Constructing Donor–Acceptor-Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li+ Migration in Quasi-Solid-State Battery
Corresponding Author: Hong Guo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 21
Abstract
Regulation the electronic density of solid-state electrolyte by donor–acceptor (D–A) system can achieve highly-selective Li+ transportation and conduction in solid-state Li metal batteries. This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks (COFs) based on intramolecular charge transfer interactions. Unlike other reported COF-based solid-state electrolyte, the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li+ migration and inhibit Li dendrite, but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries. The introduced strong electronegativity F-based ligand in COF electrolyte results in highly-selective Li+ (transference number 0.83), high ionic conductivity (6.7 × 10–4 S cm−1), excellent cyclic ability (1000 h) in Li metal symmetric cell and high-capacity retention in Li/LiFePO4 cell (90.8% for 300 cycles at 5C) than substituted C- and N-based ligands. This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms, which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li+ kinetics. Consequently, we anticipate that this work creates insight into the strategy for accelerating Li+ conduction in high-performance solid-state Li metal batteries through D–A system.
Highlights:
1 Donor–acceptor-linked covalent organic framework (COF)-based electrolyte can not only fulfill highly-selective Li+ conduction, but also offer a crucial opportunity to understand the role of electronic density in quasi-solid-state Li metal batteries.
2 Donor–acceptor-linked COF electrolyte results in Li+ transference number 0.83, high ionic conductivity 6.7 × 10–4 S cm−1 and excellent cyclic ability in Li metal batteries.
3 In situ characterizations, density functional theory calculation and time-of-flight secondary ion mass spectrometry are adopted to expound the mechanism of the rapid migration of Li+ in the “donor–acceptor” electrolyte system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Pei, L. Wu, Y. Zhang, Y. Liao, Q. Kang et al., Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 15, 351 (2024). https://doi.org/10.1038/s41467-023-43467-w
- T. Duan, H. Cheng, Y. Liu, Q. Sun, W. Nie et al., A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater. 65, 103091 (2024). https://doi.org/10.1016/j.ensm.2023.103091
- X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36, e2311195 (2024). https://doi.org/10.1002/adma.202311195
- R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- M.M. Baig, S.A. Khan, H. Ahmad, J. Liang, G. Zhu et al., 3D printing of hydrogels for flexible micro-supercapacitors. FlexMat 1, 79–99 (2024). https://doi.org/10.1002/flm2.14
- S. Wang, L. Zhang, Q. Zeng, J. Guan, H. Gao et al., Designing polymer electrolytes via ring-opening polymerization for advanced lithium batteries. Adv. Energy Mater. 14, 2302876 (2024). https://doi.org/10.1002/aenm.202302876
- B. He, F. Zhang, Y. Xin, C. Xu, X. Hu et al., Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). https://doi.org/10.1038/s41570-023-00541-7
- L. Hu, J. Wang, K. Wang, Z. Gu, Z. Xi et al., A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat. Commun. 14, 3807 (2023). https://doi.org/10.1038/s41467-023-39522-1
- C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation–anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 (2024). https://doi.org/10.1002/adfm.202307248
- S. Wang, Q. Li, H. Gao, H. Cai, C. Liu et al., A polyzwitterion-mediated polymer electrolyte with high oxidative stability for lithium-metal batteries. Small 19, e2304677 (2023). https://doi.org/10.1002/smll.202304677
- S. Barman, A. Singh, F.A. Rahimi, T.K. Maji, Metal-free catalysis: a redox-active donor–acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J. Am. Chem. Soc. 143, 16284–16292 (2021). https://doi.org/10.1021/jacs.1c07916
- F.-D. Wang, L.-J. Yang, X.-X. Wang, Y. Rong, L.-B. Yang et al., Pyrazine-functionalized donor–acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 19, e2207421 (2023). https://doi.org/10.1002/smll.202207421
- Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu et al., Three-component donor–π–acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 8364 (2023). https://doi.org/10.1021/jacs.2c11893
- A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- S. Wang, X. Li, T. Cheng, Y. Liu, Q. Li et al., Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 10, 8761–8771 (2022). https://doi.org/10.1039/D1TA08771A
- K. Dey, S. Bhunia, H.S. Sasmal, C.M. Reddy, R. Banerjee, Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143, 955–963 (2021). https://doi.org/10.1021/jacs.0c11122
- W. Chen, H. Li, X. Liang, Y. Tang, Z. Liu et al., Interfacial energy level modulation by tuning the electronic character of covalent organic frameworks: a linker functionalization strategy. J. Phys. Chem. C 126, 21496–21506 (2022). https://doi.org/10.1021/acs.jpcc.2c07472
- C. Niu, S. Zhao, Y. Xu, In situ gelled covalent organic frameworks electrolyte with long-range interconnected skeletons for superior ionic conductivity. J. Am. Chem. Soc. 146, 3114–3124 (2024). https://doi.org/10.1021/jacs.3c10312
- Z. Li, L. Sun, L. Zhai, K.-S. Oh, J.-M. Seo et al., Olefin-linked covalent organic frameworks with electronegative channels as cationic highways for sustainable lithium metal battery anodes. Angew. Chem. Int. Ed. 62, e202307459 (2023). https://doi.org/10.1002/anie.202307459
- W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023). https://doi.org/10.1002/anie.202302505
- G.-S. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14, 2303672 (2024). https://doi.org/10.1002/aenm.202303672
- N. Lv, Q. Li, H. Zhu, S. Mu, X. Luo et al., Electrocatalytic porphyrin/phthalocyanine-based organic frameworks: building blocks, coordination microenvironments, structure-performance relationships. Adv. Sci. 10, e2206239 (2023). https://doi.org/10.1002/advs.202206239
- J. Jing, J. Li, Y. Su, Y. Zhu, Non-covalently linked donor–acceptor interaction enhancing photocatalytic hydrogen evolution from porphyrin assembly. Appl. Catal. B Environ. 324, 122284 (2023). https://doi.org/10.1016/j.apcatb.2022.122284
- S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki et al., Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011). https://doi.org/10.1021/cm201140r
- X. Yan, B. Wang, J. Ren, X. Long, D. Yang, An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew. Chem. Int. Ed. 61, e202209583 (2022). https://doi.org/10.1002/anie.202209583
- Z. You, B. Wang, Z. Zhao, Q. Zhang, W. Song et al., Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv. Mater. 35, e2209129 (2023). https://doi.org/10.1002/adma.202209129
- Y. Hou, X. Zhang, J. Sun, S. Lin, D. Qi et al., Good Suzuki-coupling reaction performance of Pd immobilized at the metal-free porphyrin-based covalent organic framework. Microporous Mesoporous Mater. 214, 108–114 (2015). https://doi.org/10.1016/j.micromeso.2015.05.002
- E. Park, J. Jack, Y. Hu, S. Wan, S. Huang et al., Covalent organic framework-supported platinum nanops as efficient electrocatalysts for water reduction. Nanoscale 12, 2596–2602 (2020). https://doi.org/10.1039/c9nr09112b
- C. Lin, L. Sun, X. Meng, X. Yuan, C.-X. Cui et al., Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angew. Chem. Int. Ed. 61, e202211601 (2022). https://doi.org/10.1002/anie.202211601
- Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022). https://doi.org/10.1002/aenm.202200057
- Y. Lu, Y. Cai, Q. Zhang, J. Chen, Structure-performance relationships of covalent organic framework electrode materials in metal-ion batteries. J. Phys. Chem. Lett. 12, 8061–8071 (2021). https://doi.org/10.1021/acs.jpclett.1c02004
- X. Wang, M. Liu, Y. Liu, S. Shang, C. Du et al., Topology-selective manipulation of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 145, 26900–26907 (2023). https://doi.org/10.1021/jacs.3c09699
- S. Bi, P. Thiruvengadam, S. Wei, W. Zhang, F. Zhang et al., Vinylene-bridged two-dimensional covalent organic frameworks via Knoevenagel condensation of tricyanomesitylene. J. Am. Chem. Soc. 142, 11893–11900 (2020). https://doi.org/10.1021/jacs.0c04594
- Y. Yin, C. Wu, G. Yu, H. Wang, Q. Han et al., A hierarchical heterojunction polymer aerogel for accelerating charge transfer and separation. J. Mater. Chem. A 9, 7881–7887 (2021). https://doi.org/10.1039/d1ta00289a
- S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22, 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
- Z. Han, R. Zhang, J. Jiang, Z. Chen, Y. Ni et al., High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework. J. Am. Chem. Soc. 145, 10149–10158 (2023). https://doi.org/10.1021/jacs.3c00647
- P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
- Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li et al., Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 141, 1923–1927 (2019). https://doi.org/10.1021/jacs.8b13551
- D. Du Ya, D. Haishen Yang, J.M. Whiteley, D. Shun Wan, D. Yinghua Jin et al., Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016). https://doi.org/10.1002/anie.201509014
- H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
- K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.-H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
- X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
- Z. Li, Z.-W. Liu, Z.-J. Mu, C. Cao, Z. Li et al., Cationic covalent organic framework based all-solid-state electrolytes. Mater. Chem. Front. 4, 1164–1173 (2020). https://doi.org/10.1039/c9qm00781d
- C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem. Int. Ed. 60, 24915–24923 (2021). https://doi.org/10.1002/anie.202107444
- J. Liu, Y. Zhang, H. Ji, J. Zhang, P. Zhou et al., Cationic covalent organic framework with ultralow HOMO energy used as scaffolds for 5.2 V solid polycarbonate electrolytes. Adv. Sci. 9, e2200390 (2022). https://doi.org/10.1002/advs.202200390
- D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, e2201410 (2022). https://doi.org/10.1002/adma.202201410
- T.W. Kang, J.H. Lee, J. Lee, J.H. Park, J.H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35, e2301308 (2023). https://doi.org/10.1002/adma.202301308
- J.H. Lee, H. Lee, J. Lee, T.W. Kang, J.H. Park et al., Multicomponent covalent organic framework solid electrolyte allowing effective Li-ion dissociation and diffusion for all-solid-state batteries. ACS Nano 17, 17372–17382 (2023). https://doi.org/10.1021/acsnano.3c05405
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
- X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich sei in ionic liquid confined 3D MOF/Polymer membranes. Angew. Chem. Int. Ed. 62, e202304947 (2023). https://doi.org/10.1002/anie.202304947
- Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song et al., Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023). https://doi.org/10.1038/s41560-023-01275-y
References
F. Pei, L. Wu, Y. Zhang, Y. Liao, Q. Kang et al., Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 15, 351 (2024). https://doi.org/10.1038/s41467-023-43467-w
T. Duan, H. Cheng, Y. Liu, Q. Sun, W. Nie et al., A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater. 65, 103091 (2024). https://doi.org/10.1016/j.ensm.2023.103091
X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36, e2311195 (2024). https://doi.org/10.1002/adma.202311195
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
M.M. Baig, S.A. Khan, H. Ahmad, J. Liang, G. Zhu et al., 3D printing of hydrogels for flexible micro-supercapacitors. FlexMat 1, 79–99 (2024). https://doi.org/10.1002/flm2.14
S. Wang, L. Zhang, Q. Zeng, J. Guan, H. Gao et al., Designing polymer electrolytes via ring-opening polymerization for advanced lithium batteries. Adv. Energy Mater. 14, 2302876 (2024). https://doi.org/10.1002/aenm.202302876
B. He, F. Zhang, Y. Xin, C. Xu, X. Hu et al., Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). https://doi.org/10.1038/s41570-023-00541-7
L. Hu, J. Wang, K. Wang, Z. Gu, Z. Xi et al., A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat. Commun. 14, 3807 (2023). https://doi.org/10.1038/s41467-023-39522-1
C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation–anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 (2024). https://doi.org/10.1002/adfm.202307248
S. Wang, Q. Li, H. Gao, H. Cai, C. Liu et al., A polyzwitterion-mediated polymer electrolyte with high oxidative stability for lithium-metal batteries. Small 19, e2304677 (2023). https://doi.org/10.1002/smll.202304677
S. Barman, A. Singh, F.A. Rahimi, T.K. Maji, Metal-free catalysis: a redox-active donor–acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J. Am. Chem. Soc. 143, 16284–16292 (2021). https://doi.org/10.1021/jacs.1c07916
F.-D. Wang, L.-J. Yang, X.-X. Wang, Y. Rong, L.-B. Yang et al., Pyrazine-functionalized donor–acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 19, e2207421 (2023). https://doi.org/10.1002/smll.202207421
Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu et al., Three-component donor–π–acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 8364 (2023). https://doi.org/10.1021/jacs.2c11893
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
S. Wang, X. Li, T. Cheng, Y. Liu, Q. Li et al., Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 10, 8761–8771 (2022). https://doi.org/10.1039/D1TA08771A
K. Dey, S. Bhunia, H.S. Sasmal, C.M. Reddy, R. Banerjee, Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143, 955–963 (2021). https://doi.org/10.1021/jacs.0c11122
W. Chen, H. Li, X. Liang, Y. Tang, Z. Liu et al., Interfacial energy level modulation by tuning the electronic character of covalent organic frameworks: a linker functionalization strategy. J. Phys. Chem. C 126, 21496–21506 (2022). https://doi.org/10.1021/acs.jpcc.2c07472
C. Niu, S. Zhao, Y. Xu, In situ gelled covalent organic frameworks electrolyte with long-range interconnected skeletons for superior ionic conductivity. J. Am. Chem. Soc. 146, 3114–3124 (2024). https://doi.org/10.1021/jacs.3c10312
Z. Li, L. Sun, L. Zhai, K.-S. Oh, J.-M. Seo et al., Olefin-linked covalent organic frameworks with electronegative channels as cationic highways for sustainable lithium metal battery anodes. Angew. Chem. Int. Ed. 62, e202307459 (2023). https://doi.org/10.1002/anie.202307459
W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023). https://doi.org/10.1002/anie.202302505
G.-S. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14, 2303672 (2024). https://doi.org/10.1002/aenm.202303672
N. Lv, Q. Li, H. Zhu, S. Mu, X. Luo et al., Electrocatalytic porphyrin/phthalocyanine-based organic frameworks: building blocks, coordination microenvironments, structure-performance relationships. Adv. Sci. 10, e2206239 (2023). https://doi.org/10.1002/advs.202206239
J. Jing, J. Li, Y. Su, Y. Zhu, Non-covalently linked donor–acceptor interaction enhancing photocatalytic hydrogen evolution from porphyrin assembly. Appl. Catal. B Environ. 324, 122284 (2023). https://doi.org/10.1016/j.apcatb.2022.122284
S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki et al., Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011). https://doi.org/10.1021/cm201140r
X. Yan, B. Wang, J. Ren, X. Long, D. Yang, An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew. Chem. Int. Ed. 61, e202209583 (2022). https://doi.org/10.1002/anie.202209583
Z. You, B. Wang, Z. Zhao, Q. Zhang, W. Song et al., Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv. Mater. 35, e2209129 (2023). https://doi.org/10.1002/adma.202209129
Y. Hou, X. Zhang, J. Sun, S. Lin, D. Qi et al., Good Suzuki-coupling reaction performance of Pd immobilized at the metal-free porphyrin-based covalent organic framework. Microporous Mesoporous Mater. 214, 108–114 (2015). https://doi.org/10.1016/j.micromeso.2015.05.002
E. Park, J. Jack, Y. Hu, S. Wan, S. Huang et al., Covalent organic framework-supported platinum nanops as efficient electrocatalysts for water reduction. Nanoscale 12, 2596–2602 (2020). https://doi.org/10.1039/c9nr09112b
C. Lin, L. Sun, X. Meng, X. Yuan, C.-X. Cui et al., Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angew. Chem. Int. Ed. 61, e202211601 (2022). https://doi.org/10.1002/anie.202211601
Y. Cao, M. Wang, H. Wang, C. Han, F. Pan et al., Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022). https://doi.org/10.1002/aenm.202200057
Y. Lu, Y. Cai, Q. Zhang, J. Chen, Structure-performance relationships of covalent organic framework electrode materials in metal-ion batteries. J. Phys. Chem. Lett. 12, 8061–8071 (2021). https://doi.org/10.1021/acs.jpclett.1c02004
X. Wang, M. Liu, Y. Liu, S. Shang, C. Du et al., Topology-selective manipulation of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 145, 26900–26907 (2023). https://doi.org/10.1021/jacs.3c09699
S. Bi, P. Thiruvengadam, S. Wei, W. Zhang, F. Zhang et al., Vinylene-bridged two-dimensional covalent organic frameworks via Knoevenagel condensation of tricyanomesitylene. J. Am. Chem. Soc. 142, 11893–11900 (2020). https://doi.org/10.1021/jacs.0c04594
Y. Yin, C. Wu, G. Yu, H. Wang, Q. Han et al., A hierarchical heterojunction polymer aerogel for accelerating charge transfer and separation. J. Mater. Chem. A 9, 7881–7887 (2021). https://doi.org/10.1039/d1ta00289a
S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu et al., Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22, 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z
Z. Han, R. Zhang, J. Jiang, Z. Chen, Y. Ni et al., High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework. J. Am. Chem. Soc. 145, 10149–10158 (2023). https://doi.org/10.1021/jacs.3c00647
P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li et al., Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 141, 1923–1927 (2019). https://doi.org/10.1021/jacs.8b13551
D. Du Ya, D. Haishen Yang, J.M. Whiteley, D. Shun Wan, D. Yinghua Jin et al., Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016). https://doi.org/10.1002/anie.201509014
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.-H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
Z. Li, Z.-W. Liu, Z.-J. Mu, C. Cao, Z. Li et al., Cationic covalent organic framework based all-solid-state electrolytes. Mater. Chem. Front. 4, 1164–1173 (2020). https://doi.org/10.1039/c9qm00781d
C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem. Int. Ed. 60, 24915–24923 (2021). https://doi.org/10.1002/anie.202107444
J. Liu, Y. Zhang, H. Ji, J. Zhang, P. Zhou et al., Cationic covalent organic framework with ultralow HOMO energy used as scaffolds for 5.2 V solid polycarbonate electrolytes. Adv. Sci. 9, e2200390 (2022). https://doi.org/10.1002/advs.202200390
D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, e2201410 (2022). https://doi.org/10.1002/adma.202201410
T.W. Kang, J.H. Lee, J. Lee, J.H. Park, J.H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35, e2301308 (2023). https://doi.org/10.1002/adma.202301308
J.H. Lee, H. Lee, J. Lee, T.W. Kang, J.H. Park et al., Multicomponent covalent organic framework solid electrolyte allowing effective Li-ion dissociation and diffusion for all-solid-state batteries. ACS Nano 17, 17372–17382 (2023). https://doi.org/10.1021/acsnano.3c05405
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich sei in ionic liquid confined 3D MOF/Polymer membranes. Angew. Chem. Int. Ed. 62, e202304947 (2023). https://doi.org/10.1002/anie.202304947
Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song et al., Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023). https://doi.org/10.1038/s41560-023-01275-y