Scalable Ir-Doped NiFe2O4/TiO2 Heterojunction Anode for Decentralized Saline Wastewater Treatment and H2 Production
Corresponding Author: Kangwoo Cho
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 51
Abstract
Wastewater electrolysis cells (WECs) for decentralized wastewater treatment/reuse coupled with H2 production can reduce the carbon footprint associated with transportation of water, waste, and energy carrier. This study reports Ir-doped NiFe2O4 (NFI, ~ 5 at% Ir) spinel layer with TiO2 overlayer (NFI/TiO2), as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell. In dilute (0.1 M) NaCl solutions, the NFI/TiO2 marks superior activity and selectivity for chlorine evolution reaction, outperforming the benchmark IrO2. Robust operation in near-neutral pH was confirmed. Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO2 which serves both as the primary site for Cl− chemisorption and a protective layer for NFI as an ohmic contact. Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO2 not only achieves quasi-stoichiometric NH4+-to-N2 conversion, but also enhances H2 generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine. The scaled-up WEC with NFI/TiO2 was demonstrated for electrolysis of toilet wastewater.
Highlights:
1 Ir-doped NiFe2O4 (NFI) spinel with TiO2 heterojunction overlayer brought about outstanding chlorine evolution reaction in circumneutral pH.
2 Electroanalyses including operando X-ray absorption spectroscopy uncovered the active role of TiO2 for Cl− chemisorption.
3 NFI/TiO2 anode boosted both NH4+-to-N2 conversion and H2 generation in wastewater, and the practical applicability was confirmed with scaled-up anodes and real wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Sun, H. Dong, Y. Lu, L. Zhang, L. Yang et al., A hydrate-based zero liquid discharge method for high-concentration organic wastewater: resource recovery and water reclamation. npj Clean Water 6, 49 (2023). https://doi.org/10.1038/s41545-023-00262-w
- S. Grego, The humble toilet is an opportunity for sustainable water reuse. Nat. Water 1, 900–901 (2023). https://doi.org/10.1038/s44221-023-00154-w
- H. Feng, J. Yu, J. Tang, L. Tang, Y. Liu et al., Enhanced electro-oxidation performance of FeCoLDH to organic pollutants using hydrophilic structure. J. Hazard. Mater. 430, 128464 (2022). https://doi.org/10.1016/j.jhazmat.2022.128464
- C.A. Cid, F. Abiola, M. Starkl, Can international nonsewered sanitation standards help solve the global sanitation crisis? Environ. Sci. Technol. 56, 699–706 (2022). https://doi.org/10.1021/acs.est.1c03471
- S. Pei, S. You, J. Ma, X. Chen, N. Ren, Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. 54, 13333–13343 (2020). https://doi.org/10.1021/acs.est.0c05287
- P. Subramani, M. Basil, P. Rosario, D.R. Jalaja, V. Choudhary et al., Water recycling public toilets based on onsite electrochemical wastewater treatment. Environ. Sci.: Water Res. Technol. 10, 157–167 (2024). https://doi.org/10.1039/d3ew00454f
- K. Cho, M.R. Hoffmann, BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions. Chem. Mater. 27, 2224–2233 (2015). https://doi.org/10.1021/acs.chemmater.5b00376
- S. Hong, T.-K. Lee, M.R. Hoffmann, K. Cho, Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanop slurry. J. Catal. 389, 1–8 (2020). https://doi.org/10.1016/j.jcat.2020.04.009
- K. Cho, Y. Qu, D. Kwon, H. Zhang, C.A. Cid et al., Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. 48, 2377–2384 (2014). https://doi.org/10.1021/es404137u
- C. Zhang, D. He, J. Ma, T.D. Waite, Active chlorine mediated ammonia oxidation revisited: reaction mechanism, kinetic modelling and implications. Water Res. 145, 220–230 (2018). https://doi.org/10.1016/j.watres.2018.08.025
- Y. Ji, J. Bai, J. Li, T. Luo, L. Qiao et al., Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res. 125, 512–519 (2017). https://doi.org/10.1016/j.watres.2017.08.053
- S. Hong, G. Choi, N. Thi Yen Phan, H. Shin, J. Lim, Efficient and durable iridium-doped SnO2 anode for reactive chlorine species-mediated urine wastewater treatment. Chem. Eng. J. 493, 152698 (2024). https://doi.org/10.1016/j.cej.2024.152698
- C.E. Adams, Removing nitrogen from waste water. Environ. Sci. Technol. 7, 696–701 (1973). https://doi.org/10.1021/es60080a006
- L.R. Winter, N.J. Cooper, B. Lee, S.K. Patel, L. Wang et al., Mining nontraditional water sources for a distributed hydrogen economy. Environ. Sci. Technol. 56, 10577–10585 (2022). https://doi.org/10.1021/acs.est.2c02439
- K. Cho, M.R. Hoffmann, Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency. Appl. Catal. B Environ. 202, 671–682 (2017). https://doi.org/10.1016/j.apcatb.2016.09.067
- Y. Liu, L. Li, R. Goel, Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions. J. Hazard. Mater. 167, 959–965 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.082
- L. Ding, K. Li, W. Wang, Z. Xie, S. Yu et al., Amorphous iridium oxide-integrated anode electrodes with ultrahigh material utilization for hydrogen production at industrial current densities. Nano-Micro Lett. 16, 203 (2024). https://doi.org/10.1007/s40820-024-01411-7
- E. Lacasa, J. Llanos, P. Cañizares, M.A. Rodrigo, Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chem. Eng. J. 184, 66–71 (2012). https://doi.org/10.1016/j.cej.2011.12.090
- Y.-Y. Yang, H.-P. Feng, X.-G. Zhang, H. Guo, X.-J. Wen et al., Regulating and protecting of oxygen vacancy endow MoO3-x@Zn2In2S5 S-scheme core–shell heterojunction with high-efficiency organic pollutant removal and bacterial disinfection: correlation of pollutant active sites to degradation pathways. Chem. Eng. J. 490, 151309 (2024). https://doi.org/10.1016/j.cej.2024.151309
- H. Feng, J. Yu, L. Tang, J. Wang, H. Dong et al., Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure. Appl. Catal. B Environ. 297, 120478 (2021). https://doi.org/10.1016/j.apcatb.2021.120478
- Y.-Y. Yang, H. Guo, D.-W. Huang, L. Li, H.-Y. Liu et al., Simultaneously tuning oxygen reduction pathway and charge transfer dynamics toward sacrificial agent-free photocatalytic H2O2 production for in situ water disinfection. Chem. Eng. J. 479, 147863 (2024). https://doi.org/10.1016/j.cej.2023.147863
- J. Kim, M.-C. Kim, S.S. Han, K. Cho, Accessible Ni-Fe-oxalate framework for electrochemical urea oxidation with radically enhanced kinetics. Adv. Funct. Mater. 34, 2315625 (2024). https://doi.org/10.1002/adfm.202315625
- M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
- L. Jiang, J. Pan, Q. Li, H. Chen, S. Zhou et al., A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat 4, e12254 (2022). https://doi.org/10.1002/eom2.12254
- S. Hong, K. Ham, J. Hwang, S. Kang, M.H. Seo et al., Active motif change of Ni-Fe spinel oxide by Ir doping for highly durable and facile oxygen evolution reaction. Adv. Funct. Mater. 33, 2209543 (2023). https://doi.org/10.1002/adfm.202209543
- E. Rahman, S. Hong, J. Lee, S.W. Hong, K. Cho, Ni-Fe oxides/TiO2 heterojunction anodes for reactive chlorine generation and mediated water treatment. ACS Appl. Mater. Interfaces 15, 17867–17878 (2023). https://doi.org/10.1021/acsami.3c00581
- S. Kim, S. Choung, W. Lee, S. Bae, J.W. Han et al., Tuning electrochemical water oxidation towards ozone evolution with heterojunction anode architectures. J. Mater. Chem. A 10, 17132–17141 (2022). https://doi.org/10.1039/D2TA02731C
- M.S. Koo, K. Cho, J. Yoon, W. Choi, Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO2 nanotube arrays. Environ. Sci. Technol. 51, 6590–6598 (2017). https://doi.org/10.1021/acs.est.7b00774
- J. Lim, Y. Yang, M.R. Hoffmann, Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 53, 6972–6980 (2019). https://doi.org/10.1021/acs.est.9b01449
- Y.U. Shin, H.Y. Yoo, S. Kim, K.M. Chung, Y.G. Park et al., Sequential combination of electro-Fenton and electrochemical chlorination processes for the treatment of anaerobically-digested food wastewater. Environ. Sci. Technol. 51, 10700–10710 (2017). https://doi.org/10.1021/acs.est.7b02018
- B.M. De Borba, R.F. Jack, J.S. Rohrer, J. Wirt, D. Wang, Simultaneous determination of total nitrogen and total phosphorus in environmental waters using alkaline persulfate digestion and ion chromatography. J. Chromatogr. A 1369, 131–137 (2014). https://doi.org/10.1016/j.chroma.2014.10.027
- Q. Emparan, R. Harun, J.A. Kodiappan, Effect of microalgae-to-palm oil mill effluent (POME) ratio for rapid effective pollutants removal and biomass production. Desalin. Water Treat. 198, 119–125 (2020). https://doi.org/10.5004/dwt.2020.25979
- I. Vyrides, D.C. Stuckey, A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. 100, 979–982 (2009). https://doi.org/10.1016/j.biortech.2008.06.038
- A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanops prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
- H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia et al., Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018). https://doi.org/10.1038/s41467-018-04888-0
- G. Dong, M. Fang, J. Zhang, R. Wei, L. Shu et al., In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J. Mater. Chem. A 5, 11009–11015 (2017). https://doi.org/10.1039/C7TA01134B
- Q. Xue, H.-Y. Sun, Y.-N. Li, M.-J. Zhong, F.-M. Li et al., Au@Ir core-shell nanowires towards oxygen reduction reaction. Chem. Eng. J. 421, 129760 (2021). https://doi.org/10.1016/j.cej.2021.129760
- K.S. Exner, T. Lim, S.H. Joo, Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: beyond dimensionally stable anodes. Curr. Opin. Electrochem. 34, 100979 (2022). https://doi.org/10.1016/j.coelec.2022.100979
- C. Mahala, M.D. Sharma, M. Basu, 2D nanostructures of CoFe2O4 and NiFe2O4: efficient oxygen evolution catalyst. Electrochim. Acta 273, 462–473 (2018). https://doi.org/10.1016/j.electacta.2018.04.079
- Z.-G. Ye, H.-M. Meng, D.-B. Sun, Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2 +MnO2 electrodes in 0.5m H2SO4 solution. J. Electroanal. Chem. 621, 49–54 (2008). https://doi.org/10.1016/j.jelechem.2008.04.009
- D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow et al., Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3–xO4) for water splitting: a mini-review. J. Photon. Energy 7, 012009 (2017). https://doi.org/10.1117/1.jpe.7.012009
- G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite NiFe2O4. Int. J. Hydrog. Energy 38, 6335–6343 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.087
- K. Kitsuka, K. Kaneda, M. Ikematsu, M. Iseki, K. Mushiake et al., N-type TiO2 thin films for electrochemical ozone production. J. Electrochem. Soc. 157, F30 (2010). https://doi.org/10.1149/1.3265469
- I.A. Moreno-Hernandez, B.S. Brunschwig, N.S. Lewis, Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci. 12, 1241–1248 (2019). https://doi.org/10.1039/C8EE03676D
- S. Virtanen, P. Schmuki, A.J. Davenport, C.M. Vitus, Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy. J. Electrochem. Soc. 144, 198–204 (1997). https://doi.org/10.1149/1.1837385
- J. Kunze, A. Ghicov, H. Hildebrand, J.M. Macak, L. Traveira et al., Challenges in the surface analytical characterisation of anodic TiO2 films–a review. Z. Für Phys. Chem. 219, 1561–1582 (2005). https://doi.org/10.1524/zpch.2005.219.11.1561
- C.E. Finke, S.T. Omelchenko, J.T. Jasper, M.F. Lichterman, C.G. Read et al., Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 12, 358–365 (2019). https://doi.org/10.1039/c8ee02351d
- S.R. Kelly, H.H. Heenen, N. Govindarajan, K. Chan, J.K. Nørskov, OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces. J. Phys. Chem. C 126, 5521–5528 (2022). https://doi.org/10.1021/acs.jpcc.1c10362
- J. Park, E.J. Hwang, S. Hong, K. Cho, Electrochemical chlorine evolution by Bi–Ti oxide with a heterojunction on Ir–Ta oxide: insights from the effects of layer configurations. J. Phys. Chem. C 127, 9640–9649 (2023). https://doi.org/10.1021/acs.jpcc.3c01841
- K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 6, 364–370 (2021). https://doi.org/10.1021/acsenergylett.0c02359
- J. Kim, D. Kwon, K. Kim, M.R. Hoffmann, Electrochemical production of hydrogen coupled with the oxidation of arsenite. Environ. Sci. Technol. 48, 2059–2066 (2014). https://doi.org/10.1021/es4046814
- J. Choi, Y. Qu, M.R. Hoffmann, SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanop anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2, in Nanotechnology for Sustainable Development. ed. by M.S. Diallo, N.A. Fromer, M.S. Jhon (Springer International Publishing, Cham, 2012), pp.223–234
- H. Park, K.-H. Choo, H.-S. Park, J. Choi, M.R. Hoffmann, Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: influence of organic and particulate matter. Chem. Eng. J. 215, 802–810 (2013). https://doi.org/10.1016/j.cej.2012.11.075
- L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. J. Hazard. Mater. 161, 1010–1016 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.047
- V. Schmalz, T. Dittmar, D. Haaken, E. Worch, Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes: contribution for direct reuse of domestic wastewater. Water Res. 43, 5260–5266 (2009). https://doi.org/10.1016/j.watres.2009.08.036
- S.O. Ganiyu, C.A. Martínez-Huitle, Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem 6, 2379–2392 (2019). https://doi.org/10.1002/celc.201900159
- T.A. Pressley, D.F. Bishop, S.G. Roan, Ammonia-nitrogen removal by breakpoint chlorination. Environ. Sci. Technol. 6, 622–628 (1972). https://doi.org/10.1021/es60066a006
- A. Urtiaga, I. Ortiz, A. Anglada, D. Mantzavinos, E. Diamadopoulos, Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. J. Appl. Electrochem. 42, 779–786 (2012). https://doi.org/10.1007/s10800-012-0458-5
- C. Oliveira, C.R. Chaves, P. Bargiela, M. da Graça Carneiro da Rocha, A.F. da Silva et al., Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations. J. Mater. Res. Technol. 15, 768–776 (2021). https://doi.org/10.1016/j.jmrt.2021.08.059
- M. Sgroi, P. Roccaro, G.V. Korshin, V. Greco, S. Sciuto et al., Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants. J. Hazard. Mater. 323, 367–376 (2017). https://doi.org/10.1016/j.jhazmat.2016.05.035
References
L. Sun, H. Dong, Y. Lu, L. Zhang, L. Yang et al., A hydrate-based zero liquid discharge method for high-concentration organic wastewater: resource recovery and water reclamation. npj Clean Water 6, 49 (2023). https://doi.org/10.1038/s41545-023-00262-w
S. Grego, The humble toilet is an opportunity for sustainable water reuse. Nat. Water 1, 900–901 (2023). https://doi.org/10.1038/s44221-023-00154-w
H. Feng, J. Yu, J. Tang, L. Tang, Y. Liu et al., Enhanced electro-oxidation performance of FeCoLDH to organic pollutants using hydrophilic structure. J. Hazard. Mater. 430, 128464 (2022). https://doi.org/10.1016/j.jhazmat.2022.128464
C.A. Cid, F. Abiola, M. Starkl, Can international nonsewered sanitation standards help solve the global sanitation crisis? Environ. Sci. Technol. 56, 699–706 (2022). https://doi.org/10.1021/acs.est.1c03471
S. Pei, S. You, J. Ma, X. Chen, N. Ren, Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. 54, 13333–13343 (2020). https://doi.org/10.1021/acs.est.0c05287
P. Subramani, M. Basil, P. Rosario, D.R. Jalaja, V. Choudhary et al., Water recycling public toilets based on onsite electrochemical wastewater treatment. Environ. Sci.: Water Res. Technol. 10, 157–167 (2024). https://doi.org/10.1039/d3ew00454f
K. Cho, M.R. Hoffmann, BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions. Chem. Mater. 27, 2224–2233 (2015). https://doi.org/10.1021/acs.chemmater.5b00376
S. Hong, T.-K. Lee, M.R. Hoffmann, K. Cho, Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanop slurry. J. Catal. 389, 1–8 (2020). https://doi.org/10.1016/j.jcat.2020.04.009
K. Cho, Y. Qu, D. Kwon, H. Zhang, C.A. Cid et al., Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. 48, 2377–2384 (2014). https://doi.org/10.1021/es404137u
C. Zhang, D. He, J. Ma, T.D. Waite, Active chlorine mediated ammonia oxidation revisited: reaction mechanism, kinetic modelling and implications. Water Res. 145, 220–230 (2018). https://doi.org/10.1016/j.watres.2018.08.025
Y. Ji, J. Bai, J. Li, T. Luo, L. Qiao et al., Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res. 125, 512–519 (2017). https://doi.org/10.1016/j.watres.2017.08.053
S. Hong, G. Choi, N. Thi Yen Phan, H. Shin, J. Lim, Efficient and durable iridium-doped SnO2 anode for reactive chlorine species-mediated urine wastewater treatment. Chem. Eng. J. 493, 152698 (2024). https://doi.org/10.1016/j.cej.2024.152698
C.E. Adams, Removing nitrogen from waste water. Environ. Sci. Technol. 7, 696–701 (1973). https://doi.org/10.1021/es60080a006
L.R. Winter, N.J. Cooper, B. Lee, S.K. Patel, L. Wang et al., Mining nontraditional water sources for a distributed hydrogen economy. Environ. Sci. Technol. 56, 10577–10585 (2022). https://doi.org/10.1021/acs.est.2c02439
K. Cho, M.R. Hoffmann, Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency. Appl. Catal. B Environ. 202, 671–682 (2017). https://doi.org/10.1016/j.apcatb.2016.09.067
Y. Liu, L. Li, R. Goel, Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions. J. Hazard. Mater. 167, 959–965 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.082
L. Ding, K. Li, W. Wang, Z. Xie, S. Yu et al., Amorphous iridium oxide-integrated anode electrodes with ultrahigh material utilization for hydrogen production at industrial current densities. Nano-Micro Lett. 16, 203 (2024). https://doi.org/10.1007/s40820-024-01411-7
E. Lacasa, J. Llanos, P. Cañizares, M.A. Rodrigo, Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chem. Eng. J. 184, 66–71 (2012). https://doi.org/10.1016/j.cej.2011.12.090
Y.-Y. Yang, H.-P. Feng, X.-G. Zhang, H. Guo, X.-J. Wen et al., Regulating and protecting of oxygen vacancy endow MoO3-x@Zn2In2S5 S-scheme core–shell heterojunction with high-efficiency organic pollutant removal and bacterial disinfection: correlation of pollutant active sites to degradation pathways. Chem. Eng. J. 490, 151309 (2024). https://doi.org/10.1016/j.cej.2024.151309
H. Feng, J. Yu, L. Tang, J. Wang, H. Dong et al., Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure. Appl. Catal. B Environ. 297, 120478 (2021). https://doi.org/10.1016/j.apcatb.2021.120478
Y.-Y. Yang, H. Guo, D.-W. Huang, L. Li, H.-Y. Liu et al., Simultaneously tuning oxygen reduction pathway and charge transfer dynamics toward sacrificial agent-free photocatalytic H2O2 production for in situ water disinfection. Chem. Eng. J. 479, 147863 (2024). https://doi.org/10.1016/j.cej.2023.147863
J. Kim, M.-C. Kim, S.S. Han, K. Cho, Accessible Ni-Fe-oxalate framework for electrochemical urea oxidation with radically enhanced kinetics. Adv. Funct. Mater. 34, 2315625 (2024). https://doi.org/10.1002/adfm.202315625
M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
L. Jiang, J. Pan, Q. Li, H. Chen, S. Zhou et al., A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat 4, e12254 (2022). https://doi.org/10.1002/eom2.12254
S. Hong, K. Ham, J. Hwang, S. Kang, M.H. Seo et al., Active motif change of Ni-Fe spinel oxide by Ir doping for highly durable and facile oxygen evolution reaction. Adv. Funct. Mater. 33, 2209543 (2023). https://doi.org/10.1002/adfm.202209543
E. Rahman, S. Hong, J. Lee, S.W. Hong, K. Cho, Ni-Fe oxides/TiO2 heterojunction anodes for reactive chlorine generation and mediated water treatment. ACS Appl. Mater. Interfaces 15, 17867–17878 (2023). https://doi.org/10.1021/acsami.3c00581
S. Kim, S. Choung, W. Lee, S. Bae, J.W. Han et al., Tuning electrochemical water oxidation towards ozone evolution with heterojunction anode architectures. J. Mater. Chem. A 10, 17132–17141 (2022). https://doi.org/10.1039/D2TA02731C
M.S. Koo, K. Cho, J. Yoon, W. Choi, Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO2 nanotube arrays. Environ. Sci. Technol. 51, 6590–6598 (2017). https://doi.org/10.1021/acs.est.7b00774
J. Lim, Y. Yang, M.R. Hoffmann, Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 53, 6972–6980 (2019). https://doi.org/10.1021/acs.est.9b01449
Y.U. Shin, H.Y. Yoo, S. Kim, K.M. Chung, Y.G. Park et al., Sequential combination of electro-Fenton and electrochemical chlorination processes for the treatment of anaerobically-digested food wastewater. Environ. Sci. Technol. 51, 10700–10710 (2017). https://doi.org/10.1021/acs.est.7b02018
B.M. De Borba, R.F. Jack, J.S. Rohrer, J. Wirt, D. Wang, Simultaneous determination of total nitrogen and total phosphorus in environmental waters using alkaline persulfate digestion and ion chromatography. J. Chromatogr. A 1369, 131–137 (2014). https://doi.org/10.1016/j.chroma.2014.10.027
Q. Emparan, R. Harun, J.A. Kodiappan, Effect of microalgae-to-palm oil mill effluent (POME) ratio for rapid effective pollutants removal and biomass production. Desalin. Water Treat. 198, 119–125 (2020). https://doi.org/10.5004/dwt.2020.25979
I. Vyrides, D.C. Stuckey, A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. 100, 979–982 (2009). https://doi.org/10.1016/j.biortech.2008.06.038
A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanops prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia et al., Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018). https://doi.org/10.1038/s41467-018-04888-0
G. Dong, M. Fang, J. Zhang, R. Wei, L. Shu et al., In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J. Mater. Chem. A 5, 11009–11015 (2017). https://doi.org/10.1039/C7TA01134B
Q. Xue, H.-Y. Sun, Y.-N. Li, M.-J. Zhong, F.-M. Li et al., Au@Ir core-shell nanowires towards oxygen reduction reaction. Chem. Eng. J. 421, 129760 (2021). https://doi.org/10.1016/j.cej.2021.129760
K.S. Exner, T. Lim, S.H. Joo, Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: beyond dimensionally stable anodes. Curr. Opin. Electrochem. 34, 100979 (2022). https://doi.org/10.1016/j.coelec.2022.100979
C. Mahala, M.D. Sharma, M. Basu, 2D nanostructures of CoFe2O4 and NiFe2O4: efficient oxygen evolution catalyst. Electrochim. Acta 273, 462–473 (2018). https://doi.org/10.1016/j.electacta.2018.04.079
Z.-G. Ye, H.-M. Meng, D.-B. Sun, Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2 +MnO2 electrodes in 0.5m H2SO4 solution. J. Electroanal. Chem. 621, 49–54 (2008). https://doi.org/10.1016/j.jelechem.2008.04.009
D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow et al., Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3–xO4) for water splitting: a mini-review. J. Photon. Energy 7, 012009 (2017). https://doi.org/10.1117/1.jpe.7.012009
G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite NiFe2O4. Int. J. Hydrog. Energy 38, 6335–6343 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.087
K. Kitsuka, K. Kaneda, M. Ikematsu, M. Iseki, K. Mushiake et al., N-type TiO2 thin films for electrochemical ozone production. J. Electrochem. Soc. 157, F30 (2010). https://doi.org/10.1149/1.3265469
I.A. Moreno-Hernandez, B.S. Brunschwig, N.S. Lewis, Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci. 12, 1241–1248 (2019). https://doi.org/10.1039/C8EE03676D
S. Virtanen, P. Schmuki, A.J. Davenport, C.M. Vitus, Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy. J. Electrochem. Soc. 144, 198–204 (1997). https://doi.org/10.1149/1.1837385
J. Kunze, A. Ghicov, H. Hildebrand, J.M. Macak, L. Traveira et al., Challenges in the surface analytical characterisation of anodic TiO2 films–a review. Z. Für Phys. Chem. 219, 1561–1582 (2005). https://doi.org/10.1524/zpch.2005.219.11.1561
C.E. Finke, S.T. Omelchenko, J.T. Jasper, M.F. Lichterman, C.G. Read et al., Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 12, 358–365 (2019). https://doi.org/10.1039/c8ee02351d
S.R. Kelly, H.H. Heenen, N. Govindarajan, K. Chan, J.K. Nørskov, OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces. J. Phys. Chem. C 126, 5521–5528 (2022). https://doi.org/10.1021/acs.jpcc.1c10362
J. Park, E.J. Hwang, S. Hong, K. Cho, Electrochemical chlorine evolution by Bi–Ti oxide with a heterojunction on Ir–Ta oxide: insights from the effects of layer configurations. J. Phys. Chem. C 127, 9640–9649 (2023). https://doi.org/10.1021/acs.jpcc.3c01841
K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 6, 364–370 (2021). https://doi.org/10.1021/acsenergylett.0c02359
J. Kim, D. Kwon, K. Kim, M.R. Hoffmann, Electrochemical production of hydrogen coupled with the oxidation of arsenite. Environ. Sci. Technol. 48, 2059–2066 (2014). https://doi.org/10.1021/es4046814
J. Choi, Y. Qu, M.R. Hoffmann, SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanop anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2, in Nanotechnology for Sustainable Development. ed. by M.S. Diallo, N.A. Fromer, M.S. Jhon (Springer International Publishing, Cham, 2012), pp.223–234
H. Park, K.-H. Choo, H.-S. Park, J. Choi, M.R. Hoffmann, Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: influence of organic and particulate matter. Chem. Eng. J. 215, 802–810 (2013). https://doi.org/10.1016/j.cej.2012.11.075
L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. J. Hazard. Mater. 161, 1010–1016 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.047
V. Schmalz, T. Dittmar, D. Haaken, E. Worch, Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes: contribution for direct reuse of domestic wastewater. Water Res. 43, 5260–5266 (2009). https://doi.org/10.1016/j.watres.2009.08.036
S.O. Ganiyu, C.A. Martínez-Huitle, Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem 6, 2379–2392 (2019). https://doi.org/10.1002/celc.201900159
T.A. Pressley, D.F. Bishop, S.G. Roan, Ammonia-nitrogen removal by breakpoint chlorination. Environ. Sci. Technol. 6, 622–628 (1972). https://doi.org/10.1021/es60066a006
A. Urtiaga, I. Ortiz, A. Anglada, D. Mantzavinos, E. Diamadopoulos, Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. J. Appl. Electrochem. 42, 779–786 (2012). https://doi.org/10.1007/s10800-012-0458-5
C. Oliveira, C.R. Chaves, P. Bargiela, M. da Graça Carneiro da Rocha, A.F. da Silva et al., Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations. J. Mater. Res. Technol. 15, 768–776 (2021). https://doi.org/10.1016/j.jmrt.2021.08.059
M. Sgroi, P. Roccaro, G.V. Korshin, V. Greco, S. Sciuto et al., Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants. J. Hazard. Mater. 323, 367–376 (2017). https://doi.org/10.1016/j.jhazmat.2016.05.035