Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework
Corresponding Author: Chan‑Jin Park
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 83
Abstract
Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li6.4La3Zr1.4Ta0.6O12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte–solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm−1, a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li+ at 30 °C. Moreover, the Li|CSE|LiNi0.8Co0.1Mn0.1O2 cell delivered a discharge capacity of 105.1 mAh g−1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.
Highlights:
1 A scalable tape-casting method produces self-supported porous Li6.4La3Zr1.4Ta0.6O12.
2 Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated.
3 Solid-state Li|CSE|LiNi0.8Co0.1Mn0.1O2 cells show remarkable cyclability and rate capability.
4 LiF-and B-rich interphase layers mitigate interfacial reactions, enhancing solid-state battery performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
- X. Zhang, Y.A. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
- X.X. Zhu, L.G. Wang, Z.Y. Bai, J. Lu, T.P. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- D.L. Vu, D. Kim, A.G. Nguyen, C.J. Park, Stabilizing interface of novel 3D-hierarchical porous carbon for high-performance lithium-sulfur batteries. Electrochim. Acta 418, 140369 (2022). https://doi.org/10.1016/j.electacta.2022.140369
- A.G. Nguyen, H.T.T. Le, R. Verma, D.L. Vu, C.J. Park, Boosting sodium-ion battery performance using an antimony nanop self-embedded in a 3D nitrogen-doped carbon framework anode. Chem. Eng. J. 429, 132359 (2022). https://doi.org/10.1016/j.cej.2021.132359
- R. Verma, A.G. Nguyen, P.N. Didwal, C.E. Moon, J. Kim et al., In-situ synthesis of antimony nanops encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chem. Eng. J. 446, 137302 (2022). https://doi.org/10.1016/j.cej.2022.137302
- A. Nazir, H.T.T. Le, A.G. Nguyen, J. Kim, C.J. Park, Conductive metal organic framework mediated Sb nanops as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 450, 138408 (2022). https://doi.org/10.1016/j.cej.2022.138408
- A.G. Nguyen, R. Verma, P.N. Didwal, C.J. Park, Challenges and design strategies for alloy-based anode materials toward high-performance future-generation potassium-ion batteries. Energy Mater. 3, 300030 (2023). https://doi.org/10.20517/energymater.2023.11
- J.B. Gu, Z.T. Liang, J.W. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13(2), 2203153 (2023). https://doi.org/10.1002/aenm.202203153
- S.J. Tan, W.P. Wang, Y.F. Tian, S. Xin, Y.G. Guo, Advanced electrolytes enabling safe and stable rechargeable li-metal batteries: progress and prospects. Adv. Funct. Mater. 31(45), 2105253 (2021). https://doi.org/10.1002/adfm.202105253
- S.L. Liu, W.Y. Liu, D.L. Ba, Y.Z. Zhao, Y.H. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), 2110423 (2023). https://doi.org/10.1002/adma.202110423
- A.G. Nguyen, C.J. Park, Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J. Membr. Sci. 675, 121552 (2023). https://doi.org/10.1016/j.memsci.2023.121552
- S. Abouali, C.H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, Garnet-based solid-state Li batteries: from materials design to battery architecture. ACS Energy Lett. 6(5), 1920–1941 (2021). https://doi.org/10.1021/acsenergylett.1c00401
- F. Liang, Y.L. Sun, Y.F. Yuan, J. Huang, M.J. Hou et al., Designing inorganic electrolytes for solid-state Li-ion batteries: a perspectine of LGPS and garnet. Mater. Today 50, 418–441 (2021). https://doi.org/10.1016/j.mattod.2021.03.013
- A. Paolella, X. Liu, A. Daali, W.Q. Xu, I. Hwang et al., Enabling high-performance NASICON-based solid-state lithium metal batteries towards practical conditions. Adv. Funct. Mater. 31(30), 2102765 (2021). https://doi.org/10.1002/adfm.202102765
- W. Xia, Y. Zhao, F.P. Zhao, K.G. Adair, R. Zhao et al., Antiperovskite electrolytes for solid-state batteries. Chem. Rev. 122(3), 3763–3819 (2022). https://doi.org/10.1021/acs.chemrev.1c00594
- C.H. Wang, K. Adair, X.L. Sun, All-solid-state lithium metal batteries with sulfide electrolytes: understanding interfacial ion and electron transport. Acc. Mater. Res. 3(1), 21–32 (2022). https://doi.org/10.1021/accountsmr.1c00137
- J.S. Park, C.H. Jo, S.T. Myung, Comprehensive understanding on lithium argyrodite electrolytes for stable and safe all-solid-state lithium batteries. Energy Storage Mater. 61, 102869 (2023). https://doi.org/10.1016/j.ensm.2023.102869
- J.W. Liang, E. van der Maas, J. Luo, X.N. Li, N. Chen et al., A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12(21), 2103921 (2022). https://doi.org/10.1002/aenm.202103921
- S.H. Wang, X.W. Xu, C. Cui, C. Zeng, J.N. Liang et al., Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure. Adv. Funct. Mater. 32(7), 2108805 (2022). https://doi.org/10.1002/adfm.202108805
- P.N. Didwal, R. Verma, A.G. Nguyen, H.V. Ramasamy, G.H. Lee et al., Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte. Adv. Sci. 9(13), 2105448 (2022). https://doi.org/10.1002/advs.202105448
- B.B. Wei, S. Huang, Y.H. Song, X. Wang, M. Liu et al., A three-in-one C-60-integrated PEO-based solid polymer electrolyte enables superior all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 11(21), 11426–11435 (2023). https://doi.org/10.1039/d3ta01226c
- X.Y. Yang, J.X. Liu, N.B. Pei, Z.Q. Chen, R.Y. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- H.M. Liang, L. Wang, A.P. Wang, Y.Z. Song, Y.Z. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
- Y.A. Xu, K. Wang, X.D. Zhang, Y.B. Ma, Q.F. Peng et al., Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 13(14), 2204377 (2023). https://doi.org/10.1002/aenm.202204377
- J. Yu, X.D. Lin, J.P. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12(2), 2102932 (2022). https://doi.org/10.1002/aenm.202102932
- Y.T. Wang, J.W. Ju, S.M. Dong, Y.Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31(28), 2101523 (2021). https://doi.org/10.1002/adfm.202101523
- A.G. Nguyen, R. Verma, G.C. Song, J. Kim, C.J. Park, In situ polymerization on a 3D ceramic framework of composite solid electrolytes for room-temperature solid-state batteries. Adv. Sci. (2023). https://doi.org/10.1002/advs.202207744
- X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energ. Environ. Sci. 12(3), 938–944 (2019). https://doi.org/10.1039/c8ee02617c
- C.K. Fu, Y.L. Ma, S.F. Lou, C. Cui, L.Z. Xiang et al., A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. J. Mater. Chem. A 8(4), 2066–2073 (2020). https://doi.org/10.1039/c9ta11341j
- C.K. Fu, Y.L. Ma, P.J. Zuo, W. Zhao, W.C. Tang et al., In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J. Power. Sources 496, 229861 (2021). https://doi.org/10.1016/j.jpowsour.2021.229861
- P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car et al., Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152(15), 154105 (2020). https://doi.org/10.1063/5.0005082
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mat. 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Mat. 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
- K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
- A. Kokalj, XCrySDen-a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17(3–4), 176–179 (1999). https://doi.org/10.1016/S1093-3263(99)00028-5
- S.H. Jiao, X.D. Ren, R.G. Cao, M.H. Engelhard, Y.Z. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- K. Ishiguro, H. Nemori, S. Sunahiro, Y. Nakata, R. Sudo et al., Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J. Electrochem. Soc. 161(5), A668–A674 (2014). https://doi.org/10.1149/2.013405jes
- L.Q. Xu, J.Y. Li, W.T. Deng, H.L. Shuai, S. Li et al., Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 11(2), 2000648 (2021). https://doi.org/10.1002/aenm.202000648
- B.J. Sung, P.N. Didwal, R. Verma, A.G. Nguyen, D.R. Chang et al., Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)(3) for long-life all-solid-state Li-ion batteries. Electrochim. Acta 392, 139007 (2021). https://doi.org/10.1016/j.electacta.2021.139007
- J.R. Wu, X.S. Wang, Q. Liu, S.W. Wang, D. Zhou et al., A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 12(1), 5746 (2021). https://doi.org/10.1038/s41467-021-26073-6
- H. Fujimoto, S. Satoh, Orbital interactions and chemical hardness. J. Phys. Chem. 98(5), 1436–1441 (1994). https://doi.org/10.1021/j100056a011
- T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10(12), 1903376 (2020). https://doi.org/10.1002/aenm.201903376
- C.S. Bao, C.J. Zheng, M.F. Wu, Y. Zhang, J. Jin et al., 12 mu m-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204028 (2023). https://doi.org/10.1002/aenm.202204028
- Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
- F. Jiang, Y.T. Wang, J.W. Ju, Q. Zhou, L.F. Cui et al., Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries. Adv. Sci. 9(25), 2202474 (2022). https://doi.org/10.1002/advs.202202474
- X.Y. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- M. Yao, Q.Q. Ruan, T.H. Yu, H.T. Zhang, S.J. Zhang, Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 44, 93–103 (2022). https://doi.org/10.1016/j.ensm.2021.10.009
- X.D. Lin, J. Yu, M.B. Effat, G.D. Zhou, M.J. Robson et al., Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 31(17), 2010261 (2021). https://doi.org/10.1002/adfm.202010261
- P.R. Shi, J.B. Ma, M. Liu, S.K. Guo, Y.F. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602 (2023). https://doi.org/10.1038/s41565-023-01341-2
- H. Yang, B. Zhang, M.X. Jing, X.Q. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
- J. Yu, J.P. Liu, X.D. Lin, H.M. Law, G.D. Zhou et al., A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Mater. 37, 609–618 (2021). https://doi.org/10.1016/j.ensm.2021.02.045
References
Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
X. Zhang, Y.A. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
X.X. Zhu, L.G. Wang, Z.Y. Bai, J. Lu, T.P. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
D.L. Vu, D. Kim, A.G. Nguyen, C.J. Park, Stabilizing interface of novel 3D-hierarchical porous carbon for high-performance lithium-sulfur batteries. Electrochim. Acta 418, 140369 (2022). https://doi.org/10.1016/j.electacta.2022.140369
A.G. Nguyen, H.T.T. Le, R. Verma, D.L. Vu, C.J. Park, Boosting sodium-ion battery performance using an antimony nanop self-embedded in a 3D nitrogen-doped carbon framework anode. Chem. Eng. J. 429, 132359 (2022). https://doi.org/10.1016/j.cej.2021.132359
R. Verma, A.G. Nguyen, P.N. Didwal, C.E. Moon, J. Kim et al., In-situ synthesis of antimony nanops encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chem. Eng. J. 446, 137302 (2022). https://doi.org/10.1016/j.cej.2022.137302
A. Nazir, H.T.T. Le, A.G. Nguyen, J. Kim, C.J. Park, Conductive metal organic framework mediated Sb nanops as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 450, 138408 (2022). https://doi.org/10.1016/j.cej.2022.138408
A.G. Nguyen, R. Verma, P.N. Didwal, C.J. Park, Challenges and design strategies for alloy-based anode materials toward high-performance future-generation potassium-ion batteries. Energy Mater. 3, 300030 (2023). https://doi.org/10.20517/energymater.2023.11
J.B. Gu, Z.T. Liang, J.W. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13(2), 2203153 (2023). https://doi.org/10.1002/aenm.202203153
S.J. Tan, W.P. Wang, Y.F. Tian, S. Xin, Y.G. Guo, Advanced electrolytes enabling safe and stable rechargeable li-metal batteries: progress and prospects. Adv. Funct. Mater. 31(45), 2105253 (2021). https://doi.org/10.1002/adfm.202105253
S.L. Liu, W.Y. Liu, D.L. Ba, Y.Z. Zhao, Y.H. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), 2110423 (2023). https://doi.org/10.1002/adma.202110423
A.G. Nguyen, C.J. Park, Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J. Membr. Sci. 675, 121552 (2023). https://doi.org/10.1016/j.memsci.2023.121552
S. Abouali, C.H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, Garnet-based solid-state Li batteries: from materials design to battery architecture. ACS Energy Lett. 6(5), 1920–1941 (2021). https://doi.org/10.1021/acsenergylett.1c00401
F. Liang, Y.L. Sun, Y.F. Yuan, J. Huang, M.J. Hou et al., Designing inorganic electrolytes for solid-state Li-ion batteries: a perspectine of LGPS and garnet. Mater. Today 50, 418–441 (2021). https://doi.org/10.1016/j.mattod.2021.03.013
A. Paolella, X. Liu, A. Daali, W.Q. Xu, I. Hwang et al., Enabling high-performance NASICON-based solid-state lithium metal batteries towards practical conditions. Adv. Funct. Mater. 31(30), 2102765 (2021). https://doi.org/10.1002/adfm.202102765
W. Xia, Y. Zhao, F.P. Zhao, K.G. Adair, R. Zhao et al., Antiperovskite electrolytes for solid-state batteries. Chem. Rev. 122(3), 3763–3819 (2022). https://doi.org/10.1021/acs.chemrev.1c00594
C.H. Wang, K. Adair, X.L. Sun, All-solid-state lithium metal batteries with sulfide electrolytes: understanding interfacial ion and electron transport. Acc. Mater. Res. 3(1), 21–32 (2022). https://doi.org/10.1021/accountsmr.1c00137
J.S. Park, C.H. Jo, S.T. Myung, Comprehensive understanding on lithium argyrodite electrolytes for stable and safe all-solid-state lithium batteries. Energy Storage Mater. 61, 102869 (2023). https://doi.org/10.1016/j.ensm.2023.102869
J.W. Liang, E. van der Maas, J. Luo, X.N. Li, N. Chen et al., A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12(21), 2103921 (2022). https://doi.org/10.1002/aenm.202103921
S.H. Wang, X.W. Xu, C. Cui, C. Zeng, J.N. Liang et al., Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure. Adv. Funct. Mater. 32(7), 2108805 (2022). https://doi.org/10.1002/adfm.202108805
P.N. Didwal, R. Verma, A.G. Nguyen, H.V. Ramasamy, G.H. Lee et al., Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte. Adv. Sci. 9(13), 2105448 (2022). https://doi.org/10.1002/advs.202105448
B.B. Wei, S. Huang, Y.H. Song, X. Wang, M. Liu et al., A three-in-one C-60-integrated PEO-based solid polymer electrolyte enables superior all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 11(21), 11426–11435 (2023). https://doi.org/10.1039/d3ta01226c
X.Y. Yang, J.X. Liu, N.B. Pei, Z.Q. Chen, R.Y. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
H.M. Liang, L. Wang, A.P. Wang, Y.Z. Song, Y.Z. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
Y.A. Xu, K. Wang, X.D. Zhang, Y.B. Ma, Q.F. Peng et al., Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 13(14), 2204377 (2023). https://doi.org/10.1002/aenm.202204377
J. Yu, X.D. Lin, J.P. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12(2), 2102932 (2022). https://doi.org/10.1002/aenm.202102932
Y.T. Wang, J.W. Ju, S.M. Dong, Y.Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31(28), 2101523 (2021). https://doi.org/10.1002/adfm.202101523
A.G. Nguyen, R. Verma, G.C. Song, J. Kim, C.J. Park, In situ polymerization on a 3D ceramic framework of composite solid electrolytes for room-temperature solid-state batteries. Adv. Sci. (2023). https://doi.org/10.1002/advs.202207744
X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energ. Environ. Sci. 12(3), 938–944 (2019). https://doi.org/10.1039/c8ee02617c
C.K. Fu, Y.L. Ma, S.F. Lou, C. Cui, L.Z. Xiang et al., A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. J. Mater. Chem. A 8(4), 2066–2073 (2020). https://doi.org/10.1039/c9ta11341j
C.K. Fu, Y.L. Ma, P.J. Zuo, W. Zhao, W.C. Tang et al., In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J. Power. Sources 496, 229861 (2021). https://doi.org/10.1016/j.jpowsour.2021.229861
P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car et al., Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152(15), 154105 (2020). https://doi.org/10.1063/5.0005082
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mat. 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Mat. 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
A. Kokalj, XCrySDen-a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17(3–4), 176–179 (1999). https://doi.org/10.1016/S1093-3263(99)00028-5
S.H. Jiao, X.D. Ren, R.G. Cao, M.H. Engelhard, Y.Z. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
K. Ishiguro, H. Nemori, S. Sunahiro, Y. Nakata, R. Sudo et al., Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J. Electrochem. Soc. 161(5), A668–A674 (2014). https://doi.org/10.1149/2.013405jes
L.Q. Xu, J.Y. Li, W.T. Deng, H.L. Shuai, S. Li et al., Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 11(2), 2000648 (2021). https://doi.org/10.1002/aenm.202000648
B.J. Sung, P.N. Didwal, R. Verma, A.G. Nguyen, D.R. Chang et al., Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)(3) for long-life all-solid-state Li-ion batteries. Electrochim. Acta 392, 139007 (2021). https://doi.org/10.1016/j.electacta.2021.139007
J.R. Wu, X.S. Wang, Q. Liu, S.W. Wang, D. Zhou et al., A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 12(1), 5746 (2021). https://doi.org/10.1038/s41467-021-26073-6
H. Fujimoto, S. Satoh, Orbital interactions and chemical hardness. J. Phys. Chem. 98(5), 1436–1441 (1994). https://doi.org/10.1021/j100056a011
T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10(12), 1903376 (2020). https://doi.org/10.1002/aenm.201903376
C.S. Bao, C.J. Zheng, M.F. Wu, Y. Zhang, J. Jin et al., 12 mu m-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204028 (2023). https://doi.org/10.1002/aenm.202204028
Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
F. Jiang, Y.T. Wang, J.W. Ju, Q. Zhou, L.F. Cui et al., Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries. Adv. Sci. 9(25), 2202474 (2022). https://doi.org/10.1002/advs.202202474
X.Y. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
M. Yao, Q.Q. Ruan, T.H. Yu, H.T. Zhang, S.J. Zhang, Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 44, 93–103 (2022). https://doi.org/10.1016/j.ensm.2021.10.009
X.D. Lin, J. Yu, M.B. Effat, G.D. Zhou, M.J. Robson et al., Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 31(17), 2010261 (2021). https://doi.org/10.1002/adfm.202010261
P.R. Shi, J.B. Ma, M. Liu, S.K. Guo, Y.F. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602 (2023). https://doi.org/10.1038/s41565-023-01341-2
H. Yang, B. Zhang, M.X. Jing, X.Q. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
J. Yu, J.P. Liu, X.D. Lin, H.M. Law, G.D. Zhou et al., A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Mater. 37, 609–618 (2021). https://doi.org/10.1016/j.ensm.2021.02.045