eur. J. 26, 3205 (2020). https://doi.org/10.1002/chem.201904455
X. Zhang, J. Lu, J. Zhang, Porosity enhancement of carbazolic porous organic frameworks using dendritic building blocks for gas storage and separation. Chem. Mater. 26, 4023 (2014). https://doi.org/10.1021/cm501717c
S. Laha, T.K. Maji, Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting. Adv. Funct. Mater. 32, 2203093 (2022). https://doi.org/10.1002/adfm.202203093
L. Sheng, K. Yang, J. Chen, D. Zhu, L. Wang et al., A protophilic MOF enables Ni-rich lithium-battery stable cycling in a high water/acid content. Adv. Mater. 35, 2212292 (2023). https://doi.org/10.1002/adma.202212292
J. Dong, Y. Liu, Y. Cui, Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem. Commun. 50, 14949 (2014). https://doi.org/10.1039/C4CC07648F
Z.J. Lin, J. Lü, L. Li, H.F. Li, R. Cao, Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. J. Catal. 355, 131 (2017). https://doi.org/10.1016/j.jcat.2017.09.014
K. Shao, H.M. Wen, C.C. Liang, X. Xiao, X.W. Gu et al., Engineering supramolecular binding sites in a chemically stable metal-organic framework for simultaneous high C2H2 storage and separation. Angew. Chem. Int. Ed. 61, e202211523 (2022). https://doi.org/10.1002/anie.202211523
D.M. Polyukhov, N.A. Kudriavykh, S.A. Gromilov, A.S. Kiryutin, A.S. Poryvaev et al., Efficient MOF-catalyzed ortho–para hydrogen conversion for practical liquefaction and energy storage. ACS Energy Lett. 7, 4336 (2022). https://doi.org/10.1021/acsenergylett.2c02149
P. Qin, S. Okur, Y. Jiang, L. Heinke, A MOF-based electronic nose for carbon dioxide sensing with enhanced affinity and selectivity by ionic-liquid embedment. J. Mater. Chem. A 10, 25347 (2022). https://doi.org/10.1039/D2TA06324G
Y.M. Jo, Y.K. Jo, J.H. Lee, H.W. Jang, I.S. Hwang et al., MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 1, 2206842 (2022). https://doi.org/10.1002/adma.202206842
J. Yang, X. Yin, L. Zhang, X. Zhang, Y. Lin et al., Defective Fe metal–organic frameworks enhance metabolic profiling for high-accuracy diagnosis of human cancers. Adv. Mater. 34, 2201422 (2022). https://doi.org/10.1002/adma.202201422
C.R. Quijia, R.C. Alves, G. Hanck-Silva, R.C. Galvao Frem, G. Arroyos et al., Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit. Rev. Microbiol. 48, 161 (2022). https://doi.org/10.1080/1040841X.2021.1950120
X. Pan, N. Wu, S. Tian, J. Guo, C. Wang et al., Inhalable MOF-derived nanops for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater. 32, 2112145 (2022). https://doi.org/10.1002/adfm.202112145
S. Mallakpour, E. Nikkhoo, C.M. Hussain, Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 451, 214262 (2022). https://doi.org/10.1016/j.ccr.2021.214262
W. Xu, B. Tu, Q. Liu, Y. Shu, C.C. Liang et al., Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764 (2020). https://doi.org/10.1038/s41578-020-0225-x
Y. Feng, Y. Xu, S. Liu, D. Wu, Z. Su et al., Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 459, 214414 (2022). https://doi.org/10.1016/j.ccr.2022.214414
B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian et al., Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819 (2016). https://doi.org/10.1002/adma.201601133
H. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014). https://doi.org/10.1039/C4CS90059F
A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005). https://doi.org/10.1126/science.1120411
R. Liu, K.T. Tan, Y. Gong, Y. Chen, Z. Li et al., Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120 (2021). https://doi.org/10.1039/D0CS00620C
X. Guan, F. Chen, Q. Fang, S. Qiu, Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357 (2020). https://doi.org/10.1039/C9CS00911F
R.B. Lin, Y. He, P. Li, H. Wang, W. Zhou et al., Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362 (2019). https://doi.org/10.1039/C8CS00155C
I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58, 11160 (2019). https://doi.org/10.1002/anie.201902147
W.X. Zhang, Y.Y. Yang, S.B. Zai, S. Weng Ng, X.M. Chen, Syntheses, structures and magnetic properties of dinuclear copper(II)–lanthanide(III) complexes bridged by 2-hydroxymethyl-1-methylimidazole. Eur JIC 5, 679–685 (2008). https://doi.org/10.1002/ejic.200701041
P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053 (2015). https://doi.org/10.1021/acs.accounts.5b00369
D. Nam, J. Kim, W. Choe, Evolution of Zr nodes in metal–organic frameworks. Trends Chem. 5, 339–352 (2023). https://doi.org/10.1016/j.trechm.2023.02.009
Y. Wu, M. Xie, J.K. Jin, Z.Y. Zhang, H. Hu et al., A copper iodide cluster-based metal–organic polyhedra for photocatalytic click chemistry. Small Struct. 3, 2100155 (2022). https://doi.org/10.1002/sstr.202100155
H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276 (1999). https://doi.org/10.1038/46248
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002). https://doi.org/10.1126/science.1067208
A.R. Millward, O.M. Yaghi, Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005). https://doi.org/10.1021/ja0570032
X. Huang, J. Zhang, X. Chen, [Zn(bim)2] · (H2O)1.67: a metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 48, 1531 (2003). https://doi.org/10.1007/BF03183954
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
H. Hayashi, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Zeolite A imidazolate frameworks. Nat. Mater. 6, 501 (2007). https://doi.org/10.1038/nmat1927
R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa et al., High-Throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939 (2008). https://doi.org/10.1126/science.1152516
H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor et al., Designed synthesis of 3D covalent organic frameworks. Science 316, 268 (2007). https://doi.org/10.1126/science.1139915
F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe et al., A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570 (2009). https://doi.org/10.1021/ja8096256
C. Gropp, T. Ma, N. Hanikel, O.M. Yaghi, Design of higher valency in covalent organic frameworks. Science 370, eabd6406 (2020). https://doi.org/10.1126/science.abd6406
L. Peng, Q. Guo, C. Song, S. Ghosh, H. Xu et al., Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021). https://doi.org/10.1038/s41467-021-24842-x
Y. He, S. Xiang, B. Chen, A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570 (2011). https://doi.org/10.1021/ja2066016
M. Simard, D. Su, J.D. Wuest, Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696 (1991). https://doi.org/10.1021/ja00012a057
P. Brunet, M. Simard, J.D. Wuest, Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity. J. Am. Chem. Soc. 119, 2737 (1997). https://doi.org/10.1021/ja963905e
P. Li, Y. He, J. Guang, L. Weng, J.C.G. Zhao et al., A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols. J. Am. Chem. Soc. 136, 547 (2014). https://doi.org/10.1021/ja4129795
P. Li, Y. He, Y. Zhao, L. Weng, H. Wang et al., A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed. 54, 574 (2015). https://doi.org/10.1002/anie.201410077
H. Wang, B. Li, H. Wu, T.L. Hu, Z. Yao et al., A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963 (2015). https://doi.org/10.1021/jacs.5b05644
W. Yang, F. Yang, T.L. Hu, S.C. King, H. Wang et al., Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: permanent porosity and proton conduction. Cryst. Growth Des. 16, 5831 (2016). https://doi.org/10.1021/acs.cgd.6b00924
S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang et al., Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017). https://doi.org/10.1038/ncomms15356
H. Wang, Z. Bao, H. Wu, R.B. Lin, W. Zhou et al., Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chem. Commun. 53, 11150 (2017). https://doi.org/10.1039/C7CC06187K
M. O’Keeffe, Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38, 1215 (2009). https://doi.org/10.1039/B802802H
Z. Yao, B. Sánchez-Lengeling, N.S. Bobbitt, B.J. Bucior, S.G.H. Kumar et al., Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76 (2021). https://doi.org/10.1038/s42256-020-00271-1
H. Jiang, D. Alezi, M. Eddaoudi, A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466 (2021). https://doi.org/10.1038/s41578-021-00287-y
Z. Chen, K.O. Kirlikovali, P. Li, O.K. Farha, Reticular chemistry for highly porous metal–organic frameworks: The chemistry and applications. Acc. Chem. Res. 55, 579 (2022). https://doi.org/10.1021/acs.accounts.1c00707
Z. Chen, S.L. Hanna, L.R. Redfern, D. Alezi, T. Islamoglu et al., Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 386, 32 (2019). https://doi.org/10.1016/j.ccr.2019.01.017
D. Feng, T.F. Liu, J. Su, M. Bosch, Z. Wei et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015). https://doi.org/10.1038/ncomms6979
Q. Liu, Y. Song, Y. Ma, Y. Zhou, H. Cong et al., Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 141, 488 (2018). https://doi.org/10.1021/jacs.8b11230
V. Guillerm, D. Kim, J.F. Eubank, R. Luebke, X. Liu et al., A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141 (2014). https://doi.org/10.1039/C4CS00135D
H. Jiang, S.M. Moosavi, J. Czaban-Jóźwiak, B. Torre, A. Shkurenko et al., Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal-organic frameworks. Matter 6, 285 (2023). https://doi.org/10.1016/j.matt.2022.10.004
V. Guillerm, L. Lukasz, Y. Belmabkhout, A.J. Cairns, V. D’elia et al., Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673 (2014). https://doi.org/10.1038/nchem.1982
R. Xu, Y. Kang, W. Zhang, X. Zhang, B. Pan, Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61, e202115443 (2022). https://doi.org/10.1002/anie.202115443
X. Zhang, X. Shi, Q. Zhao, Y. Li, J. Wang et al., Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. Chem. Eng. J. 427, 131573 (2022). https://doi.org/10.1016/j.cej.2021.131573
M.M. Pan, Y. Ouyang, Y.L. Song, L.Q. Si, M. Jiang et al., Au3+-functionalized UiO-67 metal-organic framework nanops: O2•− and •OH generating nanozymes and their antibacterial functions. Small 18, 2200548 (2022). https://doi.org/10.1002/smll.202200548
D.K. Yoo, S.H. Jhung, Selective CO2 adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. J. Mater. Chem. A 10, 8856 (2022). https://doi.org/10.1039/D1TA09772E
H. Chen, X. Yuan, L. Jiang, H. Wang, H. Yu et al., Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Appl. Catal. B Environ. 302, 120823 (2022). https://doi.org/10.1016/j.apcatb.2021.120823
Z. Ai, L. Jiao, J. Wang, H.L. Jiang, Generation of hierarchical pores in metal–organic frameworks by introducing rigid modulator. CCS Chem. 4, 3705 (2022). https://doi.org/10.31635/ccschem.022.202201974
C.C. Lee, C.I. Chen, Y.T. Liao, K.C.W. Wu, C.C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715 (2019). https://doi.org/10.1002/advs.201801715
K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang et al., Ordered macro-microporous metal-organic framework single crystals. Science 359, 206 (2018). https://doi.org/10.1126/science.aao340
D.M. Proserpio, Polycatenation weaves a 3D web. Nat. Chem. 2, 435 (2010). https://doi.org/10.1038/nchem.674
Y.L. Li, E.V. Alexandrov, Q. Yin, L. Li, Z.B. Fang et al., Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 142, 7218 (2020). https://doi.org/10.1021/jacs.0c02406
J.Q. Zhao, L.L. Mao, G.H. Zhang, S.Z. Zhan, H. Xiao et al., A polycatenated hydrogen-bonded organic framework based on embraced macrocyclic building blocks for fluorescence detection of nitrobenzene in water. J. Mater. Chem. A 11, 4672 (2023). https://doi.org/10.1039/D2TA09379K
D.M. Chen, X.J. Zhang, Stepwise and hysteretic sorption of CO2 in polycatenated metal–organic frameworks. Cryst. Eng. Comm. 21, 4696 (2019). https://doi.org/10.1039/C9CE00760A
C. Hu, Y. Bai, M. Hou, Y. Wang, L. Wang et al., Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci. Adv. 6, 5785 (2020). https://doi.org/10.1126/sciadv.aax5785
K. Li, J. Yang, J. Gu, Hierarchically porous MOFs synthesized by soft-template strategies. Acc. Chem. Res. 55, 2235 (2022). https://doi.org/10.1021/acs.accounts.2c00262
D. Lyu, W. Xu, Y. Wang, Low-symmetry MOF-based patchy colloids and their precise linking via site-selective liquid bridging to form supra-colloidal and supra-framework architectures. Angew. Chem. Int. Ed. 134, e202115076 (2022). https://doi.org/10.1002/ange.202115076
K. Yang, Y. Cui, L. Wan, Q. Zhang, B. Zhang, MOF-derived magnetic-dielectric balanced Co@ ZnO@ N-doped carbon composite materials for strong microwave absorption. Carbon 190, 366 (2022). https://doi.org/10.1016/j.carbon.2022.01.032
J. Chen, Z. Zhu, G. Monge, W.N. Wang, Unraveling the role of operating pressure in the rapid formation of Cu-BDC MOF via a microdroplet approach. Chem. Eng. J. 447, 137544 (2022). https://doi.org/10.1016/j.cej.2022.137544
Z. Zheng, H.L. Nguyen, N. Hanikel, K.K.Y. Li, Z. Zhou et al., High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136 (2023). https://doi.org/10.1038/s41596-022-00756-w
J. Chen, Y. Li, The road to MOF-related functional materials and beyond: desire, design, decoration, and development. Chem. Rec. 16, 1456 (2016). https://doi.org/10.1002/tcr.201500304
X. Peng, P.M. Pelz, Q. Zhang, P. Chen, L. Cao et al., Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat. Commun. 13, 5197 (2022). https://doi.org/10.1038/s41467-022-32330-z
Y. Shen, T. Pan, P. Wu, J. Huang, H. Li et al., Regulating electronic status of platinum nanops by metal–organic frameworks for selective catalysis. CCS Chem. 3, 1607 (2021). https://doi.org/10.31635/ccschem.020.202000278
J. Klinowski, F.A.A. Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans. 40, 321 (2011). https://doi.org/10.1039/C0DT00708K
D. Prochowicz, K. Sokolowski, I. Justyniak, A. Kornowicz, D. Fairen-Jimenez et al., A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chem. Commun. 51, 4032 (2015). https://doi.org/10.1039/C4CC09917F
W. Zhao, P. Yan, H. Yang, M. Bahri, A.M. James et al., Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 1, 87 (2022). https://doi.org/10.1038/s44160-021-00005-0
F. Abbasloo, S.A. Khosravani, M. Ghaedi, K. Dashtian, E. Hosseini et al., Sonochemical-solvothermal synthesis of guanine embedded copper-based metal-organic framework (MOF) and its effect on oprD gene expression in clinical and standard strains of Pseudomonas aeruginosa. Ultrason. Sonochem. 42, 237 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.035
J.O. Kim, W.T. Koo, H. Kim, C. Park, T. Lee et al., Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat. Commun. 12, 4294 (2021). https://doi.org/10.1038/s41467-021-24571-1
S. Zhou, O. Shekhah, J. Jia, J. Czaban, P.M. Bhatt et al., Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882 (2021). https://doi.org/10.1038/s41560-021-00881-y
S.Q. Zhu, J.C. Shu, M.S. Cao, Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14, 7322 (2022). https://doi.org/10.1039/D2NR01024K
Y. Jiao, S. Cheng, F. Wu, X. Pan, A. Xie et al., MOF−Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Compos. Part B Eng. 211, 108643 (2021). https://doi.org/10.1016/j.compositesb.2021.108643
C. Zhang, L. Xin, J. Li, J. Cao, Y. Sun et al., Metal–organic framework (MOF)-based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy. Adv. Healthc. Mater. 11, 2101946 (2022). https://doi.org/10.1002/adhm.202101946
L. Du, B. Zhang, W. Deng, Y. Cheng, L. Xu et al., Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 12, 2200501 (2022). https://doi.org/10.1002/aenm.202200501
A.M. Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489 (2012). https://doi.org/10.1021/cg300552w
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626 (2006). https://doi.org/10.1039/B511962F
X. Wang, J. Yang, X. Shi, Z. Zhang, C. Yin et al., Electrosynthesis of ionic covalent organic frameworks for charge-selective separation of molecules. Small 18, 2107108 (2022). https://doi.org/10.1002/smll.202107108
S.H. Jhung, J.H. Lee, P.M. Forster, G. Férey, A.K. Cheetham et al., Microwave synthesis of hybrid inorganic–organic porous materials: phase-selective and rapid crystallization. Chem. Eur. J. 12, 7899 (2006). https://doi.org/10.1002/chem.200600270
B. Grenu, J. Torres, J. García-González, S. Muñoz-Pina, R. de Los Reyes et al., Microwave-assisted synthesis of covalent organic frameworks: a review. Chemsuschem 14, 208 (2021). https://doi.org/10.1002/cssc.202001865
A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. Cryst. Eng. Comm. 8, 211 (2006). https://doi.org/10.1039/B513750K
S.S.Y. Chui, S.M.F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148 (1999). https://doi.org/10.1126/science.283.5405.1148
P. Horcajada, S. Surblé, C. Serre, D.Y. Hong, Y.K. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 2820 (2007). https://doi.org/10.1039/B704325B
H.R. Abid, H. Tian, H.M. Ang, M.O. Tade, C.E. Buckley et al., Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 187, 415 (2012). https://doi.org/10.1016/j.cej.2012.01.104
J. Lü, C. Perez-Krap, M. Suyetin, N.H. Alsmail, Y. Yan et al., A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity. J. Am. Chem. Soc. 136, 12828 (2014). https://doi.org/10.1021/ja506577g
L. Xu, S.Y. Ding, J. Liu, J. Sun, W. Wang et al., Highly crystalline covalent organic frameworks from flexible building blocks. Chem. Commun. 52, 4706 (2016). https://doi.org/10.1039/C6CC01171C
J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Metal–organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater. 116, 727 (2008). https://doi.org/10.1016/j.micromeso.2008.04.033
N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204 (2009). https://doi.org/10.1021/cm802981m
K.M. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal− organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261 (2009). https://doi.org/10.1021/ja906198y
H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei et al., The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51, 12178 (2015). https://doi.org/10.1039/C5CC04680G
Z. Ni, R.I. Masel, Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394 (2006). https://doi.org/10.1021/ja0635231
T. Xing, Y. Lou, Q. Bao, J. Chen, Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation. Cryst. Eng. Comm. 16, 8994 (2014). https://doi.org/10.1039/C4CE00947A
H.Y. Cho, D.A. Yang, J. Kim, S.Y. Jeong, W.S. Ahn, CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35 (2012). https://doi.org/10.1016/j.cattod.2011.08.019
P.J. Beldon, L. Fábián, R.S. Stein, A. Thirumurugan, A.K. Cheetham et al., Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. 122, 9834 (2010). https://doi.org/10.1002/ange.201005547
W. Yuan, A.L. Garay, A. Pichon, R. Clowes, C.D. Wood et al., Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Cryst. Eng. Comm. 12, 4063 (2010). https://doi.org/10.1039/C0CE00486C
B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine et al., Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328 (2013). https://doi.org/10.1021/ja4017842
L. Xu, J. Xu, B. Shan, X. Wang, C. Gao, TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355 (2017). https://doi.org/10.1016/j.memsci.2016.12.039
W.K. Qin, D.H. Si, Q. Yin, X.Y. Gao, Q.Q. Huang et al., Reticular synthesis of hydrogen-bonded organic frameworks and their derivatives via mechanochemistry. Angew. Chem. Int. Ed. 134, e202202089 (2022). https://doi.org/10.1002/anie.202202089
R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels et al., Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580 (2009). https://doi.org/10.1021/cm900069f
S. Zhou, Y. Wei, L. Li, Y. Duan, Q. Hou et al., Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 4, 1393 (2018). https://doi.org/10.1126/sciadv.aau1393
N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans et al., High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. J. Mater. Chem. A 1, 5827 (2013). https://doi.org/10.1039/C3TA10419B
J. Feng, X.Y. Yan, Z.Y. Ji, T.F. Liu, R. Cao, Fabrication of lanthanide-functionalized hydrogen-bonded organic framework films for ratiometric temperature sensing by electrophoretic deposition. ACS Appl. Mater. Interfaces 12, 29854 (2020). https://doi.org/10.1021/acsami.0c08354
Y. Liu, Y. Wei, M. Liu, Y. Bai, X. Wang et al., Electrochemical synthesis of large area two-dimensional metal–organic framework films on copper anodes. Angew. Chem. Int. Ed. 60, 2887 (2021). https://doi.org/10.1002/anie.202012971
W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336 (2008). https://doi.org/10.1039/B814740J
Z.Q. Li, L.G. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63, 78 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465 (2012). https://doi.org/10.1039/C1EE02234B
H.Y. Cho, J. Kim, S.N. Kim, W.S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180 (2013). https://doi.org/10.1016/j.micromeso.2012.11.012
J. Kim, S.T. Yang, S.B. Choi, J. Sim, J. Kim et al., Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 21, 3070 (2011). https://doi.org/10.1039/C0JM03318A
S.T. Yang, J. Kim, H.Y. Cho, S. Kim, W.S. Ahn, Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2, 10179 (2012). https://doi.org/10.1039/C2RA21531D
Z.X. Cai, Y. Xia, Y. Ito, M. Ohtani, H. Sakamoto et al., General synthesis of MOF nanotubes via hydrogen-bonded organic frameworks toward efficient hydrogen evolution electrocatalysts. ACS Nano 16, 20851 (2022). https://doi.org/10.1021/acsnano.2c08245
Z. Pu, T. Liu, G. Zhang, Z. Chen, D.S. Li et al., General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 12, 2200293 (2022). https://doi.org/10.1002/aenm.202200293
H. Jiang, Q. Wang, H. Wang, Y. Chen, M. Zhang, Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 80, 24 (2016). https://doi.org/10.1016/j.catcom.2016.03.013
S. Zhou, O. Shekhah, A. Ramírez, P. Lyu, E. Abou-Hamad et al., Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706 (2022). https://doi.org/10.1038/s41586-022-04763-5
Z. Qin, H. Li, X. Yang, L. Chen, Y. Li et al., Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Appl. Catal. B Environ. 307, 121163 (2022). https://doi.org/10.1016/j.apcatb.2022.121163
K. Li, Y. Zhao, J. Yang, J. Gu, Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat. Commun. 13, 1879 (2022). https://doi.org/10.1038/s41467-022-29535-7
G. Lu, H. Wei, C. Shen, F. Zhou, M. Zhang et al., Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS Appl. Mater. Interfaces 14, 45476 (2022). https://doi.org/10.1021/acsami.2c13613
M.H. Pham, G.T. Vuong, A.T. Vu, T.O. Do, Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals. Langmuir 27, 15261 (2011). https://doi.org/10.1021/la203570h
K. Li, J. Yang, R. Huang, S. Lin, J. Gu, Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and Hofmeister ion. Angew. Chem. Int. Ed. 132, 14228 (2020). https://doi.org/10.1002/ange.202006124
J. Yang, K. Li, J. Gu, Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA. ACS Mater. Lett. 4, 385 (2022). https://doi.org/10.1021/acsmaterialslett.1c00797
A.K. Bindra, D. Wang, Y. Zhao, Metal-organic frameworks meet polymers: From synthesis strategies to healthcare applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300700
Y. Wu, H. Du, P. Li, X. Zhang, Y. Yin et al., Heterogeneous electrocatalysis of carbon dioxide to methane. Methane 2, 148 (2023). https://doi.org/10.3390/methane2020012
N. Nagarjun, M. Jacob, P. Varalakshmi, A. Dhakshinamoorthy, UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Mol. Catal. 499, 111277 (2021). https://doi.org/10.1016/j.mcat.2020.111277
H. Chen, C. Liu, W. Guo, Z. Wang, Y. Shi et al., Functionalized UiO-66 (Ce) for photocatalytic organic transformation: the role of active sites modulated by ligand functionalization. Catal. Sci. Technol. 12, 1812 (2022). https://doi.org/10.1039/D1CY02344F
N. Wang, X. Li, M.K. Hu, W. Wei, S.H. Zhou et al., Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B Environ. 316, 121667 (2022). https://doi.org/10.1016/j.apcatb.2022.121667
Y. Deng, Q. Zhang, C. Shi, R. Toyoda, D.H. Qu et al., Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Sci. Adv. 8, eabk3286 (2022). https://doi.org/10.1126/sciadv.abk328
X. Li, J. Wang, X. Liu, L. Liu, D. Cha et al., Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 141, 12021 (2019). https://doi.org/10.1021/jacs.9b04896
S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
C. Toncelli, R.I. Malini, D. Jankowska, F. Spano, H. Cölfen et al., Optical glucose sensing using ethanolamine–polyborate complexes. J. Mater. Chem. B 6, 816 (2018). https://doi.org/10.1039/C7TB01790A
L. Liu, N. Wang, C. Zhu, X. Liu, Y. Zhu et al., Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819 (2020). https://doi.org/10.1002/anie.201909834
D. Sun, L.W. Wong, H.Y. Wong, K.H. Lai, L. Ye et al., Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design. Angew. Chem. Int. Ed. 135, e202216008 (2023). https://doi.org/10.1002/ange.202216008
E. Bello-Jurado, D. Schwalbe-Koda, M. Nero, C. Paris, T. Uusimäki et al., Tunable CHA/AEI zeolite intergrowths with a priori biselective organic structure-directing agents: Controlling enrichment and implications for selective catalytic reduction of NOx. Angew. Chem. Int. Ed. 61, e202201837 (2022). Doi: https://doi.org/10.1002/anie.202201837
M. Ma, L. Wang, H. Wang, H. Xiong, X. Chen et al., Real-space imaging of the node–linker coordination on the interfaces between self-assembled metal–organic frameworks. Nano Lett. 22, 9928 (2022). https://doi.org/10.1021/acs.nanolett.2c03375
B. Shen, H. Wang, H. Xiong, X. Chen, E.G. Bosch et al., Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature 607, 703 (2022). https://doi.org/10.1038/s41586-022-04876-x
B. Shen, X. Chen, K. Shen, H. Xiong, F. Wei, Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 11, 2692 (2020). https://doi.org/10.1038/s41467-020-16531-y
G. Li, H. Zhang, Y. Han, 4D-STEM ptychography for electron-beam-sensitive materials. ACS Cent. Sci. 8, 1579 (2022). https://doi.org/10.1021/acscentsci.2c01137
K.C. Bustillo, S.E. Zeltmann, M. Chen, J. Donohue, J. Ciston et al., 4D-STEM of beam-sensitive materials. Acc. Chem. Res. 54, 2543 (2021). https://doi.org/10.1021/acs.accounts.1c00073
C. Ophus, Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563 (2019). https://doi.org/10.1017/S1431927619000497
J.W. Osterrieth, J. Rampersad, D. Madden, N. Rampal, L. Skoric et al., How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, 2201502 (2022). https://doi.org/10.1002/adma.202201502
L. Yan, Y. Zhao, S. Zhang, E. Guo, C. Han et al., Controllable exfoliation of MOF-derived Van der waals superstructure into ultrathin 2D B/N Co-doped porous carbon nanosheets: a superior catalyst for ambient ammonia electrosynthesis. Small 19, 2300239 (2023). https://doi.org/10.1002/smll.202300239
X. Gu, G. Han, Q. Yang, D. Liu, Confinement–unconfinement transformation of ILs in IL@MOF composite with multiple adsorption sites for efficient water capture and release. Adv. Mater. Interfaces 9, 2102354 (2022). https://doi.org/10.1002/admi.202102354
M.A. Molina, N.R. Habib, I. Díaz, M. Sánchez-Sánchez, Surfactant-induced hierarchically porous MOF-based catalysts prepared under sustainable conditions and their ability to remove bisphenol A from aqueous solutions. Catal. Today 394, 117 (2022). https://doi.org/10.1016/j.cattod.2021.10.019
F. Pederzoli, G. Tosi, M.A. Vandelli, D. Belletti, F. Forni et al., Protein corona and nanops: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1467 (2017). https://doi.org/10.1002/wnan.1467
V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of Nanop Tracking Analysis (NTA) by NanoSight for the measurement of nanops and protein aggregates. Pharm. Res. 27, 796 (2010). https://doi.org/10.1007/s11095-010-0073-2
F. Caputo, J. Clogston, L. Calzolai, M. Rösslein, A. Prina-Mello, Measuring p size distribution of nanop enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Controlled Release 299, 31 (2019). https://doi.org/10.1016/j.jconrel.2019.02.030
R. Vogel, A.K. Pal, S. Jambhrunkar, P. Patel, S.S. Thakur et al., High-resolution single p zeta potential characterization of biological nanops using tunable resistive pulse sensing. Sci. Rep. 7, 17479 (2017). https://doi.org/10.1038/s41598-017-14981-x
S. Bhattacharjee, DLS and zeta potential – What they are and what they are not? J. Controlled Release 235, 337 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017
P.M. Carvalho, M.R. Felício, N.C. Santos, S. Gonçalves, M.M. Domingues, Application of light scattering techniques to nanop characterization and development. Front. Chem. 6, 237 (2018). https://doi.org/10.3389/fchem.2018.00237
R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic press, 2013). pp. 59–74
M. Liu, C. Shang, T. Zhao, H. Yu, Y. Kou et al., Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework. Nat. Commun. 14, 1211 (2023). https://doi.org/10.1038/s41467-023-36832-2
L. Liu, D. Zhang, Y. Zhu, Y. Han, Bulk and local structures of metal–organic frameworks unravelled by high-resolution electron microscopy. Commun. Chem. 3, 99 (2020). https://doi.org/10.1038/s42004-020-00361-6
K. Alt, F. Carraro, E. Jap, M. Linares-Moreau, R. Riccò et al., Self-assembly of oriented antibody-decorated metal–organic framework nanocrystals for active-targeting applications. Adv. Mater. 34, 2106607 (2022). https://doi.org/10.1002/adma.202106607
N. Yanai, M. Sindoro, J. Yan, S. Granick, Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J. Am. Chem. Soc. 135, 34 (2013). https://doi.org/10.1021/ja309361d
J. Cao, W. Ma, K. Lyu, L. Zhuang, H. Cong et al., Twist and sliding dynamics between interpenetrated frames in Ti-MOF revealing high proton conductivity. Chem. Sci. 11, 3978 (2020). https://doi.org/10.1039/C9SC06500H
S. Yao, Y. Jiao, C. Lv, Y. Kong, S. Ramakrishna et al., Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis. J. Colloid Interface Sci. 623, 1111 (2022). https://doi.org/10.1016/j.jcis.2022.04.126
B. Cui, G. Fu, Process of metal–organic framework (MOF)/covalent–organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 14, 1679 (2022). https://doi.org/10.1039/D1NR07614K
S. Yang, V.V. Karve, A. Justin, I. Kochetygov, J. Espin et al., Enhancing MOF performance through the introduction of polymer guests. Coord. Chem. Rev. 427, 213525 (2021). https://doi.org/10.1016/j.ccr.2020.213525
H.L. Nguyen, F. Gándara, H. Furukawa, T.L. Doan, K.E. Cordova et al., A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. J. Am. Chem. Soc. 138, 4330 (2016). https://doi.org/10.1021/jacs.6b01233
H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng et al., MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021). https://doi.org/10.1038/s41467-020-20298-7
Y. Peng, M. Zhao, B. Chen, Z. Zhang, Y. Huang et al., Hybridization of MOFs and COFs: a new strategy for construction of MOF@ COF core–shell hybrid materials. Adv. Mater. 30, 1705454 (2018). https://doi.org/10.1002/adma.201705454
F.M. Zhang, J.L. Sheng, Z.D. Yang, X.J. Sun, H.L. Tang et al., Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 57, 12106 (2018). https://doi.org/10.1002/anie.201806862
L. Feng, K.Y. Wang, X.L. Lv, T.H. Yan, J.R. Li et al., Modular total synthesis in reticular chemistry. J. Am. Chem. Soc. 142, 3069 (2020). https://doi.org/10.1021/jacs.9b12408
F. Li, D. Wang, Q.J. Xing, G. Zhou, S.S. Liu et al., Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B Environ. 243, 621 (2019). https://doi.org/10.1016/j.apcatb.2018.10.043
B.T. Liu, X.H. Pan, D.Y. Zhang, R. Wang, J.Y. Chen et al., Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem. Int. Ed. 60, 25701 (2021). https://doi.org/10.1002/anie.202110028
J. Wang, Y. Mao, R. Zhang, Y. Zeng, C. Li et al., In situ assembly of hydrogen-bonded organic framework on metal–organic framework: An effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022). https://doi.org/10.1002/advs.202204036
C. Yu, H. Li, Y. Wang, J. Suo, X. Guan et al., Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew. Chem. Int. Ed. 61, e202117101 (2022). https://doi.org/10.1002/anie.202117101
Z. Ji, R. Freund, C.S. Diercks, P. Hirschle, O.M. Yaghi et al., From molecules to frameworks to superframework crystals. Adv. Mater. 33, 2103808 (2021). https://doi.org/10.1002/adma.202103808
B. Lerma-Berlanga, C.R. Ganivet, N. Almora-Barrios, R. Vismara, J.A. Navarro et al., Tetrazine linkers as plug-and-play tags for general metal-organic framework functionalization and C60 Conjugation. Angew. Chem. Int. Ed. 61, e202208139 (2022). https://doi.org/10.1002/anie.202208139
B. Yu, L. Li, S. Liu, H. Wang, H. Liu et al., Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem. Int. Ed. 133, 9065 (2021). https://doi.org/10.1002/ange.202016710
F. Haase, P. Hirschle, R. Freund, S. Furukawa, Z. Ji et al., Beyond frameworks: Structuring reticular materials across nano-, meso-, and bulk regimes. Angew. Chem. Int. Ed. 59, 22350 (2020). https://doi.org/10.1002/anie.201914461
G. Cheng, A. Zhang, Z. Zhao, Z. Chai, B. Hu et al., Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 66, 19 (2021). https://doi.org/10.1016/j.scib.2021.05.012
Y. Jiang, Y. Hu, B. Luan, L. Wang, R. Krishna et al., Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF. Nat. Commun. 14, 401 (2023). https://doi.org/10.1038/s41467-023-35984-5
Z. Li, J. Liu, L. Feng, Y. Pan, J. Tang et al., Monolithic MOF-based metal–insulator–metal resonator for filtering and sensing. Nano Lett. 321, 2 (2023). https://doi.org/10.1021/acs.nanolett.2c04428
H. Sepehrmansourie, H. Alamgholiloo, N.N. Pesyan, M.A. Zolfigol, A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 321, 122082 (2023). https://doi.org/10.1016/j.apcatb.2022.122082
I. Hussain, M.Z. Ansari, C. Lamiel, T. Hussain, M.S. Javed et al., In situ grown heterostructure based on MOF-derived carbon containing n-type Zn–In–S and dry-oxidative p-Type CuO as pseudocapacitive electrode materials. ACS Energy Lett. 8, 4 (2023). https://doi.org/10.1021/acsenergylett.3c00221
S. Bao, Q. Tan, S. Wang, J. Guo, K. Lv et al., TpBD COF@ZnIn2S4 nanosheets: A novel S-scheme heterojunction with enhanced photoreactivity for hydrogen production. Appl. Catal. B Environ. 330, 122624 (2023). https://doi.org/10.1016/j.apcatb.2023.122624
Y.J. Chen, Y.Y. Wen, W.H. Li, Z.H. Fu, G.E. Wang et al., TiO2@COF nanowire arrays: a “Filter Amplifier” heterojunction strategy to reverse the redox nature. Nano Lett. 13, 8 (2023). https://doi.org/10.1021/acs.nanolett.3c00804
K. Van Der Wijst, F. Bosello, S. Dasgupta, L. Drouet, J. Emmerling et al., New damage curves and multimodel analysis suggest lower optimal temperature. Nat. Clim. Change 13, 434 (2023). https://doi.org/10.1038/s41558-023-01636-1
Y. Yang, L. Li, R.B. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933 (2021). https://doi.org/10.1038/s41557-021-00740-z
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705 (2003). https://doi.org/10.1038/nature01650
A.V. Anyushin, A. Kondinski, T.N. Parac-Vogt, Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem. Soc. Rev. 49, 382 (2020). https://doi.org/10.1039/C8CS00854J
H. Furukawa, J. Kim, K.E. Plass, O.M. Yaghi, Crystal structure, dissolution, and deposition of a 5 nm functionalized metal−organic great rhombicuboctahedron. J. Am. Chem. Soc. 128, 26 (2006). https://doi.org/10.1021/ja062491e
H.L. Nguyen, Reticular materials for artificial photoreduction of CO2. Adv. Energy Mater. 10, 46 (2020). https://doi.org/10.1002/aenm.202002091
C.E. Diesendruck, N.R. Sottos, J.S. Moore, S.R. White, Biomimetic self-healing. Angew. Chem. Int. Ed. 54, 36 (2015). https://doi.org/10.1002/anie.201500484
G.J. Parker, Biomimetically-inspired photonic nanomaterials. J. Mater. Sci. Mater. Electron. 21, 965 (2010). https://doi.org/10.1007/s10854-010-0164-1
P.O. Saboe, E. Conte, S. Chan, H. Feroz, B. Ferlez et al., Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces. J. Mater. Chem. A 4, 15457 (2016). https://doi.org/10.1039/C6TA07148A
X. Ma, A.C. Hortelão, T. Patino, S. Sanchez, Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 10 (2016). https://doi.org/10.1021/acsnano.6b04108
T. Man, C. Xu, X.Y. Liu, D. Li, C.K. Tsung et al., Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 13, 305 (2022). https://doi.org/10.1038/s41467-022-27983-9
H. Cao, Y. Gao, H. Jia, L. Zhang, J. Liu et al., Macrophage-membrane-camouflaged nonviral gene vectors for the treatment of multidrug-resistant bacterial sepsis. Nano Lett. 22, 19 (2022). https://doi.org/10.1021/acs.nanolett.2c02560
W. Wang, L. Zhang, Q. Deng, Z. Liu, J. Ren et al., Yeast@MOF bioreactor as a tumor metabolic symbiosis disruptor for the potent inhibition of metabolically heterogeneous tumors. Nano Today 42, 101331 (2022). https://doi.org/10.1016/j.nantod.2021.101331
G. Chen, X. Fang, Q. Chen, J. Zhang, Z. Zhong et al., Boronic acid decorated defective metal–organic framework nanoreactors for high-efficiency carbohydrates separation and labeling. Adv. Funct. Mater. 27, 38 (2017). https://doi.org/10.1002/adfm.201702126
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 6149 (2013). https://doi.org/10.1126/science.1230444
P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa et al., Application of metal and metal oxide nanops@MOFs. Coord. Chem. Rev. 307, 237 (2016). https://doi.org/10.1016/j.ccr.2015.08.002
M. Liu, M. Yang, X. Wan, Z. Tang, L. Jiang et al., From nanoscopic to macroscopic materials by stimuli-responsive nanop aggregation. Adv. Mater. 35, 20 (2022). https://doi.org/10.1002/adma.202208995
X. Yan, H. Peng, Y. Xiang, J. Wang, L. Yu et al., Recent advances on host–guest material systems toward organic room temperature phosphorescence. Small 18, 2104073 (2022). https://doi.org/10.1002/smll.202104073
Y. Dong, J. Zhang, Y. Yang, J. Wang, B. Hu et al., Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 97, 107184 (2022). https://doi.org/10.1016/j.nanoen.2022.107184
L. Wei, T. Sun, Z. Shi, Z. Xu, W. Wen et al., Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat. Commun. 13, 7936 (2022). https://doi.org/10.1038/s41467-022-35674-8
F. Xie, H. Wang, J. Li, Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter 5, 8 (2022). https://doi.org/10.1016/j.matt.2022.06.043
W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch et al., Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 36 (2019). https://doi.org/10.1021/jacs.9b06589
S.H. Goh, H.S. Lau, W.F. Yong, Metal–organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small 18, 20 (2022). https://doi.org/10.1002/smll.202107536
P. Wied, F. Carraro, J.M. Bolivar, C.J. Doonan, P. Falcaro et al., Combining a genetically engineered oxidase with hydrogen-bonded organic frameworks (HOFs) for highly efficient biocomposites. Angew. Chem. Int. Ed. 61, 16 (2022). https://doi.org/10.1002/anie.202117345
K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
S. Huang, G. Chen, G. Ouyang, Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem. Soc. Rev. 51, 6824 (2022). https://doi.org/10.1039/D1CS01011E
G. Chen, S. Huang, X. Kou, F. Zhu, G. Ouyang, Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement. Angew. Chem. Int. Ed. 132, 33 (2020). https://doi.org/10.1002/ange.202005529
M. Rabe, D. Verdes, S. Seeger, Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87 (2011). https://doi.org/10.1016/j.cis.2010.12.007
R. Greifenstein, T. Ballweg, T. Hashem, E. Gottwald, D. Achauer et al., MOF-hosted enzymes for continuous flow catalysis in aqueous and organic solvents. Angew. Chem. Int. Ed. 61, 18 (2022). https://doi.org/10.1002/anie.202117144
S. Wang, M. Kai, Y. Duan, Z. Zhou, R.H. Fang et al., Membrane cholesterol depletion enhances enzymatic activity of cell-membrane-coated metal-organic-framework nanops. Angew. Chem. Int. Ed. 134, 24 (2022). https://doi.org/10.1002/ange.202203115
R. Tian, H. Ma, W. Ye, Y. Li, S. Wang et al., Se-Containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 32, 36 (2022). https://doi.org/10.1002/adfm.202204025
T. Zoungrana, G.H. Findenegg, W. Norde, Structure, stability, and activity of adsorbed enzymes. J. Colloid Interface Sci. 190, 437 (1997). https://doi.org/10.1006/jcis.1997.4895
W. Liang, H. Xu, F. Carraro, N.K. Maddigan, Q. Li et al., Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J. Am. Chem. Soc. 141, 6 (2019). https://doi.org/10.1021/jacs.8b10302
R.A. Sperling, W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanops. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 368, 1915 (2010). https://doi.org/10.1098/rsta.2009.0273
M. Yan, K. Liang, D. Zhao, B. Kong, Core-shell structured micro-nanomotors: construction, shell functionalization, applications, and perspectives. Small 18, 2102887 (2022). https://doi.org/10.1002/smll.202102887
L.S. Lin, J. Song, H.H. Yang, X. Chen, Yolk-Shell nanostructures: design, synthesis, and biomedical applications. Adv. Mater. 30, 1704639 (2018). https://doi.org/10.1002/adma.201704639
S. Wang, W. Morris, Y. Liu, C.M. McGuirk, Y. Zhou et al., Surface-specific functionalization of nanoscale metal–organic frameworks. Angew. Chem. Int. Ed. 54, 49 (2015). https://doi.org/10.1002/anie.201506888
S. Wang, C.M. McGuirk, A. d’Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanops. Adv. Mater. 30, 37 (2018). https://doi.org/10.1002/adma.201800202
W. Han, Y. Chen, Y. Jiao, S. Liang, W. Li et al., ZIF-derived frame-in-cage hybrids of ZnSe–CdSe embedded within a N-doped carbon matrix for efficient photothermal conversion of CO2 into fuel. J. Mater. Chem. A 10, 17642 (2022). https://doi.org/10.1039/D2TA03219H
S. Zhang, W. Xia, Q. Yang, Y.V. Kaneti, X. Xu et al., Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 396, 125154 (2020). https://doi.org/10.1016/j.cej.2020.125154
J.-F. Qin, J.-Y. Xie, N. Wang, B. Dong, T.-S. Chen et al., Surface construction of loose Co(OH)2 shell derived from ZIF-67 nanocube for efficient oxygen evolution. J. Colloid Interface Sci. 562, 279 (2020). https://doi.org/10.1016/j.jcis.2019.12.033
S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32, 31 (2020). https://doi.org/10.1002/adma.202002235
B.T. Liu, X.H. Pan, D.Y. Nie, X.J. Hu, E.P. Liu et al., Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 32, 48 (2020). https://doi.org/10.1002/adma.202005912
M.M. Modena, B. Rühle, T.P. Burg, S. Wuttke, Nanop characterization: nanop characterization: what to measure? Adv. Mater. 31, 32 (2019). https://doi.org/10.1002/adma.201970226
B. Fadeel, L. Farcal, B. Hardy, S. Vázquez-Campos, D. Hristozov et al., Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537 (2018). https://doi.org/10.1038/s41565-018-0185-0
M. Faria, M. Börnmalm, K.J. Thurecht, S.J. Kent, R.G. Parton et al., Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777 (2018). https://doi.org/10.1038/s41565-018-0246-4
B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J.M. De La Fuente et al., Interfacing engineered nanops with biological systems: Anticipating adverse nano–bio interactions. Small 9, 1573 (2013). https://doi.org/10.1002/smll.201201229
C. Corbo, R. Molinaro, A. Parodi, N.E. Toledano Furman, F. Salvatore et al., The impact of nanop protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81 (2016). https://doi.org/10.2217/nnm.15.188
J.T. Buchman, M.J. Gallagher, C.-T. Yang, X. Zhang, M.O. Krause et al., Research highlights: examining the effect of shape on nanop interactions with organisms. Environ. Sci. Nano 3, 696 (2016). https://doi.org/10.1039/C6EN90015A
E. Bellido, T. Hidalgo, M.V. Lozano, M. Guillevic, R. Simón-Vázquez et al., Heparin-engineered mesoporous iron metal-organic framework nanops: toward stealth drug nanocarriers. Adv. Healthc. Mater. 4, 8 (2015). https://doi.org/10.1002/adhm.201400755
W.J. Rieter, K.M. Pott, K.M. Taylor, W. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 35 (2008). https://doi.org/10.1021/ja803383k
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172 (2010). https://doi.org/10.1038/nmat2608
P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin et al., Metal–organic frameworks in biomedicine. Chem. Rev. 112, 2 (2012). https://doi.org/10.1021/cr200256v
S. Ahmadi, V. Jajarmi, M. Ashrafizadeh, A. Zarrabi, J.T. Haponiuk, M.R. Saeb et al., Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. J. Hazard. Mater. 436, 129259 (2022). https://doi.org/10.1016/j.jhazmat.2022.129259
R. Singh, A. Prasad, B. Kumar, S. Kumari, R.K. Sahu et al., Potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect 7, 36 (2022). https://doi.org/10.1002/slct.202201288
R. Ettlinger, U. Lächelt, R. Gref, P. Horcajada, T. Lammers et al., Toxicity of metal–organic framework nanops: from essential analyses to potential applications. Chem. Soc. Rev. 51, 464 (2022). https://doi.org/10.1039/D1CS00918D
G. Chen, S. Huang, X. Kou, S. Wei, S. Huang et al., A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks. Angew. Chem. Int. Ed. 58, 5 (2019). https://doi.org/10.1002/anie.201813060
D. Wang, D. Jana, Y. Zhao, Metal–organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 53, 1389 (2020). https://doi.org/10.1021/acs.accounts.0c00268
Y. Shu, Q. Ye, T. Dai, Q. Xu, X. Hu, Encapsulation of luminescent guests to construct luminescent metal–organic frameworks for chemical sensing. ACS Sens. 6, 641 (2021). https://doi.org/10.1021/acssensors.0c02562
Q. Zhao, Z. Gong, Z. Li, J. Wang, J. Zhang et al., Target reprogramming lysosomes of CD8+ T cells by a mineralized metal–organic framework for cancer immunotherapy. Adv. Mater. 33, 17 (2021). https://doi.org/10.1002/adma.202100616
I. Abánades Lázaro, C.J. Wells, R.S. Forgan, Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 132, 13 (2020). https://doi.org/10.1002/ange.201915848
X. Dai, Y. Chen, Computational biomaterials: computational simulations for biomedicine. Adv. Mater. 35, 2204798 (2023). https://doi.org/10.1002/adma.202204798
M. Busch, M.M. Hoeper, C. von Kaisenberg, T. Stueber, K. Stahl, Covid-19 associated ARDS in pregnant women and timing of delivery: a single center experience. Crit. Care 26, 275 (2022). https://doi.org/10.1186/s13054-022-04145-3
Y. Deng, Y. Wang, X. Xiao, B.J. Saucedo, Z. Zhu et al., Progress in hybridization of covalent organic frameworks and metal–organic frameworks. Small 18, 2202928 (2022). https://doi.org/10.1002/smll.202202928
P. Gao, T. Zheng, B. Cui, X. Liu, W. Pan et al., Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chem. Commun. 57, 13309 (2021). https://doi.org/10.1039/D1CC04414A
X. Zhang, Y. Lu, D. Jia, W. Qiu, X. Ma et al., Acidic microenvironment responsive polymeric MOF-based nanops induce immunogenic cell death for combined cancer therapy. J. Nanobiotechnol. 19, 455 (2021). https://doi.org/10.1186/s12951-021-01217-4
D. Yu, H. Zhang, Z. Liu, C. Liu, X. Du et al., Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 134, e202201485 (2022). https://doi.org/10.1002/ange.202201485
Q. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lü et al., An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed. 130, e201800354 (2018). https://doi.org/10.1002/ange.201800354
M. Ding, W. Liu, R. Gref, Nanoscale MOFs: from synthesis to drug delivery and theranostics applications. Adv. Drug Deliv. Rev. 190, 114496 (2022). https://doi.org/10.1016/j.addr.2022.114496
H. Song, J. Wang, B. Xiong, J. Hu, P. Zeng et al., Biologically safe, versatile, and smart bismuthene functionalized with a drug delivery system based on red phosphorus quantum dots for cancer theranostics. Angew. Chem. Int. Ed. 134, e2117679 (2022). https://doi.org/10.1002/ange.202117679
X. Wen, R. Zhang, Y. Hu, L. Wu, H. Bai et al., Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat. Commun. 14, 800 (2023). https://doi.org/10.1038/s41467-023-36469-1
A.C. Mckinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 36 (2010). https://doi.org/10.1002/anie.201000048
L.-G. Ding, S. Wang, B.-J. Yao, W.-X. Wu, J.-L. Kan et al., Covalent organic framework based multifunctional self-sanitizing face masks. J. Mater. Chem. A 10, 3346 (2022). https://doi.org/10.1039/D1TA08743F
C. Bertram, G. Luderer, F. Creutzig, N. Bauer, F. Ueckerdt et al., COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Change 11, 193 (2021). https://doi.org/10.1038/s41558-021-00987-x
J.D. Hughes, A reality check on the shale revolution. Nature 494, 307 (2013). https://doi.org/10.1038/494307a
T.E. Rufford, S. Smart, G.C. Watson, B.F. Graham, J. Boxall et al., The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94, 123 (2012). https://doi.org/10.1016/j.petrol.2012.06.016
G. Nazir, A. Rehman, S. Hussain, S. Aftab, K. Heo et al., Recent advances and reliable assessment of solid-state materials for hydrogen storage: a step forward toward a sustainable H2 economy. Adv. Sustain. Syst. 6, 2200276 (2022). https://doi.org/10.1002/adsu.202200276
E. Klontzas, E. Tylianakis, G.E. Froudakis, Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett. 10, 452 (2010). https://doi.org/10.1021/nl903068a
Y. Pramudya, J.L. Mendoza-Cortes, Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0–700 bar at 298 K. J. Am. Chem. Soc. 138, 46 (2016). https://doi.org/10.1021/jacs.6b0880