Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction
Corresponding Author: Wei Feng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 198
Abstract
Vertically oriented carbon structures constructed from low-dimensional carbon materials are ideal frameworks for high-performance thermal interface materials (TIMs). However, improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task. Herein, an orthotropic three-dimensional (3D) hybrid carbon network (VSCG) is fabricated by depositing vertically aligned carbon nanotubes (VACNTs) on the surface of a horizontally oriented graphene film (HOGF). The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy. After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsiloxane (PDMS), VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained. The highest in-plane and through-plane thermal conductivities of the composites are 113.61 and 24.37 W m−1 K−1, respectively. The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance. In addition, the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3% compared to that of a state-of-the-art thermal pad. This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
Highlights:
1 A composite thermal interface material with three-dimensional hybrid carbon network-reinforced polydimethylsiloxane was proposed.
2 The cooperative regulation of thermal conductivity and mechanical properties was achieved by controlling the assembly process of micro-nano scale unit carbon materials.
3 The orthotropic continuous carbon structure endowed the composites with in-plane and out-of-plane thermal conductivities of up to 113.61 and 24.37 W m−1 K−1, respectively.
4 The excellent compressibility and adhesion properties cooperatively improved the effective thermal conductivity by more than an order of magnitude.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang et al., Bioinspired engineering of thermal materials. Adv. Mater. 27, 428–463 (2015). https://doi.org/10.1002/adma.201401449
- H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
- Z. Xie, Z. Dou, D. Wu, X. Zeng, Y. Feng et al., Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 33, 2370082 (2023). https://doi.org/10.1002/adfm.202370082
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
- H. Yu, Y. Feng, C. Chen, H. Zhang, L. Peng et al., Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. 9, e2201331 (2022). https://doi.org/10.1002/advs.202201331
- H. Zhang, Q. He, H. Yu, M. Qin, Y. Feng et al., A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 33, 2211985 (2023). https://doi.org/10.1002/adfm.202211985
- S. Bhanushali, P.C. Ghosh, G.P. Simon, W. Cheng, Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv. Mater. Interfaces 4, 1700387 (2017). https://doi.org/10.1002/admi.201700387
- W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8, 2003734 (2021). https://doi.org/10.1002/advs.202003734
- J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15, 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
- Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
- X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun et al., Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11, 6205–6213 (2015). https://doi.org/10.1002/smll.201502173
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- Y.-H. Zhao, Z.-K. Wu, S.-L. Bai, Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Compos. Part A Appl. Sci. Manuf. 72, 200–206 (2015). https://doi.org/10.1016/j.compositesa.2015.02.011
- Z. Wu, C. Xu, C. Ma, Z. Liu, H.-M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31, e1900199 (2019). https://doi.org/10.1002/adma.201900199
- S. Xu, T. Cheng, Q. Yan, C. Shen, Y. Yu et al., Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 9, e2200737 (2022). https://doi.org/10.1002/advs.202200737
- H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143
- P. Huang, Y. Li, G. Yang, Z.-X. Li, Y.-Q. Li et al., Graphene film for thermal management: a review. Nano Mater. Sci. 3, 1–16 (2021). https://doi.org/10.1016/j.nanoms.2020.09.001
- S. Shaikh, L. Li, K. Lafdi, J. Huie, Thermal conductivity of an aligned carbon nanotube array. Carbon 45, 2608–2613 (2007). https://doi.org/10.1016/j.carbon.2007.08.011
- L. Peng, H. Yu, C. Chen, Q. He, H. Zhang et al., Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 10, e2205962 (2023). https://doi.org/10.1002/advs.202205962
- E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 113107 (2008). https://doi.org/10.1063/1.2889497
- E. Charon, M. Pinault, M. Mayne-L’Hermite, C. Reynaud, One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes. Carbon 173, 758–768 (2021). https://doi.org/10.1016/j.carbon.2020.10.056
- C. Liu, C. Wu, Y. Zhao, Z. Chen, T.-L. Ren et al., Actively and reversibly controlling thermal conductivity in solid materials. Phys. Rep. 1058, 1–32 (2024). https://doi.org/10.1016/j.physrep.2024.01.001
- A. Beigbeder, M. Linares, M. Devalckenaere, P. Degée, M. Claes et al., CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv. Mater. 20, 1003–1007 (2008). https://doi.org/10.1002/adma.200701497
- X. Han, J. Gao, T. Chen, Y. Zhao, Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. Chem. Pap. 74, 757–765 (2020). https://doi.org/10.1007/s11696-019-00928-1
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
- G.A. Slack, Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694–701 (1962). https://doi.org/10.1103/physrev.127.694
- H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29, 1902575 (2019). https://doi.org/10.1002/adfm.201902575
- K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
- A. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005). https://doi.org/10.1126/science.1118957
- S. Pathak, J.R. Raney, C. Daraio, Effect of morphology on the strain recovery of vertically aligned carbon nanotube arrays: an in situ study. Carbon 63, 303–316 (2013). https://doi.org/10.1016/j.carbon.2013.06.083
- Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
- W. Dai, X.-J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15, 9 (2022). https://doi.org/10.1007/s40820-022-00979-2
References
G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang et al., Bioinspired engineering of thermal materials. Adv. Mater. 27, 428–463 (2015). https://doi.org/10.1002/adma.201401449
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
Z. Xie, Z. Dou, D. Wu, X. Zeng, Y. Feng et al., Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 33, 2370082 (2023). https://doi.org/10.1002/adfm.202370082
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
H. Yu, Y. Feng, C. Chen, H. Zhang, L. Peng et al., Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. 9, e2201331 (2022). https://doi.org/10.1002/advs.202201331
H. Zhang, Q. He, H. Yu, M. Qin, Y. Feng et al., A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 33, 2211985 (2023). https://doi.org/10.1002/adfm.202211985
S. Bhanushali, P.C. Ghosh, G.P. Simon, W. Cheng, Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv. Mater. Interfaces 4, 1700387 (2017). https://doi.org/10.1002/admi.201700387
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8, 2003734 (2021). https://doi.org/10.1002/advs.202003734
J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15, 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun et al., Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11, 6205–6213 (2015). https://doi.org/10.1002/smll.201502173
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
Y.-H. Zhao, Z.-K. Wu, S.-L. Bai, Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Compos. Part A Appl. Sci. Manuf. 72, 200–206 (2015). https://doi.org/10.1016/j.compositesa.2015.02.011
Z. Wu, C. Xu, C. Ma, Z. Liu, H.-M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31, e1900199 (2019). https://doi.org/10.1002/adma.201900199
S. Xu, T. Cheng, Q. Yan, C. Shen, Y. Yu et al., Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 9, e2200737 (2022). https://doi.org/10.1002/advs.202200737
H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143
P. Huang, Y. Li, G. Yang, Z.-X. Li, Y.-Q. Li et al., Graphene film for thermal management: a review. Nano Mater. Sci. 3, 1–16 (2021). https://doi.org/10.1016/j.nanoms.2020.09.001
S. Shaikh, L. Li, K. Lafdi, J. Huie, Thermal conductivity of an aligned carbon nanotube array. Carbon 45, 2608–2613 (2007). https://doi.org/10.1016/j.carbon.2007.08.011
L. Peng, H. Yu, C. Chen, Q. He, H. Zhang et al., Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 10, e2205962 (2023). https://doi.org/10.1002/advs.202205962
E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 113107 (2008). https://doi.org/10.1063/1.2889497
E. Charon, M. Pinault, M. Mayne-L’Hermite, C. Reynaud, One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes. Carbon 173, 758–768 (2021). https://doi.org/10.1016/j.carbon.2020.10.056
C. Liu, C. Wu, Y. Zhao, Z. Chen, T.-L. Ren et al., Actively and reversibly controlling thermal conductivity in solid materials. Phys. Rep. 1058, 1–32 (2024). https://doi.org/10.1016/j.physrep.2024.01.001
A. Beigbeder, M. Linares, M. Devalckenaere, P. Degée, M. Claes et al., CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv. Mater. 20, 1003–1007 (2008). https://doi.org/10.1002/adma.200701497
X. Han, J. Gao, T. Chen, Y. Zhao, Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. Chem. Pap. 74, 757–765 (2020). https://doi.org/10.1007/s11696-019-00928-1
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
G.A. Slack, Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694–701 (1962). https://doi.org/10.1103/physrev.127.694
H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29, 1902575 (2019). https://doi.org/10.1002/adfm.201902575
K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
A. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005). https://doi.org/10.1126/science.1118957
S. Pathak, J.R. Raney, C. Daraio, Effect of morphology on the strain recovery of vertically aligned carbon nanotube arrays: an in situ study. Carbon 63, 303–316 (2013). https://doi.org/10.1016/j.carbon.2013.06.083
Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
W. Dai, X.-J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15, 9 (2022). https://doi.org/10.1007/s40820-022-00979-2