Theoretical and Experimental Sets of Choice Anode/Cathode Architectonics for High-Performance Full-Scale LIB Built-up Models
Corresponding Author: S. A. El‑Safty
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 84
Abstract
To control the power hierarchy design of lithium-ion battery (LIB) built-up sets for electric vehicles (EVs), we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models. As primary structural tectonics, heterogeneous composite superstructures of full-cell-LIB (anode//cathode) electrodes were designed in closely packed flower agave rosettes TiO2@C (FRTO@C anode) and vertical-star-tower LiFePO4@C (VST@C cathode) building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways. The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements, in-to-out interplay electron dominances, and electron/charge cloud distributions. This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB–electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities. Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models. The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity (~ 94.2%), an average Coulombic efficiency of 99.85% after 2000 cycles at 1 C, and a high energy density of 127 Wh kg−1, thereby satisfying scale-up commercial EV requirements.
Highlights:
1 Modulation of 3D super-scalable hierarchal anode/cathode models as choice architectonics into a full-scale LIB design.
2 The scalable architectures dynamically provide effective diffusion gateways to guarantee excellent specific LIB performance.
3 The DFT theoretical surface–surface electronic and charge map analyses confirmed the superiority of choice anode/cathode architectonics in full-scale LIB built-up models.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi et al., A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1081 (2019). https://doi.org/10.1038/s41467-019-09061-9
- J. Zhang, B. Sun, X. Huang, S. Chen, G. Wang, Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014). https://doi.org/10.1038/srep06007
- P. Goel, M.K. Gupta, R. Mittal, S. Rols, S.J. Patwe et al., Phonons, lithium diffusion and thermodynamics of LiMPO4 (M = Mn, Fe). J. Mater. Chem. A 2, 14729–14738 (2014). https://doi.org/10.1039/C4TA01291G
- S. Li, Q. Wu, D. Zhang, Z. Liu, Y. He, Z.L. Wang, C. Sun, Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy 56, 555–562 (2019). https://doi.org/10.1016/j.nanoen.2018.11.070
- L.S. Gómez, I. de Meatza, M.I. Martín, M. Bengoechea, I. Cantero, M.E. Rabanal, Structural and electrochemical properties of lithium iron phosphates synthesized by spray pyrolysis. Electrochim. Acta 55, 2805–2809 (2010). https://doi.org/10.1016/j.electacta.2009.12.042
- T.V.S.L. Satyavani, A.S. Kumar, P.S.V. Subba Rao, Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19(1), 178–188 (2016). https://doi.org/10.1016/j.jestch.2015.06.002
- C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009
- W. Zhang, Y. Fu, W. Liu, L. Lim, X. Wang, A. Yu, A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 57, 48–56 (2019). https://doi.org/10.1016/j.nanoen.2018.12.005
- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997). https://doi.org/10.1149/1.1837571
- D. Chen, W. Wei, R. Wang, X.F. Lang, Y. Tian, L. Guo, Facile synthesis of 3D hierarchical foldaway-lantern-like LiMnPO4 by nanoplate self-assembly, and electrochemical performance for Li-ion batteries. Dalton Trans. 41, 8822–8828 (2012). https://doi.org/10.1039/c2dt30630a
- J.N. Zhu, W.C. Li, F. Cheng, A.H. Lu, Synthesis of LiMnPO4/C with superior performance as Li-ion battery cathodes by a two-stage microwave solvothermal process. J. Mater. Chem. A 3, 13920–13925 (2015). https://doi.org/10.1039/C5TA02653A
- J. Yoshida, M. Stark, J. Holzbock, N. Hüsing, S. Nakanishi, H. Iba, H. Abe, M. Naito, Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J. Power Sour. 226, 122–126 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.081
- V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, LiMnPO4—a next generation cathode material for lithium-ion batteries. J. Mater. Chem. A 1, 3518–3539 (2013). https://doi.org/10.1039/c2ta01393b
- S.-W. Kim, J. Kim, H. Gwon, K. Kang, Phase stability study of Li1−xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J. Electrochem. Soc. 156, A635–A638 (2009). https://doi.org/10.1149/1.3138705
- S. Kobayashi, A. Kuwabara, C.A.J. Fisher, Y. Ukyo, Y. Ikuhara, Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation. Nat. Commun. 9(1), 2863 (2018). https://doi.org/10.1038/s41467-018-05241-1
- M. Zhang, N. Garcia-Araez, A.L. Hector, Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14483–14517 (2018). https://doi.org/10.1039/C8TA04063J
- M. Konarova, I. Taniguchi, Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sour. 195, 3661–3667 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.147
- Y. Jin, X. Tang, Y. Wang, W. Dang, J. Huang, X. Fang, High-tap density LiFePO4 microsphere developed by combined computational and experimental approaches. CrystEngComm 20, 6695–6703 (2018). https://doi.org/10.1039/C8CE00894A
- Y. Jiang, R. Tian, H. Liu, J. Chen, X. Tan et al., Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high-power lithium-ion batteries. Nano Res. 8, 3803–3814 (2015). https://doi.org/10.1007/s12274-015-0879-7
- Y. Xia, M. Yoshio, H. Noguchi, Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochim. Acta 52, 240–245 (2006). https://doi.org/10.1016/j.electacta.2006.05.002
- P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7, 741–747 (2008). https://doi.org/10.1038/nmat2245
- K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 19, 19605–19610 (2009). https://doi.org/10.1039/B817242K
- J. Liu, J. Wang, X. Yan, X. Zhang, G. Yang, A.F. Jalbout, R. Wang, Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 54, 5656–5659 (2009). https://doi.org/10.1016/j.electacta.2009.05.003
- G. Liang, L. Wang, X. Ou, X. Zhao, S. Xu, Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. J. Power Sour. 184, 538–542 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.056
- G. Qin, S. Xue, Q. Ma, C. Wang, The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm 16, 260–269 (2014). https://doi.org/10.1039/C3CE41967C
- K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem. Mater. 20, 462–469 (2008). https://doi.org/10.1021/cm7027993
- J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H. Ahn, G.B. Cho, K.W. Kim, H.J. Ahn, A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Mater. Lett. 6, 3822–3825 (2007). https://doi.org/10.1016/j.matlet.2006.12.038
- B. Guo, H. Ruan, C. Zheng, H. Fei, M. Wei, Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries. Sci. Rep. 3, 2788 (2013). https://doi.org/10.1038/srep02788
- Y. Wu, Z. Wen, J. Li, Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 23, 1126–1129 (2011). https://doi.org/10.1002/adma.201003713
- S. Lee, Y. Cho, H.K. Song, K.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012). https://doi.org/10.1002/anie.201203581
- K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J. Mater. Chem. 17, 4803–4810 (2007). https://doi.org/10.1039/b711521k
- J.M. Tarascon, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
- G. Wang, Y. Qi, D. Zhang, J. Bao, L. Xu et al., Rational design of porous TiO2@N-doped carbon for high rate lithium-ion batteries. Energy Technol. 7(8), 1800911 (2019). https://doi.org/10.1002/ente.201800911
- D.-H. Lee, B.H. Lee, A.K. Sinha, J.H. Park, M.S. Kim, J. Park, H. Shin, K.S. Lee, Y.E. Sung, T. Hyeon, Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 140, 16676–16684 (2018). https://doi.org/10.1021/jacs.8b09487
- C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, Monodisperse porous LiFePO4 microspheres for a high power li-ion battery cathode. J. Am. Chem. Soc. 133, 2132–2135 (2011). https://doi.org/10.1021/ja1110464
- X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710–2714 (2009). https://doi.org/10.1002/adma.200802998
- D. Hassen, M.A. Shenashen, S.A. El-Safty, M.M. Selim, H. Isago, A. Elmarakbi, A. El-Safty, H. Yamaguchi, Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts. J. Power Sour. 330, 292–303 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.140
- M.A. Shenashen, D. Hassen, S.A. El-Safty, H. Isago, A. Elmarakbi, H. Yamaguchi, Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 313, 83–98 (2017). https://doi.org/10.1016/j.cej.2016.12.003
- H.G. Gomaa, H. Khalifa, M. Selim, M.A. Shenashen, S. Kawada, Selective, photo-enhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths. ACS Sustain. Chem. Eng. 5(11), 10826–10839 (2017). https://doi.org/10.1021/acssuschemeng.7b02766
- M.A. Shenashen, D. Hassen, A.R. El-Safty, A. Elmarakbi, S.A. El-Safty, Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Sci. Rep. 8, 3740 (2018). https://doi.org/10.1038/s41598-018-21878-w
- M.A. Shenashen, D. Hassen, S.A. El-Safty, N. Akhtar, A. Chatterjee, A. Elmarakbi, Mesoscopic fabric sheet racks and blocks as catalysts with efficiently exposed surfaces for alcohol electrooxidation. Adv. Mater. Inter. 3(24), 1600743 (2016). https://doi.org/10.1002/admi.201600743
- D. Hassen, S.A. El-Safty, K. Tsuchiya, A. Chatterjee, A. Elmarakbi, M.A. Shenashen, M. Sakai, Longitudinal hierarchy Co3O4 mesocrystals with high-dense exposure facets and anisotropic interfaces for direct-ethanol fuel cells. Sci. Rep. 6, 24330 (2016). https://doi.org/10.1038/srep24330
- J. Zhang, J. Lu, D. Bian, Z. Yang, Q. Wu, W. Zhang, Solvothermal synthesis of hierarchical LiFePO4 microplates with exposed (010) faces as cathode materials for lithium ion batteries. Ind. Eng. Chem. Res. 53, 12209–12215 (2014). https://doi.org/10.1038/s41598-018-21878-w
- W. Li, Y. Tang, W. Kang, Z. Zhang, X. Yang, Y. Zhu, W. Zhang, C.S. Lee, Core–shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 11, 1345–1351 (2015). https://doi.org/10.1002/smll.201402072
- S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Müllen, Nanographene constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 22, 838–842 (2010). https://doi.org/10.1002/adma.200902795
- M.Y. Emran, H. Khalifa, H. Goma, M.A. Shenashen, N. Akhtar, M. Mekawy, A. Faheem, S.A. El-Safty, Hierarchical C–N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim. Acta 184, 4553–4562 (2017). https://doi.org/10.1007/s00604-017-2498-3
- L.X. Xiao, Y.Q. Cong, D.H. Zhen, W. Hao, T.J. Jin, B.L. Jing, Y. Hui, S. Katsuaki, The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10, 1 (2018). https://doi.org/10.1007/s40820-017-0154-4
- L. Kavan, M. Kalbáč, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel, Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 16, 477–485 (2004). https://doi.org/10.1021/cm035046g
- J.H. Lee, C.S. Yoon, J.Y. Hwang, S.J. Kim, F. Maglia, P. Lamp, S.T. Myung, Y.K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016). https://doi.org/10.1039/C6EE01134A
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
- J. Ryu, D. Hong, H.W. Lee, S. Park, Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 10, 3970–4002 (2017). https://doi.org/10.1007/s12274-017-1692-2
References
S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi et al., A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1081 (2019). https://doi.org/10.1038/s41467-019-09061-9
J. Zhang, B. Sun, X. Huang, S. Chen, G. Wang, Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014). https://doi.org/10.1038/srep06007
P. Goel, M.K. Gupta, R. Mittal, S. Rols, S.J. Patwe et al., Phonons, lithium diffusion and thermodynamics of LiMPO4 (M = Mn, Fe). J. Mater. Chem. A 2, 14729–14738 (2014). https://doi.org/10.1039/C4TA01291G
S. Li, Q. Wu, D. Zhang, Z. Liu, Y. He, Z.L. Wang, C. Sun, Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy 56, 555–562 (2019). https://doi.org/10.1016/j.nanoen.2018.11.070
L.S. Gómez, I. de Meatza, M.I. Martín, M. Bengoechea, I. Cantero, M.E. Rabanal, Structural and electrochemical properties of lithium iron phosphates synthesized by spray pyrolysis. Electrochim. Acta 55, 2805–2809 (2010). https://doi.org/10.1016/j.electacta.2009.12.042
T.V.S.L. Satyavani, A.S. Kumar, P.S.V. Subba Rao, Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19(1), 178–188 (2016). https://doi.org/10.1016/j.jestch.2015.06.002
C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009
W. Zhang, Y. Fu, W. Liu, L. Lim, X. Wang, A. Yu, A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 57, 48–56 (2019). https://doi.org/10.1016/j.nanoen.2018.12.005
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997). https://doi.org/10.1149/1.1837571
D. Chen, W. Wei, R. Wang, X.F. Lang, Y. Tian, L. Guo, Facile synthesis of 3D hierarchical foldaway-lantern-like LiMnPO4 by nanoplate self-assembly, and electrochemical performance for Li-ion batteries. Dalton Trans. 41, 8822–8828 (2012). https://doi.org/10.1039/c2dt30630a
J.N. Zhu, W.C. Li, F. Cheng, A.H. Lu, Synthesis of LiMnPO4/C with superior performance as Li-ion battery cathodes by a two-stage microwave solvothermal process. J. Mater. Chem. A 3, 13920–13925 (2015). https://doi.org/10.1039/C5TA02653A
J. Yoshida, M. Stark, J. Holzbock, N. Hüsing, S. Nakanishi, H. Iba, H. Abe, M. Naito, Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J. Power Sour. 226, 122–126 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.081
V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, LiMnPO4—a next generation cathode material for lithium-ion batteries. J. Mater. Chem. A 1, 3518–3539 (2013). https://doi.org/10.1039/c2ta01393b
S.-W. Kim, J. Kim, H. Gwon, K. Kang, Phase stability study of Li1−xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J. Electrochem. Soc. 156, A635–A638 (2009). https://doi.org/10.1149/1.3138705
S. Kobayashi, A. Kuwabara, C.A.J. Fisher, Y. Ukyo, Y. Ikuhara, Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation. Nat. Commun. 9(1), 2863 (2018). https://doi.org/10.1038/s41467-018-05241-1
M. Zhang, N. Garcia-Araez, A.L. Hector, Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14483–14517 (2018). https://doi.org/10.1039/C8TA04063J
M. Konarova, I. Taniguchi, Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sour. 195, 3661–3667 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.147
Y. Jin, X. Tang, Y. Wang, W. Dang, J. Huang, X. Fang, High-tap density LiFePO4 microsphere developed by combined computational and experimental approaches. CrystEngComm 20, 6695–6703 (2018). https://doi.org/10.1039/C8CE00894A
Y. Jiang, R. Tian, H. Liu, J. Chen, X. Tan et al., Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high-power lithium-ion batteries. Nano Res. 8, 3803–3814 (2015). https://doi.org/10.1007/s12274-015-0879-7
Y. Xia, M. Yoshio, H. Noguchi, Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochim. Acta 52, 240–245 (2006). https://doi.org/10.1016/j.electacta.2006.05.002
P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7, 741–747 (2008). https://doi.org/10.1038/nmat2245
K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 19, 19605–19610 (2009). https://doi.org/10.1039/B817242K
J. Liu, J. Wang, X. Yan, X. Zhang, G. Yang, A.F. Jalbout, R. Wang, Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 54, 5656–5659 (2009). https://doi.org/10.1016/j.electacta.2009.05.003
G. Liang, L. Wang, X. Ou, X. Zhao, S. Xu, Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. J. Power Sour. 184, 538–542 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.056
G. Qin, S. Xue, Q. Ma, C. Wang, The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm 16, 260–269 (2014). https://doi.org/10.1039/C3CE41967C
K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem. Mater. 20, 462–469 (2008). https://doi.org/10.1021/cm7027993
J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H. Ahn, G.B. Cho, K.W. Kim, H.J. Ahn, A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Mater. Lett. 6, 3822–3825 (2007). https://doi.org/10.1016/j.matlet.2006.12.038
B. Guo, H. Ruan, C. Zheng, H. Fei, M. Wei, Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries. Sci. Rep. 3, 2788 (2013). https://doi.org/10.1038/srep02788
Y. Wu, Z. Wen, J. Li, Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 23, 1126–1129 (2011). https://doi.org/10.1002/adma.201003713
S. Lee, Y. Cho, H.K. Song, K.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012). https://doi.org/10.1002/anie.201203581
K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J. Mater. Chem. 17, 4803–4810 (2007). https://doi.org/10.1039/b711521k
J.M. Tarascon, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
G. Wang, Y. Qi, D. Zhang, J. Bao, L. Xu et al., Rational design of porous TiO2@N-doped carbon for high rate lithium-ion batteries. Energy Technol. 7(8), 1800911 (2019). https://doi.org/10.1002/ente.201800911
D.-H. Lee, B.H. Lee, A.K. Sinha, J.H. Park, M.S. Kim, J. Park, H. Shin, K.S. Lee, Y.E. Sung, T. Hyeon, Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 140, 16676–16684 (2018). https://doi.org/10.1021/jacs.8b09487
C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, Monodisperse porous LiFePO4 microspheres for a high power li-ion battery cathode. J. Am. Chem. Soc. 133, 2132–2135 (2011). https://doi.org/10.1021/ja1110464
X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710–2714 (2009). https://doi.org/10.1002/adma.200802998
D. Hassen, M.A. Shenashen, S.A. El-Safty, M.M. Selim, H. Isago, A. Elmarakbi, A. El-Safty, H. Yamaguchi, Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts. J. Power Sour. 330, 292–303 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.140
M.A. Shenashen, D. Hassen, S.A. El-Safty, H. Isago, A. Elmarakbi, H. Yamaguchi, Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 313, 83–98 (2017). https://doi.org/10.1016/j.cej.2016.12.003
H.G. Gomaa, H. Khalifa, M. Selim, M.A. Shenashen, S. Kawada, Selective, photo-enhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths. ACS Sustain. Chem. Eng. 5(11), 10826–10839 (2017). https://doi.org/10.1021/acssuschemeng.7b02766
M.A. Shenashen, D. Hassen, A.R. El-Safty, A. Elmarakbi, S.A. El-Safty, Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Sci. Rep. 8, 3740 (2018). https://doi.org/10.1038/s41598-018-21878-w
M.A. Shenashen, D. Hassen, S.A. El-Safty, N. Akhtar, A. Chatterjee, A. Elmarakbi, Mesoscopic fabric sheet racks and blocks as catalysts with efficiently exposed surfaces for alcohol electrooxidation. Adv. Mater. Inter. 3(24), 1600743 (2016). https://doi.org/10.1002/admi.201600743
D. Hassen, S.A. El-Safty, K. Tsuchiya, A. Chatterjee, A. Elmarakbi, M.A. Shenashen, M. Sakai, Longitudinal hierarchy Co3O4 mesocrystals with high-dense exposure facets and anisotropic interfaces for direct-ethanol fuel cells. Sci. Rep. 6, 24330 (2016). https://doi.org/10.1038/srep24330
J. Zhang, J. Lu, D. Bian, Z. Yang, Q. Wu, W. Zhang, Solvothermal synthesis of hierarchical LiFePO4 microplates with exposed (010) faces as cathode materials for lithium ion batteries. Ind. Eng. Chem. Res. 53, 12209–12215 (2014). https://doi.org/10.1038/s41598-018-21878-w
W. Li, Y. Tang, W. Kang, Z. Zhang, X. Yang, Y. Zhu, W. Zhang, C.S. Lee, Core–shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 11, 1345–1351 (2015). https://doi.org/10.1002/smll.201402072
S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Müllen, Nanographene constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 22, 838–842 (2010). https://doi.org/10.1002/adma.200902795
M.Y. Emran, H. Khalifa, H. Goma, M.A. Shenashen, N. Akhtar, M. Mekawy, A. Faheem, S.A. El-Safty, Hierarchical C–N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim. Acta 184, 4553–4562 (2017). https://doi.org/10.1007/s00604-017-2498-3
L.X. Xiao, Y.Q. Cong, D.H. Zhen, W. Hao, T.J. Jin, B.L. Jing, Y. Hui, S. Katsuaki, The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett. 10, 1 (2018). https://doi.org/10.1007/s40820-017-0154-4
L. Kavan, M. Kalbáč, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel, Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 16, 477–485 (2004). https://doi.org/10.1021/cm035046g
J.H. Lee, C.S. Yoon, J.Y. Hwang, S.J. Kim, F. Maglia, P. Lamp, S.T. Myung, Y.K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016). https://doi.org/10.1039/C6EE01134A
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
J. Ryu, D. Hong, H.W. Lee, S. Park, Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 10, 3970–4002 (2017). https://doi.org/10.1007/s12274-017-1692-2