Prussian Blue Analogue-Templated Nanocomposites for Alkali-Ion Batteries: Progress and Perspective
Corresponding Author: Jiaye Ye
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 9
Abstract
Lithium-ion batteries (LIBs) have dominated the portable electronic and electrochemical energy markets since their commercialisation, whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries (AIBs) including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Owing to larger ion sizes of Na+ and K+ compared with Li+, nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage. With enticing open rigid framework structures, Prussian blue analogues (PBAs) remain promising self-sacrificial templates for the preparation of various nanocomposites, whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition. This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication, lithium/sodium/potassium storage mechanism, and applications in AIBs (LIBs, SIBs, and PIBs). To distinguish various PBA derivatives, the working mechanism and applications of PBA-templated metal oxides, metal chalcogenides, metal phosphides, and other nanocomposites are systematically evaluated, facilitating the establishment of a structure–activity correlation for these materials. Based on the fruitful achievements of PBA-derived nanocomposites, perspectives for their future development are envisioned, aiming to narrow down the gap between laboratory study and industrial reality.
Highlights:
1 The synthetic protocols of various Prussian blue analogue (PBA)-templated nanocomposites are discussed.
2 Alkali-ion storage mechanisms based on intercalation, alloying, or conversion reactions are analysed.
3 The properties of PBA-templated nanocomposites in alkali-ion batteries (AIBs) are evaluated and compared to outline the structure–activity correlation.
4 Perspectives for the future development of PBA-templated AIB electrodes are envisaged.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Ben, J. Zhou, H. Ji, H. Yu, W. Zhao et al., Si nanops seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries. Mater. Futures 1, 015101 (2021). https://doi.org/10.1088/2752-5724/ac3257
- Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11, 2000982 (2020). https://doi.org/10.1002/aenm.202000982
- R. Liu, N. Li, E. Zhao, J. Zhao, L. Yang et al., Facile molten salt synthesis of carbon-anchored TiN nanops for durable high-rate lithium-ion battery anodes. Mater. Futures 1, 045102 (2022). https://doi.org/10.1088/2752-5724/ac9cf7
- C. Zheng, S. Tang, F. Wen, J. Peng, W. Yang et al., Reinforced cathode-garnet interface for high-capacity all-solid-state batteries. Mater. Futures 1, 045103 (2022). https://doi.org/10.1088/2752-5724/aca110
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2020). https://doi.org/10.1021/acs.chemrev.0c00767
- W. He, W. Guo, H. Wu, L. Lin, Q. Liu et al., Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 33, 2005937 (2021). https://doi.org/10.1002/adma.202005937
- Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3, 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
- J.-E. Zhou, Y. Liu, Z. Peng, Q. Ye, H. Zhong et al., Unveiling the tailorable electrochemical properties of zeolitic imidazolate framework-derived Ni-doped LiCoO2 for lithium-ion batteries in half/full cells. J. Energy Chem. 93, 229–242 (2024). https://doi.org/10.1016/j.jechem.2024.02.005
- Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1, 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
- S. Sanati, R. Abazari, J. Albero, A. Morsali, H. García et al., Metal–organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60, 11048–11067 (2021). https://doi.org/10.1002/anie.202010093
- H.H. Tan, L.V. Xiao-Long, J.L. Liu, Y.F. Cheng, Q.L. Zhou et al., A 2D layer copper(II) coordination polymer with 3-nitrophthalic acid: Synthesis, crystal structure and copper 3-nitrophthalate metal-organic framework-graphene oxide nanocomposite. Chin. J. Struct. Chem. 40, 459–464 (2021). https://doi.org/10.14102/j.cnki.0254-5861.2011-2970
- J. Sun, H.X. Liu, T.F. Liu, Synthesis, crystal structure and characterization of a new hydrogen-bonded organic framework. Chin. J. Struct. Chem. 40, 1082–1087 (2021). https://doi.org/10.14102/j.cnki.0254-5861.2011-3113
- C.-P. Wan, J.-D. Yi, R. Cao, Y.-B. Huang, Conductive metal/covalent organic frameworks for CO2 electroreduction. Chin. J. Struct. Chem. 41, 2205001–2205014 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0075
- H. Yi, R. Qin, S. Ding, Y. Wang, S. Li et al., Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31, 2006970 (2021). https://doi.org/10.1002/adfm.202006970
- J. Chen, L. Wei, A. Mahmood, Z. Pei, Z. Zhou et al., Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater. 25, 585–612 (2020). https://doi.org/10.1016/j.ensm.2019.09.024
- J. Cattermull, N. Roth, S.J. Cassidy, M. Pasta, A.L. Goodwin, K-ion slides in Prussian blue analogues. J. Am. Chem. Soc. 145, 24249–24259 (2023). https://doi.org/10.1021/jacs.3c08751
- W. Shu, C. Han, X. Wang, Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: Past, present, and future. Adv. Funct. Mater. 34, 2309636 (2024). https://doi.org/10.1002/adfm.202309636
- G. Du, H. Pang, Recent advancements in Prussian blue analogues: preparation and application in batteries. Energy Storage Mater. 36, 387–408 (2021). https://doi.org/10.1016/j.ensm.2021.01.006
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- Q. Xue, L. Li, Y. Huang, R. Huang, F. Wu et al., Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 11, 22339–22345 (2019). https://doi.org/10.1021/acsami.9b04579
- X. Tang, H. Liu, D. Su, P.H.L. Notten, G. Wang, Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 11, 3979–3990 (2018). https://doi.org/10.1007/s12274-018-1979-y
- Y. Huang, X. Zhang, L. Ji, L. Wang, B.B. Xu et al., Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 58, 1–8 (2023). https://doi.org/10.1016/j.ensm.2023.03.011
- B. Xie, B. Sun, T. Gao, Y. Ma, G. Yin et al., Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478 (2022). https://doi.org/10.1016/j.ccr.2022.214478
- F. Ma, Q. Li, T. Wang, H. Zhang, G. Wu, Energy storage materials derived from Prussian blue analogues. Sci. Bull. 62, 358–368 (2017). https://doi.org/10.1016/j.scib.2017.01.030
- J. Nai, X.W.D. Lou, Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 31, 1706825 (2019). https://doi.org/10.1002/adma.201706825
- X. Liang, G. Wang, W. Gu, G. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 177, 97–106 (2021). https://doi.org/10.1016/j.carbon.2021.02.063
- E.S. Goda, S. Lee, M. Sohail, K.R. Yoon, Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031
- M.B. Zakaria, T. Chikyow, Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord. Chem. Rev. 352, 328–345 (2017). https://doi.org/10.1016/j.ccr.2017.09.014
- L. Zhang, B. Zhang, G. Xia, X. Li, J. Wang, Prussian blue analogues and their derivatives: from elaborate microstructure design to boosted fenton-like application. Acc. Mater. Res. 5, 585–599 (2024). https://doi.org/10.1021/accountsmr.3c00289
- L.-M. Cao, D. Lu, D.-C. Zhong, T.-B. Lu, Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord. Chem. Rev. 407, 213156 (2020). https://doi.org/10.1016/j.ccr.2019.213156
- C. Deng, D.W. Wang, Functional electrocatalysts derived from Prussian blue and its analogues for metal-air batteries: progress and prospects. Batteries Supercaps 2, 290–310 (2019). https://doi.org/10.1002/batt.201800116
- Y.-R. Ji, Y.-F. Guo, X. Liu, P.-F. Wang, T.-F. Yi, Insights on rational design and regulation strategies of Prussian blue analogues and their derivatives towards high-performance electrocatalysts. Chem. Eng. J. 471, 144743 (2023). https://doi.org/10.1016/j.cej.2023.144743
- X. Wu, Y. Ru, Y. Bai, G. Zhang, Y. Shi et al., PBA composites and their derivatives in energy and environmental applications. Coord. Chem. Rev. 451, 214260 (2022). https://doi.org/10.1016/j.ccr.2021.214260
- K. Wang, F. Zhang, G. Zhu, H. Zhang, Y. Zhao et al., Surface anchoring approach for growth of CeO2 nanocrystals on Prussian blue capsules enable superior lithium storage. ACS Appl. Mater. Interfaces 11, 33082–33090 (2019). https://doi.org/10.1021/acsami.9b11212
- J. Lin, C. Zeng, X. Lin, C. Xu, X. Xu et al., Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery. ACS Nano 15, 4594–4607 (2021). https://doi.org/10.1021/acsnano.0c08808
- X.M. Lin, J.H. Chen, J.J. Fan, Y. Ma, P. Radjenovic et al., Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 9, 1902312 (2019). https://doi.org/10.1002/aenm.201902312
- Q. Liu, S.-J. Zhang, C.-C. Xiang, C.-X. Luo, P.-F. Zhang et al., Cubic MnS–FeS2 composites derived from a Prussian blue analogue as anode materials for sodium-ion batteries with long-term cycle stability. ACS Appl. Mater. Interfaces 12, 43624–43633 (2020). https://doi.org/10.1021/acsami.0c10874
- G. Ou, M. Huang, X. Lu, I. Manke, C. Yang et al., A metal-organic framework-derived strategy for constructing synergistic N-doped carbon-encapsulated NiCoP@N-C-based anodes toward high-efficient lithium storage. Small 20, 2307615 (2024). https://doi.org/10.1002/smll.202307615
- X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li et al., Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 4, 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
- Y. Li, Z. Fan, Z. Peng, Z. Xu, X. Zhang et al., Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration. EcoMat 5, e12415 (2023). https://doi.org/10.1002/eom2.12415
- Y. Li, Z. Xu, X. Zhang, Z. Wu, J.-E. Zhou et al., Tuning the electrochemical behaviors of N-doped LiMnxFe1–xPO4/C via cation engineering with metal-organic framework-templated strategy. J. Energy Chem. 85, 239–253 (2023). https://doi.org/10.1016/j.jechem.2023.06.015
- J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022). https://doi.org/10.1002/adma.202108384
- Y. Yang, J. Zhou, L. Wang, Z. Jiao, M. Xiao et al., Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-. Zn- and Al-ion batteries. Nano Energy 99, 107424 (2022). https://doi.org/10.1016/j.nanoen.2022.107424
- J.-T. Su, Y.-J. Wu, C.-L. Huang, Y.-A. Chen, H.-Y. Cheng et al., Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chem. Eng. J. 396, 125314 (2020). https://doi.org/10.1016/j.cej.2020.125314
- Y. Tang, J. Hu, H. Tao, Y. Li, W. Li et al., Rational design of Prussian blue analogues as conversion anodes for lithium-ion batteries with high capacity and long cycle life. J. Alloys Compd. 891, 161867 (2022). https://doi.org/10.1016/j.jallcom.2021.161867
- Z. Wang, M.T. Sougrati, Y. He, P.N. Le Pham, W. Xu et al., Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization. Nano Energy 109, 108256 (2023). https://doi.org/10.1016/j.nanoen.2023.108256
- Y. Guo, P. Wu, H. Zhong, J. Huang, G. Ma et al., Prussian blue analogue/KB-derived Ni/Co/KB composite as a superior adsorption-catalysis separator modification material for Li-S batteries. J. Colloid Interface Sci. 625, 425–434 (2022). https://doi.org/10.1016/j.jcis.2022.06.036
- R. Li, Z. Bai, W. Hou, J. Qiao, W. Sun et al., Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithium−sulfur batteries. Chin. Chem. Lett. 32, 4063–4069 (2021). https://doi.org/10.1016/j.cclet.2020.03.048
- G. Ou, J. Chen, M. Lu, J. Liu, X. Zhang et al., A metal–organic framework approach to engineer ZnO/Co3ZnC/N-doped carbon composite as anode material for boosting lithium storage. J. Alloys Compd. 923, 166436 (2022). https://doi.org/10.1016/j.jallcom.2022.166436
- G. Ou, Z. Peng, Y. Zhang, Z. Xu, A. Zeb et al., A metal-organic framework-derived engineering of carbon-encapsulated monodispersed CoP/Co2P@N-C electroactive nanops toward highly efficient lithium storage. Electrochim. Acta 467, 143098 (2023). https://doi.org/10.1016/j.electacta.2023.143098
- A. Li, L. Duan, J. Liao, J. Sun, Y. Man et al., Formation of Mn–Ni Prussian blue analogue spheres as a superior cathode material for potassium-ion batteries. ACS Appl. Energy Mater. 5, 11789–11796 (2022). https://doi.org/10.1021/acsaem.2c02288
- J. Lin, C. Xu, M. Lu, X. Lin, Z. Ali et al., Trimetallic metal-organic framework nanoframe superstructures: a stress-buffering architecture engineering of anode material toward boosted lithium storage performance. Energy Environ. Mater. 6, e12284 (2022). https://doi.org/10.1002/eem2.12284
- T. Qi, M. Jia, Q. Yuan, X. Zhang, M. Jia, Prussian blue analogs (PBA) derived heterostructure Zn-Fe bimetallic selenide nanospheres with high capacity sodium-ion storage. J. Alloys Compd. 940, 168887 (2023). https://doi.org/10.1016/j.jallcom.2023.168887
- S. Qiao, S. Dong, L. Yuan, T. Li, M. Ma et al., Structure defects engineering in Prussian blue cathode materials for high-performance sodium-ion batteries. J. Alloys Compd. 950, 169903 (2023). https://doi.org/10.1016/j.jallcom.2023.169903
- J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal–organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36, 2312471 (2024). https://doi.org/10.1002/adma.202312471
- F. Chen, S. Zhang, R. Guo, B. Ma, Y. Xiong et al., 1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption. Compos. Part B-Eng. 224, 109161 (2021). https://doi.org/10.1016/j.compositesb.2021.109161
- G. Ren, T. Tang, S. Song, J. Sun, Q. Xia et al., Prussian blue analogue derived CoS2/FeS2 confined in N, S dual-doped carbon nanofibers for sodium storage. ACS Appl. Nano Mater. 6, 18071–18082 (2023). https://doi.org/10.1021/acsanm.3c03360
- L. Zhang, J. Chen, H. Li, K. Han, Y.S. Zhang et al., N-doped Ni-Co bimetallic derived hollow nano-framework cubes anchored on 3D reduced graphene aerogel with enhanced sodium ion batteries performance. Colloid Surface A 659, 130796 (2023). https://doi.org/10.1016/j.colsurfa.2022.130796
- H. Bi, Y. Luo, C. Zhao, L. Ma, H. Huang, Graphene oxide suspension-based electrolyte promotes the cycling performance of aqueous sodium-ion batteries through the interaction between metal ions, free water molecules and functional groups. J. Power. Sources 555, 232380 (2023). https://doi.org/10.1016/j.jpowsour.2022.232380
- J.E. Kang, T.N. Vo, S.-K. Ahn, S.-W. Lee, I.T. Kim, Unique two-dimensional Prussian blue nanoplates for high-performance sodium-ion battery cathode. J. Alloys Compd. 939, 168773 (2023). https://doi.org/10.1016/j.jallcom.2023.168773
- Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai et al., Resorcinol-formaldehyde resin-coated prussian blue core-shell spheres and their derived unique yolk-shell FeS2@C spheres for lithium-ion batteries. Inorg. Chem. 58, 1330–1338 (2019). https://doi.org/10.1021/acs.inorgchem.8b02897
- X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2020). https://doi.org/10.1007/s40820-020-00534-x
- L. Zhang, H. Li, T. Sheng, J. Chen, M. Lu et al., Synthesizing Cu-doped CoSe2 nanoframe cubics for Na-ion batteries electrodes. Colloid Surface A 628, 127379 (2021). https://doi.org/10.1016/j.colsurfa.2021.127379
- Y. Chen, L. Hu, Novel Co3O4 porous polyhedrons derived from metal–organic framework toward high performance for electrochemical energy devices. J. Solid State Chem. 239, 23–29 (2016). https://doi.org/10.1016/j.jssc.2016.02.009
- J. Zhu, W. Tu, H. Pan, H. Zhang, B. Liu et al., Self-templating synthesis of hollow Co3O4 nanops embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 14, 5780–5787 (2020). https://doi.org/10.1021/acsnano.0c00712
- D. Meng, C. Zhang, Y. Liang, W. Qiu, F. Kong et al., Electrospun cobalt Prussian blue analogue-derived nanofibers for oxygen reduction reaction and lithium-ion batteries. J. Colloid Interface Sci. 599, 280–290 (2021). https://doi.org/10.1016/j.jcis.2021.04.102
- X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin et al., Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518–525 (2017). https://doi.org/10.1016/j.jallcom.2017.09.203
- J.-Q. Li, F.-C. Zhou, Y.-H. Sun, J.-M. Nan, FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2·nH2O Prussian blue analogues as an anode material for lithium-ion batteries. J. Alloys Compd. 740, 346–354 (2018). https://doi.org/10.1016/j.jallcom.2017.12.370
- J.-S. Gao, Z. Liu, Y. Lin, Y. Tang, T. Lian et al., NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem. Eng. J. 388, 124368 (2020). https://doi.org/10.1016/j.cej.2020.124368
- W. Wang, P. Zhang, S. Li, C. Zhou, S. Guo et al., Nitrogen-doped carbon-wrapped porous FeMnO3 nanocages derived from etched prussian blue analogues as high-performance anode for lithium ion batteries. J. Power. Sources 475, 228683 (2020). https://doi.org/10.1016/j.jpowsour.2020.228683
- L. Ding, T. Huang, D. Zhang, P. Qi, L. Zhang et al., Co3O4/Co nano-heterostructures embedded in N-doped carbon for lithium-O2 batteries. Electrochim. Acta 423, 140577 (2022). https://doi.org/10.1016/j.electacta.2022.140577
- L. Ma, T. Chen, G. Zhu, Y. Hu, H. Lu et al., Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A 4, 15041–15048 (2016). https://doi.org/10.1039/c6ta06692e
- B.K. Kang, Y.J. Choi, H.W. Choi, S.B. Kwon, S. Kim et al., Rational design and in-situ formation of nickel–cobalt nitride multi-core/hollow N-doped carbon shell anode for Li-ion batteries. Chem. Eng. J. 420, 129630 (2021). https://doi.org/10.1016/j.cej.2021.129630
- B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Y. Gu, X. Feng et al., N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv. Funct. Mater. 28, 1805444 (2018). https://doi.org/10.1002/adfm.201805444
- S. Zhang, Z. Wang, X. Hu, R. Zhu, X. Liu et al., Building Zn-Fe bimetal selenides heterostructures caged in nitrogen-doped carbon cubic for lithium and sodium ion batteries. J. Alloys Compd. 863, 158329 (2021). https://doi.org/10.1016/j.jallcom.2020.158329
- C. Song, Q. Jin, W. Zhang, C. Hu, Z. Bakenov et al., Prussian blue analogs derived Fe-Ni-P@nitrogen-doped carbon composites as sulfur host for high-performance lithium-sulfur batteries. J. Colloid Interface Sci. 595, 51–58 (2021). https://doi.org/10.1016/j.jcis.2021.03.125
- Z. Li, L. Zhang, X. Ge, C. Li, S. Dong et al., Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32, 494–502 (2017). https://doi.org/10.1016/j.nanoen.2017.01.009
- M. Jiang, L. Ren, Z. Hou, W. Hua, D. Lei et al., A superior sodium-ion battery based on tubular Prussian blue cathode and its derived phosphide anode. J. Power. Sources 554, 232334 (2023). https://doi.org/10.1016/j.jpowsour.2022.232334
- P. Nie, L. Shen, H. Luo, H. Li, G. Xu et al., Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale 5, 11087–11093 (2013). https://doi.org/10.1039/c3nr03289b
- H. Park, S. Jo, T. Song, U. Paik, Synthesis of alkali transition metal oxides derived from Prussian blue analogues toward low cationic disorder for Li-ion battery cathodes. Cryst. Growth Des. 20, 4749–4757 (2020). https://doi.org/10.1021/acs.cgd.0c00508
- Q. Yu, J. Hu, W. Wang, Y. Li, G. Suo et al., K0.6CoO2-xNx porous nanoframe: a co-enhanced ionic and electronic transmission for potassium ion batteries. Chem. Eng. J. 396, 125218 (2020). https://doi.org/10.1016/j.cej.2020.125218
- L. Duan, H. Tang, X. Xu, J. Liao, X. Li et al., MnFe Prussian blue analogue-derived P3–K0.5Mn0.67Fe0.33O1.95N0.05 cathode material for high-performance potassium-ion batteries. Energy Storage Mater. 62, 102950 (2023). https://doi.org/10.1016/j.ensm.2023.102950
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009). https://doi.org/10.1021/cm901452z
- A. Manthiram, J.B. Goodenough, Layered lithium cobalt oxide cathodes. Nat. Energy 6, 323–323 (2021). https://doi.org/10.1038/s41560-020-00764-8
- Y. Wang, R. Chen, E.H. Ang, Y. Yan, Y. Ding et al., Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Adv. Sustain. Syst. 5, 2100223 (2021). https://doi.org/10.1002/adsu.202100223
- D. Cai, H. Zhan, T. Wang, MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries. Mater. Lett. 197, 241–244 (2017). https://doi.org/10.1016/j.matlet.2017.02.012
- H. Xue, Z. Na, Y. Wu, X. Wang, Q. Li et al., Unique Co3O4/nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. J. Mater. Chem. A 6, 12466–12474 (2018). https://doi.org/10.1039/c8ta03959c
- L. Xue, Y. Li, F. Chen, W. Lin, D. Chen, 3D porous carbon network-reinforced defective CoFeOx@C as a high-rate electrode for lithium-ion batteries. Electrochim. Acta 428, 140950 (2022). https://doi.org/10.1016/j.electacta.2022.140950
- C. Liu, S. Yuan, Y. Yang, X.-X. Zhao, X. Duan et al., Prussian blue analogues-derived nitrogen-doped carbon-coated FeO/CoO hollow nanocages as a high-performance anode material for Li storage. Rare Met. 42, 4070–4080 (2023). https://doi.org/10.1007/s12598-023-02373-2
- D. Li, L. Zhang, J. Liang, L. Li, Understanding the formation of a cubic Mn0.6Fe0.4S solid-solution anode and its high performance for rechargeable lithium-ion batteries. J. Alloys Compd. 915, 165396 (2022). https://doi.org/10.1016/j.jallcom.2022.165396
- B. Bornamehr, V. Presser, S. Husmann, Mixed Cu–Fe sulfides derived from polydopamine-coated Prussian blue analogue as a lithium-ion battery electrode. ACS Omega 7, 38674–38685 (2022). https://doi.org/10.1021/acsomega.2c04209
- H. Gao, F. Yang, Y. Zheng, Q. Zhang, J. Hao et al., Three-dimensional porous cobalt phosphide nanocubes encapsulated in a graphene aerogel as an advanced anode with high coulombic efficiency for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 5373–5379 (2019). https://doi.org/10.1021/acsami.8b19613
- J.L. Niu, H.J. Peng, C.H. Zeng, X.M. Lin, P. Sathishkumar et al., An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chem. Eng. J. 336, 510–517 (2018). https://doi.org/10.1016/j.cej.2017.12.049
- J. Liu, C. Lou, J. Fu, X. Sun, J. Hou et al., Multiple transition metals modulated hierarchical networks for high performance of metal-ion batteries. J. Energy Chem. 70, 604–613 (2022). https://doi.org/10.1016/j.jechem.2022.02.053
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- G. Zou, H. Hou, P. Ge, Z. Huang, G. Zhao et al., Metal-organic framework-derived materials for sodium energy storage. Small 14, 1702648 (2017). https://doi.org/10.1002/smll.201702648
- X. Zhang, D. Li, G. Zhu, T. Lu, L. Pan, Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 499, 145–150 (2017). https://doi.org/10.1016/j.jcis.2017.03.104
- X. Zhang, X. Gao, Z. Wu, M. Zhu, Q. Jiang et al., Effects of binders on electrochemical sodium storage performance with porous CoFe2O4 nanocubes derived from metal-organic frameworks. Chem. Phys. 523, 124–129 (2019). https://doi.org/10.1016/j.chemphys.2019.04.020
- Y. Guo, Y. Zhu, C. Yuan, C. Wang, MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries. Mater. Lett. 199, 101–104 (2017). https://doi.org/10.1016/j.matlet.2017.04.069
- J. Liu, Y. Gao, C. Lou, Y. Chen, X. Gao et al., Regulating hybrid anodes for efficient Li+/Na+ storage. ACS Mater. Lett. 4, 1411–1421 (2022). https://doi.org/10.1021/acsmaterialslett.2c00335
- J.S. Park, S. Yang, Y.C. Kang, Prussian blue analogue nanocubes with hollow interior and porous walls encapsulated within reduced graphene oxide nanosheets and their sodium-ion storage performances. Chem. Eng. J. 393, 124606 (2020). https://doi.org/10.1016/j.cej.2020.124606
- R. Wei, Y. Dong, Y. Zhang, X. Kang, X. Sheng et al., Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance. Nano Res. 15, 3273–3282 (2021). https://doi.org/10.1007/s12274-021-3973-z
- H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo et al., Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 8, 25261–25267 (2016). https://doi.org/10.1021/acsami.6b07300
- Y. Von Lim, S. Huang, Y. Zhang, D. Kong, Y. Wang et al., Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Mater. 15, 98–107 (2018). https://doi.org/10.1016/j.ensm.2018.03.009
- Y. Zhou, Y. Chen, C. Yang, Y. Jiang, Z. Wang et al., Prussian blue analogue derived bimetallic phosphide for high areal capacity and binder-free sodium-ion battery anode. J. Power. Sources 546, 231940 (2022). https://doi.org/10.1016/j.jpowsour.2022.231940
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- Q. Wang, L. Kang, Z. Xing, C. Nie, H. Hong et al., Prussian blue analogue-derived ZnO/ZnFe2O4 core-shell nanospheres as high-performance anodes for lithium-ion and potassium-ion batteries. Batteries Supercaps 6, e202200411 (2023). https://doi.org/10.1002/batt.202200411
- J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu et al., Rational design of metal-organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/c8nr05239e
- S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai et al., 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30, 2001592 (2020). https://doi.org/10.1002/adfm.202001592
- J. Wang, B. Wang, X. Liu, J. Bai, H. Wang et al., Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
- S. Chen, H. Ma, X. Zhou, D. Jin, J. Yan et al., Heterostructure interface construction of cobalt/nickel diselenides hybridized with sp2–sp3 bonded carbon to boost internal/external sodium and potassium storage dynamics. ACS Appl. Energy Mater. 6, 424–438 (2022). https://doi.org/10.1021/acsaem.2c03333
- S.-S. Mai, K.-Y. Hsiao, Y.-C. Yang, Y.-R. Lu, M.-Y. Lu et al., Synchronous regulation of Schottky/p-n dual junction in Prussian blue-derived Janus heterostructures: a path to ultrafast long life potassium ion batteries. Chem. Eng. J. 474, 145992 (2023). https://doi.org/10.1016/j.cej.2023.145992
- Z. Zhang, C. Wu, Z. Chen, H. Li, H. Cao et al., Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J. Mater. Chem. A 8, 3369–3378 (2020). https://doi.org/10.1039/c9ta12191a
- S. Zhang, F. Ling, L. Wang, R. Xu, M. Ma et al., An open-ended Ni3S2–Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 34, 2201420 (2022). https://doi.org/10.1002/adma.202201420
- C. Dong, Y. Xia, Z. Su, Z. Han, Y. Dong et al., Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS2-based anode for lithium storage. J. Energy Chem. 97, 700–709 (2024). https://doi.org/10.1016/j.jechem.2024.06.055
- J. Wang, C.F. Du, Y. Xue, X. Tan, J. Kang et al., MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 1, 20210024 (2021). https://doi.org/10.1002/exp.20210024
- Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage. Exploration 2, 20210237 (2022). https://doi.org/10.1002/exp.20210237
- R. Shi, S. Jiao, Q. Yue, G. Gu, K. Zhang et al., Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration 2, 20220066 (2022). https://doi.org/10.1002/exp.20220066
- L. Lei, K. Sun, Z. Hongwei, C. Wang, T. Wei, Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at −20 °C. J. Storage Mater. 78, 109923 (2024). https://doi.org/10.1016/j.est.2023.109923
- J. Lin, R. Chenna-Krishna-Reddy, C. Zeng, X. Lin, A. Zeb et al., Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review. Coord. Chem. Rev. 446, 214118 (2021). https://doi.org/10.1016/j.ccr.2021.214118
- A. Van der Ven, Z. Deng, S. Banerjee, S.P. Ong, Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120, 6977–7019 (2020). https://doi.org/10.1021/acs.chemrev.9b00601
- Y. Zhang, J. Feng, J. Qin, Y.L. Zhong, S. Zhang et al., Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 10, 2301056 (2023). https://doi.org/10.1002/advs.202301056
- X. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang et al., Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energ. Rev. 2, 29–104 (2018). https://doi.org/10.1007/s41918-018-0024-x
- L. Liu, Z. Hu, L. Sun, G. Gao, X. Liu, Controlled synthesis and enhanced electrochemical performance of Prussian blue analogue-derived hollow FeCo2O4 nanospheres as lithium-ion battery anodes. RSC Adv. 5, 36575–36581 (2015). https://doi.org/10.1039/c5ra02781k
- F. Zheng, D. Zhu, X. Shi, Q. Chen, Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 3, 2815–2824 (2015). https://doi.org/10.1039/c4ta06150k
- L. Kang, H. Ren, Z. Xing, Y. Zhao, Z. Ju, Hierarchical porous CoxFe3−xO4 nanocubes obtained by calcining Prussian blue analogues as anodes for lithium-ion batteries. New J. Chem. 44, 12546–12555 (2020). https://doi.org/10.1039/d0nj01027h
- G. Huang, L. Zhang, F. Zhang, L. Wang, Metal–organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6, 5509–5515 (2014). https://doi.org/10.1039/c3nr06041a
- S.Z. Guo, J.Z. Liu, C.C. Zhou, P.L. Zhang, S. Li et al., Construction of highly dispersed and electroconductive silver nanops modified mesoporous Co3O4 hollow nanoboxes from Prussian blue analogues for boosting lithium storage performances. J. Alloys Compd. 814, 152305 (2020). https://doi.org/10.1016/j.jallcom.2019.152305
- D. Zhu, F. Zheng, S. Xu, Y. Zhang, Q. Chen, MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans. 44, 16946–16952 (2015). https://doi.org/10.1039/c5dt02271a
- W. Yang, J. Chen, Z. Xue, T. Shu, J. Ye et al., Study of synergetic effects of ternary transition metal in the electrochemical performance of metal oxides anode for lithium-ion battery. Ceram. Int. 47, 20586–20594 (2021). https://doi.org/10.1016/j.ceramint.2021.04.068
- L. Fan, X. Guo, W. Li, X. Hang, H. Pang, Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes. Chin. Chem. Lett. 34, 107447 (2023). https://doi.org/10.1016/j.cclet.2022.04.045
- H.-B. Guan, Y. Xie, S.-G. Wang, R. Zeng, T. Qin et al., Hierarchical microspheres constructed by NiCo2O4/NiO@C composite nanorods for lithium-ion batteries with enhanced reversible capacity and cycle performance. J. Alloys Compd. 916, 165456 (2022). https://doi.org/10.1016/j.jallcom.2022.165456
- B. Bornamehr, H. El Gaidi, S. Arnold, E. Pameté, V. Presser, Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes. Sustain. Energ. Fuels 7, 4514–4524 (2023). https://doi.org/10.1039/d3se00854a
- J. Shao, J. Feng, H. Zhou, A. Yuan, Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl. Surf. Sci. 471, 745–752 (2019). https://doi.org/10.1016/j.apsusc.2018.12.040
- S.-G. Wang, Y. Xie, Y.-L. Hou, R. Zeng, T. Qin et al., Graphene aerogel encapsulated Co3O4 open-ended microcage anode with enhanced performance for lithium-ion batteries. Appl. Surf. Sci. 605, 154759 (2022). https://doi.org/10.1016/j.apsusc.2022.154759
- W.-X. Wen, Y. Xie, H.-Y. Wang, B.-H. Zhang, Y.-L. Hou et al., Graphene aerogel encapsulated Co3O4 microcubes derived from prussian blue analog as integrated anode with enhanced Li-ion storage properties. Ceram. Int. 49, 11788–11795 (2023). https://doi.org/10.1016/j.ceramint.2022.12.023
- P.-P. Chen, H.-B. Guan, B.-H. Zhang, J.-T. Lei, Z.-A. Li et al., Graphene encapsulated NiO-Co3O4 open-ended hollow nanocube anode with enhanced performance for lithium/sodium ion batteries. J. Alloys Compd. 979, 173479 (2024). https://doi.org/10.1016/j.jallcom.2024.173479
- Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai et al., NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2018). https://doi.org/10.1016/j.ensm.2017.06.001
- I. Ullah, R. Saeed, A. Inayat, M. Zubair, X. Wu et al., Continuous conducting architecture developed by supporting Prussian blue analogue on metal-organic framework derived carbon-doped manganese-oxide nanorods for high-performance sodium-ion batteries. J. Alloys Compd. 964, 171223 (2023). https://doi.org/10.1016/j.jallcom.2023.171223
- R. Zang, P. Li, X. Guo, Z. Man, S. Zhang et al., Yolk–shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 7, 14051–14059 (2019). https://doi.org/10.1039/c9ta03917a
- Y. Von Lim, S. Huang, Q. Wu, Y. Zhang, D. Kong et al., Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy 61, 626–636 (2019). https://doi.org/10.1016/j.nanoen.2019.04.041
- Y. He, C. Liu, Z. Xie, J. Wang, G. Chen et al., Prussian blue analogue-derived cobalt sulfide nanops embedded in N/S-codoped carbon frameworks as a high-performance anode material for sodium-ion batteries. ACS Appl. Energy Mater. 5, 8697–8708 (2022). https://doi.org/10.1021/acsaem.2c01233
- P. Wan, S. Wang, S. Zhu, C. Wang, Z. Yu et al., N-doped hollow Fe0.4Co0.6S2@NC nanoboxes derived from a Prussian blue analogue as a sodium ion anode. Dalton Trans. 51, 6855–6859 (2022). https://doi.org/10.1039/D2DT00218C
- J. Hu, C. Liu, C. Cai, Q. Sun, M. Lu et al., Prussian blue analogue-derived Fe-doped CoS2 nanops confined in bayberry-like N-doped carbon spheres as anodes for sodium-ion batteries. Polymers 15, 1496 (2023). https://doi.org/10.3390/polym15061496
- R. Deng, P. Wang, Y. Chen, Q. Zheng, D. Lin, NiS2/CoS2@NC@C nanocubes derived from prussian blue analogues as an advanced anode with extraordinary long-cycle performance for sodium ion batteries. Electrochim. Acta 469, 143245 (2023). https://doi.org/10.1016/j.electacta.2023.143245
- Z. Li, R. Sun, Z. Qin, X. Liu, C. Wang et al., Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater. Chem. Front. 5, 7540–7547 (2021). https://doi.org/10.1039/d1qm00841b
- H. Xie, P. Wan, C. Wu, Q. He, Fe0.6Co0.3Ni0.1S2@NC core-shell nanoboxes as anodes for ultrafast sodium-ion batteries. J. Solid State Chem. 329, 124433 (2024). https://doi.org/10.1016/j.jssc.2023.124433
- P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) Prussian blue analogs. Adv. Mater. 31, 1806092 (2019). https://doi.org/10.1002/adma.201806092
- Y.-M. Lin, H.-S. Fan, C.-Z. Zhu, J. Xu, Metal-organic framework (MOF)-derived selenidation strategy to prepare porous (Zn, Cu)CoSex micro/nanostructures for sodium-ion batteries. Rare Met. 41, 4104–4115 (2022). https://doi.org/10.1007/s12598-022-02095-x
- J. Feng, S. Luo, S. Yan, Y. Zhan, Q. Wang et al., Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. J. Mater. Chem. A. 9, 1610–1622 (2021). https://doi.org/10.1039/d0ta08423a
- J. Wang, X. Yang, C. Yang, Y. Dai, S. Chen et al., Three-dimensional (3D) ordered macroporous bimetallic (Mn, Fe) selenide/carbon composite with heterojunction interface for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 15, 40100–40114 (2023). https://doi.org/10.1021/acsami.3c07951
- S. Jiang, M. Xiang, J. Zhang, S. Chu, A. Marcelli et al., Rational design of hierarchical FeSe2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale 12, 22210–22216 (2020). https://doi.org/10.1039/d0nr06359b
- L. Ren, M. Jiang, Z. Hou, N. Li, D. Nan et al., Building Na-ion full cells using homologous Prussian blue and its phosphide derivative. Appl. Surf. Sci. 612, 155952 (2023). https://doi.org/10.1016/j.apsusc.2022.155952
- Q. Cheng, Q. Deng, W. Zhong, T. Tan, X. Liu et al., Criticality of solid electrolyte interphase in achieving high performance of sodium-ion batteries. Chem. Eng. J. 457, 141097 (2023). https://doi.org/10.1016/j.cej.2022.141097
- G. Qin, Y. Liu, P. Han, F. Liu, Q. Yang et al., Dispersed MoS2 nanosheets in core shell Co3O4@C nanocubes for superior potassium ion storage. Appl. Surf. Sci. 514, 145946 (2020). https://doi.org/10.1016/j.apsusc.2020.145946
- Q. Cheng, X. Liu, Q. Deng, C. Chen, W. Zhong et al., Heterostructured Ni3S4/Co9S8 encapsulated in nitrogen-doped carbon nanocubes for advanced potassium storage. Chem. Eng. J. 446, 136829 (2022). https://doi.org/10.1016/j.cej.2022.136829
- Z. Zhang, M. Avdeev, H. Chen, W. Yin, W.H. Kan et al., Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nat. Commun. 13, 7790 (2022). https://doi.org/10.1038/s41467-022-35376-1
- M. Teusner, J. Mata, N. Sharma, Small angle neutron scattering and its application in battery systems. Curr. Opin. Electrochem. 34, 100990 (2022). https://doi.org/10.1016/j.coelec.2022.100990
- H. Zhao, A.A. Sousa, P. Schuck, Flotation coefficient distributions of lipid nanops by sedimentation velocity analytical ultracentrifugation. ACS Nano 18, 18663–18672 (2024). https://doi.org/10.1021/acsnano.4c05322
- L. Zhang, X. Li, M. Yang, W. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 41, 522–545 (2021). https://doi.org/10.1016/j.ensm.2021.06.033
- S. Qiu, Y. Xu, X. Wu, X. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energ. Rev. 5, 242–262 (2021). https://doi.org/10.1007/s41918-020-00088-x
- S. Zhao, H. Che, S. Chen, H. Tao, J. Liao et al., Research progress on the solid electrolyte of solid-state sodium-ion batteries. Electrochem. Energ. Rev. 7, 3 (2024). https://doi.org/10.1007/s41918-023-00196-4
- B. Ran, R. Cheng, Y. Zhong, X. Zhang, T. Zhao et al., High entropy activated and stabilized nickel-based Prussian blue analogue for high-performance aqueous sodium-ion batteries. Energy Storage Mater. 71, 103583 (2024). https://doi.org/10.1016/j.ensm.2024.103583
References
L. Ben, J. Zhou, H. Ji, H. Yu, W. Zhao et al., Si nanops seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries. Mater. Futures 1, 015101 (2021). https://doi.org/10.1088/2752-5724/ac3257
Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11, 2000982 (2020). https://doi.org/10.1002/aenm.202000982
R. Liu, N. Li, E. Zhao, J. Zhao, L. Yang et al., Facile molten salt synthesis of carbon-anchored TiN nanops for durable high-rate lithium-ion battery anodes. Mater. Futures 1, 045102 (2022). https://doi.org/10.1088/2752-5724/ac9cf7
C. Zheng, S. Tang, F. Wen, J. Peng, W. Yang et al., Reinforced cathode-garnet interface for high-capacity all-solid-state batteries. Mater. Futures 1, 045103 (2022). https://doi.org/10.1088/2752-5724/aca110
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2020). https://doi.org/10.1021/acs.chemrev.0c00767
W. He, W. Guo, H. Wu, L. Lin, Q. Liu et al., Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 33, 2005937 (2021). https://doi.org/10.1002/adma.202005937
Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3, 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
J.-E. Zhou, Y. Liu, Z. Peng, Q. Ye, H. Zhong et al., Unveiling the tailorable electrochemical properties of zeolitic imidazolate framework-derived Ni-doped LiCoO2 for lithium-ion batteries in half/full cells. J. Energy Chem. 93, 229–242 (2024). https://doi.org/10.1016/j.jechem.2024.02.005
Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1, 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
S. Sanati, R. Abazari, J. Albero, A. Morsali, H. García et al., Metal–organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60, 11048–11067 (2021). https://doi.org/10.1002/anie.202010093
H.H. Tan, L.V. Xiao-Long, J.L. Liu, Y.F. Cheng, Q.L. Zhou et al., A 2D layer copper(II) coordination polymer with 3-nitrophthalic acid: Synthesis, crystal structure and copper 3-nitrophthalate metal-organic framework-graphene oxide nanocomposite. Chin. J. Struct. Chem. 40, 459–464 (2021). https://doi.org/10.14102/j.cnki.0254-5861.2011-2970
J. Sun, H.X. Liu, T.F. Liu, Synthesis, crystal structure and characterization of a new hydrogen-bonded organic framework. Chin. J. Struct. Chem. 40, 1082–1087 (2021). https://doi.org/10.14102/j.cnki.0254-5861.2011-3113
C.-P. Wan, J.-D. Yi, R. Cao, Y.-B. Huang, Conductive metal/covalent organic frameworks for CO2 electroreduction. Chin. J. Struct. Chem. 41, 2205001–2205014 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0075
H. Yi, R. Qin, S. Ding, Y. Wang, S. Li et al., Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31, 2006970 (2021). https://doi.org/10.1002/adfm.202006970
J. Chen, L. Wei, A. Mahmood, Z. Pei, Z. Zhou et al., Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater. 25, 585–612 (2020). https://doi.org/10.1016/j.ensm.2019.09.024
J. Cattermull, N. Roth, S.J. Cassidy, M. Pasta, A.L. Goodwin, K-ion slides in Prussian blue analogues. J. Am. Chem. Soc. 145, 24249–24259 (2023). https://doi.org/10.1021/jacs.3c08751
W. Shu, C. Han, X. Wang, Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: Past, present, and future. Adv. Funct. Mater. 34, 2309636 (2024). https://doi.org/10.1002/adfm.202309636
G. Du, H. Pang, Recent advancements in Prussian blue analogues: preparation and application in batteries. Energy Storage Mater. 36, 387–408 (2021). https://doi.org/10.1016/j.ensm.2021.01.006
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
Q. Xue, L. Li, Y. Huang, R. Huang, F. Wu et al., Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 11, 22339–22345 (2019). https://doi.org/10.1021/acsami.9b04579
X. Tang, H. Liu, D. Su, P.H.L. Notten, G. Wang, Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 11, 3979–3990 (2018). https://doi.org/10.1007/s12274-018-1979-y
Y. Huang, X. Zhang, L. Ji, L. Wang, B.B. Xu et al., Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Mater. 58, 1–8 (2023). https://doi.org/10.1016/j.ensm.2023.03.011
B. Xie, B. Sun, T. Gao, Y. Ma, G. Yin et al., Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478 (2022). https://doi.org/10.1016/j.ccr.2022.214478
F. Ma, Q. Li, T. Wang, H. Zhang, G. Wu, Energy storage materials derived from Prussian blue analogues. Sci. Bull. 62, 358–368 (2017). https://doi.org/10.1016/j.scib.2017.01.030
J. Nai, X.W.D. Lou, Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 31, 1706825 (2019). https://doi.org/10.1002/adma.201706825
X. Liang, G. Wang, W. Gu, G. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 177, 97–106 (2021). https://doi.org/10.1016/j.carbon.2021.02.063
E.S. Goda, S. Lee, M. Sohail, K.R. Yoon, Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031
M.B. Zakaria, T. Chikyow, Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord. Chem. Rev. 352, 328–345 (2017). https://doi.org/10.1016/j.ccr.2017.09.014
L. Zhang, B. Zhang, G. Xia, X. Li, J. Wang, Prussian blue analogues and their derivatives: from elaborate microstructure design to boosted fenton-like application. Acc. Mater. Res. 5, 585–599 (2024). https://doi.org/10.1021/accountsmr.3c00289
L.-M. Cao, D. Lu, D.-C. Zhong, T.-B. Lu, Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord. Chem. Rev. 407, 213156 (2020). https://doi.org/10.1016/j.ccr.2019.213156
C. Deng, D.W. Wang, Functional electrocatalysts derived from Prussian blue and its analogues for metal-air batteries: progress and prospects. Batteries Supercaps 2, 290–310 (2019). https://doi.org/10.1002/batt.201800116
Y.-R. Ji, Y.-F. Guo, X. Liu, P.-F. Wang, T.-F. Yi, Insights on rational design and regulation strategies of Prussian blue analogues and their derivatives towards high-performance electrocatalysts. Chem. Eng. J. 471, 144743 (2023). https://doi.org/10.1016/j.cej.2023.144743
X. Wu, Y. Ru, Y. Bai, G. Zhang, Y. Shi et al., PBA composites and their derivatives in energy and environmental applications. Coord. Chem. Rev. 451, 214260 (2022). https://doi.org/10.1016/j.ccr.2021.214260
K. Wang, F. Zhang, G. Zhu, H. Zhang, Y. Zhao et al., Surface anchoring approach for growth of CeO2 nanocrystals on Prussian blue capsules enable superior lithium storage. ACS Appl. Mater. Interfaces 11, 33082–33090 (2019). https://doi.org/10.1021/acsami.9b11212
J. Lin, C. Zeng, X. Lin, C. Xu, X. Xu et al., Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery. ACS Nano 15, 4594–4607 (2021). https://doi.org/10.1021/acsnano.0c08808
X.M. Lin, J.H. Chen, J.J. Fan, Y. Ma, P. Radjenovic et al., Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 9, 1902312 (2019). https://doi.org/10.1002/aenm.201902312
Q. Liu, S.-J. Zhang, C.-C. Xiang, C.-X. Luo, P.-F. Zhang et al., Cubic MnS–FeS2 composites derived from a Prussian blue analogue as anode materials for sodium-ion batteries with long-term cycle stability. ACS Appl. Mater. Interfaces 12, 43624–43633 (2020). https://doi.org/10.1021/acsami.0c10874
G. Ou, M. Huang, X. Lu, I. Manke, C. Yang et al., A metal-organic framework-derived strategy for constructing synergistic N-doped carbon-encapsulated NiCoP@N-C-based anodes toward high-efficient lithium storage. Small 20, 2307615 (2024). https://doi.org/10.1002/smll.202307615
X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li et al., Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 4, 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
Y. Li, Z. Fan, Z. Peng, Z. Xu, X. Zhang et al., Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration. EcoMat 5, e12415 (2023). https://doi.org/10.1002/eom2.12415
Y. Li, Z. Xu, X. Zhang, Z. Wu, J.-E. Zhou et al., Tuning the electrochemical behaviors of N-doped LiMnxFe1–xPO4/C via cation engineering with metal-organic framework-templated strategy. J. Energy Chem. 85, 239–253 (2023). https://doi.org/10.1016/j.jechem.2023.06.015
J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022). https://doi.org/10.1002/adma.202108384
Y. Yang, J. Zhou, L. Wang, Z. Jiao, M. Xiao et al., Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-. Zn- and Al-ion batteries. Nano Energy 99, 107424 (2022). https://doi.org/10.1016/j.nanoen.2022.107424
J.-T. Su, Y.-J. Wu, C.-L. Huang, Y.-A. Chen, H.-Y. Cheng et al., Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chem. Eng. J. 396, 125314 (2020). https://doi.org/10.1016/j.cej.2020.125314
Y. Tang, J. Hu, H. Tao, Y. Li, W. Li et al., Rational design of Prussian blue analogues as conversion anodes for lithium-ion batteries with high capacity and long cycle life. J. Alloys Compd. 891, 161867 (2022). https://doi.org/10.1016/j.jallcom.2021.161867
Z. Wang, M.T. Sougrati, Y. He, P.N. Le Pham, W. Xu et al., Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization. Nano Energy 109, 108256 (2023). https://doi.org/10.1016/j.nanoen.2023.108256
Y. Guo, P. Wu, H. Zhong, J. Huang, G. Ma et al., Prussian blue analogue/KB-derived Ni/Co/KB composite as a superior adsorption-catalysis separator modification material for Li-S batteries. J. Colloid Interface Sci. 625, 425–434 (2022). https://doi.org/10.1016/j.jcis.2022.06.036
R. Li, Z. Bai, W. Hou, J. Qiao, W. Sun et al., Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithium−sulfur batteries. Chin. Chem. Lett. 32, 4063–4069 (2021). https://doi.org/10.1016/j.cclet.2020.03.048
G. Ou, J. Chen, M. Lu, J. Liu, X. Zhang et al., A metal–organic framework approach to engineer ZnO/Co3ZnC/N-doped carbon composite as anode material for boosting lithium storage. J. Alloys Compd. 923, 166436 (2022). https://doi.org/10.1016/j.jallcom.2022.166436
G. Ou, Z. Peng, Y. Zhang, Z. Xu, A. Zeb et al., A metal-organic framework-derived engineering of carbon-encapsulated monodispersed CoP/Co2P@N-C electroactive nanops toward highly efficient lithium storage. Electrochim. Acta 467, 143098 (2023). https://doi.org/10.1016/j.electacta.2023.143098
A. Li, L. Duan, J. Liao, J. Sun, Y. Man et al., Formation of Mn–Ni Prussian blue analogue spheres as a superior cathode material for potassium-ion batteries. ACS Appl. Energy Mater. 5, 11789–11796 (2022). https://doi.org/10.1021/acsaem.2c02288
J. Lin, C. Xu, M. Lu, X. Lin, Z. Ali et al., Trimetallic metal-organic framework nanoframe superstructures: a stress-buffering architecture engineering of anode material toward boosted lithium storage performance. Energy Environ. Mater. 6, e12284 (2022). https://doi.org/10.1002/eem2.12284
T. Qi, M. Jia, Q. Yuan, X. Zhang, M. Jia, Prussian blue analogs (PBA) derived heterostructure Zn-Fe bimetallic selenide nanospheres with high capacity sodium-ion storage. J. Alloys Compd. 940, 168887 (2023). https://doi.org/10.1016/j.jallcom.2023.168887
S. Qiao, S. Dong, L. Yuan, T. Li, M. Ma et al., Structure defects engineering in Prussian blue cathode materials for high-performance sodium-ion batteries. J. Alloys Compd. 950, 169903 (2023). https://doi.org/10.1016/j.jallcom.2023.169903
J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal–organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36, 2312471 (2024). https://doi.org/10.1002/adma.202312471
F. Chen, S. Zhang, R. Guo, B. Ma, Y. Xiong et al., 1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption. Compos. Part B-Eng. 224, 109161 (2021). https://doi.org/10.1016/j.compositesb.2021.109161
G. Ren, T. Tang, S. Song, J. Sun, Q. Xia et al., Prussian blue analogue derived CoS2/FeS2 confined in N, S dual-doped carbon nanofibers for sodium storage. ACS Appl. Nano Mater. 6, 18071–18082 (2023). https://doi.org/10.1021/acsanm.3c03360
L. Zhang, J. Chen, H. Li, K. Han, Y.S. Zhang et al., N-doped Ni-Co bimetallic derived hollow nano-framework cubes anchored on 3D reduced graphene aerogel with enhanced sodium ion batteries performance. Colloid Surface A 659, 130796 (2023). https://doi.org/10.1016/j.colsurfa.2022.130796
H. Bi, Y. Luo, C. Zhao, L. Ma, H. Huang, Graphene oxide suspension-based electrolyte promotes the cycling performance of aqueous sodium-ion batteries through the interaction between metal ions, free water molecules and functional groups. J. Power. Sources 555, 232380 (2023). https://doi.org/10.1016/j.jpowsour.2022.232380
J.E. Kang, T.N. Vo, S.-K. Ahn, S.-W. Lee, I.T. Kim, Unique two-dimensional Prussian blue nanoplates for high-performance sodium-ion battery cathode. J. Alloys Compd. 939, 168773 (2023). https://doi.org/10.1016/j.jallcom.2023.168773
Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai et al., Resorcinol-formaldehyde resin-coated prussian blue core-shell spheres and their derived unique yolk-shell FeS2@C spheres for lithium-ion batteries. Inorg. Chem. 58, 1330–1338 (2019). https://doi.org/10.1021/acs.inorgchem.8b02897
X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2020). https://doi.org/10.1007/s40820-020-00534-x
L. Zhang, H. Li, T. Sheng, J. Chen, M. Lu et al., Synthesizing Cu-doped CoSe2 nanoframe cubics for Na-ion batteries electrodes. Colloid Surface A 628, 127379 (2021). https://doi.org/10.1016/j.colsurfa.2021.127379
Y. Chen, L. Hu, Novel Co3O4 porous polyhedrons derived from metal–organic framework toward high performance for electrochemical energy devices. J. Solid State Chem. 239, 23–29 (2016). https://doi.org/10.1016/j.jssc.2016.02.009
J. Zhu, W. Tu, H. Pan, H. Zhang, B. Liu et al., Self-templating synthesis of hollow Co3O4 nanops embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 14, 5780–5787 (2020). https://doi.org/10.1021/acsnano.0c00712
D. Meng, C. Zhang, Y. Liang, W. Qiu, F. Kong et al., Electrospun cobalt Prussian blue analogue-derived nanofibers for oxygen reduction reaction and lithium-ion batteries. J. Colloid Interface Sci. 599, 280–290 (2021). https://doi.org/10.1016/j.jcis.2021.04.102
X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin et al., Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloys Compd. 729, 518–525 (2017). https://doi.org/10.1016/j.jallcom.2017.09.203
J.-Q. Li, F.-C. Zhou, Y.-H. Sun, J.-M. Nan, FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2·nH2O Prussian blue analogues as an anode material for lithium-ion batteries. J. Alloys Compd. 740, 346–354 (2018). https://doi.org/10.1016/j.jallcom.2017.12.370
J.-S. Gao, Z. Liu, Y. Lin, Y. Tang, T. Lian et al., NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem. Eng. J. 388, 124368 (2020). https://doi.org/10.1016/j.cej.2020.124368
W. Wang, P. Zhang, S. Li, C. Zhou, S. Guo et al., Nitrogen-doped carbon-wrapped porous FeMnO3 nanocages derived from etched prussian blue analogues as high-performance anode for lithium ion batteries. J. Power. Sources 475, 228683 (2020). https://doi.org/10.1016/j.jpowsour.2020.228683
L. Ding, T. Huang, D. Zhang, P. Qi, L. Zhang et al., Co3O4/Co nano-heterostructures embedded in N-doped carbon for lithium-O2 batteries. Electrochim. Acta 423, 140577 (2022). https://doi.org/10.1016/j.electacta.2022.140577
L. Ma, T. Chen, G. Zhu, Y. Hu, H. Lu et al., Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A 4, 15041–15048 (2016). https://doi.org/10.1039/c6ta06692e
B.K. Kang, Y.J. Choi, H.W. Choi, S.B. Kwon, S. Kim et al., Rational design and in-situ formation of nickel–cobalt nitride multi-core/hollow N-doped carbon shell anode for Li-ion batteries. Chem. Eng. J. 420, 129630 (2021). https://doi.org/10.1016/j.cej.2021.129630
B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Y. Gu, X. Feng et al., N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv. Funct. Mater. 28, 1805444 (2018). https://doi.org/10.1002/adfm.201805444
S. Zhang, Z. Wang, X. Hu, R. Zhu, X. Liu et al., Building Zn-Fe bimetal selenides heterostructures caged in nitrogen-doped carbon cubic for lithium and sodium ion batteries. J. Alloys Compd. 863, 158329 (2021). https://doi.org/10.1016/j.jallcom.2020.158329
C. Song, Q. Jin, W. Zhang, C. Hu, Z. Bakenov et al., Prussian blue analogs derived Fe-Ni-P@nitrogen-doped carbon composites as sulfur host for high-performance lithium-sulfur batteries. J. Colloid Interface Sci. 595, 51–58 (2021). https://doi.org/10.1016/j.jcis.2021.03.125
Z. Li, L. Zhang, X. Ge, C. Li, S. Dong et al., Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32, 494–502 (2017). https://doi.org/10.1016/j.nanoen.2017.01.009
M. Jiang, L. Ren, Z. Hou, W. Hua, D. Lei et al., A superior sodium-ion battery based on tubular Prussian blue cathode and its derived phosphide anode. J. Power. Sources 554, 232334 (2023). https://doi.org/10.1016/j.jpowsour.2022.232334
P. Nie, L. Shen, H. Luo, H. Li, G. Xu et al., Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale 5, 11087–11093 (2013). https://doi.org/10.1039/c3nr03289b
H. Park, S. Jo, T. Song, U. Paik, Synthesis of alkali transition metal oxides derived from Prussian blue analogues toward low cationic disorder for Li-ion battery cathodes. Cryst. Growth Des. 20, 4749–4757 (2020). https://doi.org/10.1021/acs.cgd.0c00508
Q. Yu, J. Hu, W. Wang, Y. Li, G. Suo et al., K0.6CoO2-xNx porous nanoframe: a co-enhanced ionic and electronic transmission for potassium ion batteries. Chem. Eng. J. 396, 125218 (2020). https://doi.org/10.1016/j.cej.2020.125218
L. Duan, H. Tang, X. Xu, J. Liao, X. Li et al., MnFe Prussian blue analogue-derived P3–K0.5Mn0.67Fe0.33O1.95N0.05 cathode material for high-performance potassium-ion batteries. Energy Storage Mater. 62, 102950 (2023). https://doi.org/10.1016/j.ensm.2023.102950
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009). https://doi.org/10.1021/cm901452z
A. Manthiram, J.B. Goodenough, Layered lithium cobalt oxide cathodes. Nat. Energy 6, 323–323 (2021). https://doi.org/10.1038/s41560-020-00764-8
Y. Wang, R. Chen, E.H. Ang, Y. Yan, Y. Ding et al., Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Adv. Sustain. Syst. 5, 2100223 (2021). https://doi.org/10.1002/adsu.202100223
D. Cai, H. Zhan, T. Wang, MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries. Mater. Lett. 197, 241–244 (2017). https://doi.org/10.1016/j.matlet.2017.02.012
H. Xue, Z. Na, Y. Wu, X. Wang, Q. Li et al., Unique Co3O4/nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. J. Mater. Chem. A 6, 12466–12474 (2018). https://doi.org/10.1039/c8ta03959c
L. Xue, Y. Li, F. Chen, W. Lin, D. Chen, 3D porous carbon network-reinforced defective CoFeOx@C as a high-rate electrode for lithium-ion batteries. Electrochim. Acta 428, 140950 (2022). https://doi.org/10.1016/j.electacta.2022.140950
C. Liu, S. Yuan, Y. Yang, X.-X. Zhao, X. Duan et al., Prussian blue analogues-derived nitrogen-doped carbon-coated FeO/CoO hollow nanocages as a high-performance anode material for Li storage. Rare Met. 42, 4070–4080 (2023). https://doi.org/10.1007/s12598-023-02373-2
D. Li, L. Zhang, J. Liang, L. Li, Understanding the formation of a cubic Mn0.6Fe0.4S solid-solution anode and its high performance for rechargeable lithium-ion batteries. J. Alloys Compd. 915, 165396 (2022). https://doi.org/10.1016/j.jallcom.2022.165396
B. Bornamehr, V. Presser, S. Husmann, Mixed Cu–Fe sulfides derived from polydopamine-coated Prussian blue analogue as a lithium-ion battery electrode. ACS Omega 7, 38674–38685 (2022). https://doi.org/10.1021/acsomega.2c04209
H. Gao, F. Yang, Y. Zheng, Q. Zhang, J. Hao et al., Three-dimensional porous cobalt phosphide nanocubes encapsulated in a graphene aerogel as an advanced anode with high coulombic efficiency for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 5373–5379 (2019). https://doi.org/10.1021/acsami.8b19613
J.L. Niu, H.J. Peng, C.H. Zeng, X.M. Lin, P. Sathishkumar et al., An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chem. Eng. J. 336, 510–517 (2018). https://doi.org/10.1016/j.cej.2017.12.049
J. Liu, C. Lou, J. Fu, X. Sun, J. Hou et al., Multiple transition metals modulated hierarchical networks for high performance of metal-ion batteries. J. Energy Chem. 70, 604–613 (2022). https://doi.org/10.1016/j.jechem.2022.02.053
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
G. Zou, H. Hou, P. Ge, Z. Huang, G. Zhao et al., Metal-organic framework-derived materials for sodium energy storage. Small 14, 1702648 (2017). https://doi.org/10.1002/smll.201702648
X. Zhang, D. Li, G. Zhu, T. Lu, L. Pan, Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 499, 145–150 (2017). https://doi.org/10.1016/j.jcis.2017.03.104
X. Zhang, X. Gao, Z. Wu, M. Zhu, Q. Jiang et al., Effects of binders on electrochemical sodium storage performance with porous CoFe2O4 nanocubes derived from metal-organic frameworks. Chem. Phys. 523, 124–129 (2019). https://doi.org/10.1016/j.chemphys.2019.04.020
Y. Guo, Y. Zhu, C. Yuan, C. Wang, MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries. Mater. Lett. 199, 101–104 (2017). https://doi.org/10.1016/j.matlet.2017.04.069
J. Liu, Y. Gao, C. Lou, Y. Chen, X. Gao et al., Regulating hybrid anodes for efficient Li+/Na+ storage. ACS Mater. Lett. 4, 1411–1421 (2022). https://doi.org/10.1021/acsmaterialslett.2c00335
J.S. Park, S. Yang, Y.C. Kang, Prussian blue analogue nanocubes with hollow interior and porous walls encapsulated within reduced graphene oxide nanosheets and their sodium-ion storage performances. Chem. Eng. J. 393, 124606 (2020). https://doi.org/10.1016/j.cej.2020.124606
R. Wei, Y. Dong, Y. Zhang, X. Kang, X. Sheng et al., Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance. Nano Res. 15, 3273–3282 (2021). https://doi.org/10.1007/s12274-021-3973-z
H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo et al., Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 8, 25261–25267 (2016). https://doi.org/10.1021/acsami.6b07300
Y. Von Lim, S. Huang, Y. Zhang, D. Kong, Y. Wang et al., Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Mater. 15, 98–107 (2018). https://doi.org/10.1016/j.ensm.2018.03.009
Y. Zhou, Y. Chen, C. Yang, Y. Jiang, Z. Wang et al., Prussian blue analogue derived bimetallic phosphide for high areal capacity and binder-free sodium-ion battery anode. J. Power. Sources 546, 231940 (2022). https://doi.org/10.1016/j.jpowsour.2022.231940
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
Q. Wang, L. Kang, Z. Xing, C. Nie, H. Hong et al., Prussian blue analogue-derived ZnO/ZnFe2O4 core-shell nanospheres as high-performance anodes for lithium-ion and potassium-ion batteries. Batteries Supercaps 6, e202200411 (2023). https://doi.org/10.1002/batt.202200411
J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu et al., Rational design of metal-organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/c8nr05239e
S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai et al., 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30, 2001592 (2020). https://doi.org/10.1002/adfm.202001592
J. Wang, B. Wang, X. Liu, J. Bai, H. Wang et al., Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
S. Chen, H. Ma, X. Zhou, D. Jin, J. Yan et al., Heterostructure interface construction of cobalt/nickel diselenides hybridized with sp2–sp3 bonded carbon to boost internal/external sodium and potassium storage dynamics. ACS Appl. Energy Mater. 6, 424–438 (2022). https://doi.org/10.1021/acsaem.2c03333
S.-S. Mai, K.-Y. Hsiao, Y.-C. Yang, Y.-R. Lu, M.-Y. Lu et al., Synchronous regulation of Schottky/p-n dual junction in Prussian blue-derived Janus heterostructures: a path to ultrafast long life potassium ion batteries. Chem. Eng. J. 474, 145992 (2023). https://doi.org/10.1016/j.cej.2023.145992
Z. Zhang, C. Wu, Z. Chen, H. Li, H. Cao et al., Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J. Mater. Chem. A 8, 3369–3378 (2020). https://doi.org/10.1039/c9ta12191a
S. Zhang, F. Ling, L. Wang, R. Xu, M. Ma et al., An open-ended Ni3S2–Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 34, 2201420 (2022). https://doi.org/10.1002/adma.202201420
C. Dong, Y. Xia, Z. Su, Z. Han, Y. Dong et al., Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS2-based anode for lithium storage. J. Energy Chem. 97, 700–709 (2024). https://doi.org/10.1016/j.jechem.2024.06.055
J. Wang, C.F. Du, Y. Xue, X. Tan, J. Kang et al., MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 1, 20210024 (2021). https://doi.org/10.1002/exp.20210024
Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage. Exploration 2, 20210237 (2022). https://doi.org/10.1002/exp.20210237
R. Shi, S. Jiao, Q. Yue, G. Gu, K. Zhang et al., Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration 2, 20220066 (2022). https://doi.org/10.1002/exp.20220066
L. Lei, K. Sun, Z. Hongwei, C. Wang, T. Wei, Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at −20 °C. J. Storage Mater. 78, 109923 (2024). https://doi.org/10.1016/j.est.2023.109923
J. Lin, R. Chenna-Krishna-Reddy, C. Zeng, X. Lin, A. Zeb et al., Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review. Coord. Chem. Rev. 446, 214118 (2021). https://doi.org/10.1016/j.ccr.2021.214118
A. Van der Ven, Z. Deng, S. Banerjee, S.P. Ong, Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120, 6977–7019 (2020). https://doi.org/10.1021/acs.chemrev.9b00601
Y. Zhang, J. Feng, J. Qin, Y.L. Zhong, S. Zhang et al., Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 10, 2301056 (2023). https://doi.org/10.1002/advs.202301056
X. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang et al., Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energ. Rev. 2, 29–104 (2018). https://doi.org/10.1007/s41918-018-0024-x
L. Liu, Z. Hu, L. Sun, G. Gao, X. Liu, Controlled synthesis and enhanced electrochemical performance of Prussian blue analogue-derived hollow FeCo2O4 nanospheres as lithium-ion battery anodes. RSC Adv. 5, 36575–36581 (2015). https://doi.org/10.1039/c5ra02781k
F. Zheng, D. Zhu, X. Shi, Q. Chen, Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 3, 2815–2824 (2015). https://doi.org/10.1039/c4ta06150k
L. Kang, H. Ren, Z. Xing, Y. Zhao, Z. Ju, Hierarchical porous CoxFe3−xO4 nanocubes obtained by calcining Prussian blue analogues as anodes for lithium-ion batteries. New J. Chem. 44, 12546–12555 (2020). https://doi.org/10.1039/d0nj01027h
G. Huang, L. Zhang, F. Zhang, L. Wang, Metal–organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6, 5509–5515 (2014). https://doi.org/10.1039/c3nr06041a
S.Z. Guo, J.Z. Liu, C.C. Zhou, P.L. Zhang, S. Li et al., Construction of highly dispersed and electroconductive silver nanops modified mesoporous Co3O4 hollow nanoboxes from Prussian blue analogues for boosting lithium storage performances. J. Alloys Compd. 814, 152305 (2020). https://doi.org/10.1016/j.jallcom.2019.152305
D. Zhu, F. Zheng, S. Xu, Y. Zhang, Q. Chen, MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans. 44, 16946–16952 (2015). https://doi.org/10.1039/c5dt02271a
W. Yang, J. Chen, Z. Xue, T. Shu, J. Ye et al., Study of synergetic effects of ternary transition metal in the electrochemical performance of metal oxides anode for lithium-ion battery. Ceram. Int. 47, 20586–20594 (2021). https://doi.org/10.1016/j.ceramint.2021.04.068
L. Fan, X. Guo, W. Li, X. Hang, H. Pang, Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes. Chin. Chem. Lett. 34, 107447 (2023). https://doi.org/10.1016/j.cclet.2022.04.045
H.-B. Guan, Y. Xie, S.-G. Wang, R. Zeng, T. Qin et al., Hierarchical microspheres constructed by NiCo2O4/NiO@C composite nanorods for lithium-ion batteries with enhanced reversible capacity and cycle performance. J. Alloys Compd. 916, 165456 (2022). https://doi.org/10.1016/j.jallcom.2022.165456
B. Bornamehr, H. El Gaidi, S. Arnold, E. Pameté, V. Presser, Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes. Sustain. Energ. Fuels 7, 4514–4524 (2023). https://doi.org/10.1039/d3se00854a
J. Shao, J. Feng, H. Zhou, A. Yuan, Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl. Surf. Sci. 471, 745–752 (2019). https://doi.org/10.1016/j.apsusc.2018.12.040
S.-G. Wang, Y. Xie, Y.-L. Hou, R. Zeng, T. Qin et al., Graphene aerogel encapsulated Co3O4 open-ended microcage anode with enhanced performance for lithium-ion batteries. Appl. Surf. Sci. 605, 154759 (2022). https://doi.org/10.1016/j.apsusc.2022.154759
W.-X. Wen, Y. Xie, H.-Y. Wang, B.-H. Zhang, Y.-L. Hou et al., Graphene aerogel encapsulated Co3O4 microcubes derived from prussian blue analog as integrated anode with enhanced Li-ion storage properties. Ceram. Int. 49, 11788–11795 (2023). https://doi.org/10.1016/j.ceramint.2022.12.023
P.-P. Chen, H.-B. Guan, B.-H. Zhang, J.-T. Lei, Z.-A. Li et al., Graphene encapsulated NiO-Co3O4 open-ended hollow nanocube anode with enhanced performance for lithium/sodium ion batteries. J. Alloys Compd. 979, 173479 (2024). https://doi.org/10.1016/j.jallcom.2024.173479
Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai et al., NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 11, 67–74 (2018). https://doi.org/10.1016/j.ensm.2017.06.001
I. Ullah, R. Saeed, A. Inayat, M. Zubair, X. Wu et al., Continuous conducting architecture developed by supporting Prussian blue analogue on metal-organic framework derived carbon-doped manganese-oxide nanorods for high-performance sodium-ion batteries. J. Alloys Compd. 964, 171223 (2023). https://doi.org/10.1016/j.jallcom.2023.171223
R. Zang, P. Li, X. Guo, Z. Man, S. Zhang et al., Yolk–shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 7, 14051–14059 (2019). https://doi.org/10.1039/c9ta03917a
Y. Von Lim, S. Huang, Q. Wu, Y. Zhang, D. Kong et al., Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy 61, 626–636 (2019). https://doi.org/10.1016/j.nanoen.2019.04.041
Y. He, C. Liu, Z. Xie, J. Wang, G. Chen et al., Prussian blue analogue-derived cobalt sulfide nanops embedded in N/S-codoped carbon frameworks as a high-performance anode material for sodium-ion batteries. ACS Appl. Energy Mater. 5, 8697–8708 (2022). https://doi.org/10.1021/acsaem.2c01233
P. Wan, S. Wang, S. Zhu, C. Wang, Z. Yu et al., N-doped hollow Fe0.4Co0.6S2@NC nanoboxes derived from a Prussian blue analogue as a sodium ion anode. Dalton Trans. 51, 6855–6859 (2022). https://doi.org/10.1039/D2DT00218C
J. Hu, C. Liu, C. Cai, Q. Sun, M. Lu et al., Prussian blue analogue-derived Fe-doped CoS2 nanops confined in bayberry-like N-doped carbon spheres as anodes for sodium-ion batteries. Polymers 15, 1496 (2023). https://doi.org/10.3390/polym15061496
R. Deng, P. Wang, Y. Chen, Q. Zheng, D. Lin, NiS2/CoS2@NC@C nanocubes derived from prussian blue analogues as an advanced anode with extraordinary long-cycle performance for sodium ion batteries. Electrochim. Acta 469, 143245 (2023). https://doi.org/10.1016/j.electacta.2023.143245
Z. Li, R. Sun, Z. Qin, X. Liu, C. Wang et al., Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater. Chem. Front. 5, 7540–7547 (2021). https://doi.org/10.1039/d1qm00841b
H. Xie, P. Wan, C. Wu, Q. He, Fe0.6Co0.3Ni0.1S2@NC core-shell nanoboxes as anodes for ultrafast sodium-ion batteries. J. Solid State Chem. 329, 124433 (2024). https://doi.org/10.1016/j.jssc.2023.124433
P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) Prussian blue analogs. Adv. Mater. 31, 1806092 (2019). https://doi.org/10.1002/adma.201806092
Y.-M. Lin, H.-S. Fan, C.-Z. Zhu, J. Xu, Metal-organic framework (MOF)-derived selenidation strategy to prepare porous (Zn, Cu)CoSex micro/nanostructures for sodium-ion batteries. Rare Met. 41, 4104–4115 (2022). https://doi.org/10.1007/s12598-022-02095-x
J. Feng, S. Luo, S. Yan, Y. Zhan, Q. Wang et al., Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. J. Mater. Chem. A. 9, 1610–1622 (2021). https://doi.org/10.1039/d0ta08423a
J. Wang, X. Yang, C. Yang, Y. Dai, S. Chen et al., Three-dimensional (3D) ordered macroporous bimetallic (Mn, Fe) selenide/carbon composite with heterojunction interface for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 15, 40100–40114 (2023). https://doi.org/10.1021/acsami.3c07951
S. Jiang, M. Xiang, J. Zhang, S. Chu, A. Marcelli et al., Rational design of hierarchical FeSe2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale 12, 22210–22216 (2020). https://doi.org/10.1039/d0nr06359b
L. Ren, M. Jiang, Z. Hou, N. Li, D. Nan et al., Building Na-ion full cells using homologous Prussian blue and its phosphide derivative. Appl. Surf. Sci. 612, 155952 (2023). https://doi.org/10.1016/j.apsusc.2022.155952
Q. Cheng, Q. Deng, W. Zhong, T. Tan, X. Liu et al., Criticality of solid electrolyte interphase in achieving high performance of sodium-ion batteries. Chem. Eng. J. 457, 141097 (2023). https://doi.org/10.1016/j.cej.2022.141097
G. Qin, Y. Liu, P. Han, F. Liu, Q. Yang et al., Dispersed MoS2 nanosheets in core shell Co3O4@C nanocubes for superior potassium ion storage. Appl. Surf. Sci. 514, 145946 (2020). https://doi.org/10.1016/j.apsusc.2020.145946
Q. Cheng, X. Liu, Q. Deng, C. Chen, W. Zhong et al., Heterostructured Ni3S4/Co9S8 encapsulated in nitrogen-doped carbon nanocubes for advanced potassium storage. Chem. Eng. J. 446, 136829 (2022). https://doi.org/10.1016/j.cej.2022.136829
Z. Zhang, M. Avdeev, H. Chen, W. Yin, W.H. Kan et al., Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nat. Commun. 13, 7790 (2022). https://doi.org/10.1038/s41467-022-35376-1
M. Teusner, J. Mata, N. Sharma, Small angle neutron scattering and its application in battery systems. Curr. Opin. Electrochem. 34, 100990 (2022). https://doi.org/10.1016/j.coelec.2022.100990
H. Zhao, A.A. Sousa, P. Schuck, Flotation coefficient distributions of lipid nanops by sedimentation velocity analytical ultracentrifugation. ACS Nano 18, 18663–18672 (2024). https://doi.org/10.1021/acsnano.4c05322
L. Zhang, X. Li, M. Yang, W. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 41, 522–545 (2021). https://doi.org/10.1016/j.ensm.2021.06.033
S. Qiu, Y. Xu, X. Wu, X. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energ. Rev. 5, 242–262 (2021). https://doi.org/10.1007/s41918-020-00088-x
S. Zhao, H. Che, S. Chen, H. Tao, J. Liao et al., Research progress on the solid electrolyte of solid-state sodium-ion batteries. Electrochem. Energ. Rev. 7, 3 (2024). https://doi.org/10.1007/s41918-023-00196-4
B. Ran, R. Cheng, Y. Zhong, X. Zhang, T. Zhao et al., High entropy activated and stabilized nickel-based Prussian blue analogue for high-performance aqueous sodium-ion batteries. Energy Storage Mater. 71, 103583 (2024). https://doi.org/10.1016/j.ensm.2024.103583