A Fully-Printed Wearable Bandage-Based Electrochemical Sensor with pH Correction for Wound Infection Monitoring
Corresponding Author: Itthipon Jeerapan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 71
Abstract
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids. Wound diagnosis remains challenging, necessitating suitable materials for high-performance wearable sensors to offer prompt feedback. Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously, which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors. Therefore, improving materials and analysis system accuracy is essential. This article introduces the first example of a flexible array capable of detecting pyocyanin, a bacterial virulence factor, while correcting dynamic pH fluctuations. We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response. Customized screen-printable inks were developed to enhance analytical performance. The analytical performances of two sensitive sensor systems (i.e., fully-printed porous graphene/multiwalled carbon nanotube (CNT) and polyaniline/CNT composites for pyocyanin and pH sensors) are evaluated. Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids. This sensitive and effective strategy shows potential for personalized applications due to its affordability, ease of use, and ability to adjust for dynamic pH changes.
Highlights:
1 The first example of a flexible array capable of detecting pyocyanin, a bacterial virulence factor, while correcting dynamic pH fluctuations.
2 Developed a screen-printable conductive nanocomposite ink for fabricating the pyocyanin sensor and utilized a polyaniline/carbon nanocomposite as a pH-sensitive film for the pH sensor.
3 Customized inks are advantageous in terms of flexible printed sensing array integrated onto a bandage surface, capable of monitoring both pyocyanin and pH levels in wound exudate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ali, W. Jiang, A. Shahzad, J. Ifthikar, X. Yang et al., Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides. Chem. Eng. J. 425, 130679 (2021). https://doi.org/10.1016/j.cej.2021.130679
- F.A. Alatraktchi, Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: towards on-site applications. Measurement 195, 111124 (2022). https://doi.org/10.1016/j.measurement.2022.111124
- H. Boukhalfa, S.D. Reilly, R. Michalczyk, S. Iyer, M.P. Neu, Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015. Inorg. Chem. 45, 5607–5616 (2006). https://doi.org/10.1021/ic060196p
- C.I. Günter, H.-G. Machens, Innovations in wound medicine. Wound Med. 4, 9–12 (2014). https://doi.org/10.1016/j.wndm.2013.11.001
- D. Arcangeli, I. Gualandi, F. Mariani, M. Tessarolo, F. Ceccardi et al., Smart bandaid integrated with fully textile OECT for uric acid real-time monitoring in wound exudate. ACS Sens. 8, 1593–1608 (2023). https://doi.org/10.1021/acssensors.2c02728
- N.T. Garland, J.W. Song, T. Ma, Y.J. Kim, A. Vázquez-Guardado et al., A miniaturized, battery-free, wireless wound monitor that predicts wound closure rate early. Adv. Healthc. Mater. 12, e2301280 (2023). https://doi.org/10.1002/adhm.202301280
- P. Thirabowonkitphithan, P. Phuengmaung, A. Leelahavanichkul, W. Laiwattanapaisal, MWCNTs/PVA hydrogel-modified electrochemical sensors for ex vivo and in vivo detection of pyocyanin biomarker for Pseudomonas aeruginosa wound infection. ACS Appl. Electron. Mater. 5, 821–831 (2023). https://doi.org/10.1021/acsaelm.2c01396
- D. Sharp, P. Gladstone, R.B. Smith, S. Forsythe, J. Davis, Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 77, 114–119 (2010). https://doi.org/10.1016/j.bioelechem.2009.07.008
- A.M.V. Mohan, V. Rajendran, R.K. Mishra, M. Jayaraman, Recent advances and perspectives in sweat based wearable electrochemical sensors. Trac Trends Anal. Chem. 131, 116024 (2020). https://doi.org/10.1016/j.trac.2020.116024
- A.A. Abdelaziz, A.M.A. Kamer, K.B. Al-Monofy, L.A. Al-Madboly, Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: its production and biological activities. Microb. Cell Fact. 22, 110 (2023). https://doi.org/10.1186/s12934-023-02122-1
- H.J. Sismaet, A.J. Pinto, E.D. Goluch, Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens. Bioelectron. 97, 65–69 (2017). https://doi.org/10.1016/j.bios.2017.05.042
- A.B. Alayande, M.M. Aung, I.S. Kim, Correlation between quorum sensing signal molecules and Pseudomonas aeruginosa’s biofilm development and virulency. Curr. Microbiol. 75, 787–793 (2018). https://doi.org/10.1007/s00284-018-1449-5
- R. Aziz, M. Al Marjani, A. Thabit Jabbar, Extraction, purification and characterization of pyocyanin pigment from Pseudomonas aeruginosa and testing its biological efficacy in biochemical and cellular archives. Biochem. Cell. Arch. 20, 5585–5592 (2020)
- M. Muller, Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic. Biol. Med. 41, 1670–1677 (2006). https://doi.org/10.1016/j.freeradbiomed.2006.09.004
- M. Muller, Z. Li, P.K.M. Maitz, Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35, 500–508 (2009). https://doi.org/10.1016/j.burns.2008.11.010
- D. Kang, N.V. Kirienko, An in vitro cell culture model for pyoverdine-mediated virulence. Pathogens 10, 9 (2020). https://doi.org/10.3390/pathogens10010009
- B. Amini, M. Kamali, M. Salouti, P. Yaghmaei, Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanops DNA probe and endonuclease enzyme. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 199, 421–429 (2018). https://doi.org/10.1016/j.saa.2018.03.056
- L.R. Mulcahy, V.M. Isabella, K. Lewis, Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 68, 1–12 (2014). https://doi.org/10.1007/s00248-013-0297-x
- D.E. Angel, P. Lloyd, K. Carville, N. Santamaria, The clinical efficacy of two semi-quantitative wound-swabbing techniques in identifying the causative organism(s) in infected cutaneous wounds. Int. Wound J. 8, 176–185 (2011). https://doi.org/10.1111/j.1742-481X.2010.00765.x
- S. Phan, C.H. Feng, R. Huang, Z.X. Lee, Y. Moua et al., Relative abundance and detection of Pseudomonas aeruginosa from chronic wound infections globally. Microorganisms 11, 1210 (2023). https://doi.org/10.3390/microorganisms11051210
- R.A.S. Couto, J.L.F.C. Lima, M.B. Quinaz, Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146, 801–814 (2016). https://doi.org/10.1016/j.talanta.2015.06.011
- F.A. Alatraktchi, S.B. Andersen, H.K. Johansen, S. Molin, W.E. Svendsen, Fast selective detection of pyocyanin using cyclic voltammetry. Sensors 16, 408 (2016). https://doi.org/10.3390/s16030408
- J.I.A. Rashid, V. Kannan, M.H. Ahmad, A.A. Mon, S. Taufik et al., An electrochemical sensor based on gold nanops-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection. Mater. Sci. Eng. C 120, 111625 (2021). https://doi.org/10.1016/j.msec.2020.111625
- N. Tang, Y. Zheng, X. Jiang, C. Zhou, H. Jin et al., Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines 12, 430 (2021). https://doi.org/10.3390/mi12040430
- S.L. Percival, S. McCarty, J.A. Hunt, E.J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22, 174–186 (2014). https://doi.org/10.1111/wrr.12125
- C. Wang, E. Shirzaei Sani, W. Gao, Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202111022
- D.U. Lee, S.C. Kim, D.Y. Choi, W.K. Jung, M.J. Moon, Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects. Biomater. Res. 27, 14 (2023). https://doi.org/10.1186/s40824-023-00355-0
- Y. Gao, D.T. Nguyen, T. Yeo, S.B. Lim, W.X. Tan et al., A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abg9614
- F. Mariani, M. Serafini, I. Gualandi, D. Arcangeli, F. Decataldo et al., Advanced wound dressing for real-time pH monitoring. ACS Sens. 6, 2366–2377 (2021). https://doi.org/10.1021/acssensors.1c00552
- B. Ciui, M. Tertiş, A. Cernat, R. Săndulescu, J. Wang et al., Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal. Chem. 90, 7761–7768 (2018). https://doi.org/10.1021/acs.analchem.8b01915
- Z. Shi, C. Dai, P. Deng, X. Li, Y. Wu et al., Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens. Actuat. B Chem. 383, 133598 (2023). https://doi.org/10.1016/j.snb.2023.133598
- K. Wang, Q. Ding, M. Qi, W. Zhang, Y. Hou et al., Integrated bilayer microneedle dressing and triboelectric nanogenerator for intelligent management of infected wounds. Adv. Funct. Mater. 34, 2316820 (2024). https://doi.org/10.1002/adfm.202316820
- S. DeBritto, T.D. Gajbar, P. Satapute, L. Sundaram, R.Y. Lakshmikantha et al., Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1542 (2020). https://doi.org/10.1038/s41598-020-58335-6
- P. D’Arpa, S.L.R. Karna, T. Chen, K.P. Leung, Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci. Rep. 11, 20632 (2021). https://doi.org/10.1038/s41598-021-00073-4
- S. Sriwiriyajan, T. Ninpesh, Y. Sukpondma, T. Nasomyon, P. Graidist, Cytotoxicity screening of plants of genus Piper in breast cancer cell lines. Trop. J. Pharm. Res. 13, 921 (2014). https://doi.org/10.4314/tjpr.v13i6.14
- F. Schollemann, J. Kunczik, H. Dohmeier, C.B. Pereira, A. Follmann et al., Infection probability index: implementation of an automated chronic wound infection marker. J. Clin. Med. 11, 169 (2021). https://doi.org/10.3390/jcm11010169
- N. Baig, A. Waheed, M. Sajid, I. Khan, A.-N. Kawde et al., Porous graphene-based electrodes: advances in electrochemical sensing of environmental contaminants. Trends Environ. Anal. Chem. 30, e00120 (2021). https://doi.org/10.1016/j.teac.2021.e00120
- F. De Nicola, P. Castrucci, M. Scarselli, F. Nanni, I. Cacciotti et al., Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings. Sci. Rep. 5, 8583 (2015). https://doi.org/10.1038/srep08583
- J. Kim, W.-H. Khoh, B.-H. Wee, J.-D. Hong, Fabrication of flexible reduced graphene oxide–TiO2 freestanding films for supercapacitor application. RSC Adv. 5, 9904–9911 (2015). https://doi.org/10.1039/C4RA12980F
- G. Cui, J.H. Yoo, J.S. Lee, J. Yoo, J.H. Uhm et al., Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 126, 1399–1403 (2001). https://doi.org/10.1039/b102934g
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- H. Trill, Diagnostic technologies for wound monitoring. Thesis (Ph.D.), Cranfield University (2006).
- N.J. Trengove, S.R. Langton, M.C. Stacey, Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen. 4, 234–239 (1996). https://doi.org/10.1046/j.1524-475X.1996.40211.x
- C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016
- R.B. Louisa, N.M. Charne, J.S. Richard, M.B.M. Andrea, S. Geoff et al., The pH of wounds during healing and infection: A descriptive literature review. Wound Pract. Res. 25, 63–69 (2017)
- S.P. Nischwitz, I. Bernardelli de Mattos, E. Hofmann, F. Groeber-Becker, M. Funk et al., Continuous pH monitoring in wounds using a composite indicator dressing—a feasibility study. Burns 45, 1336–1341 (2019). https://doi.org/10.1016/j.burns.2019.02.021
- A.U. Alam, Y. Qin, S. Nambiar, J.T.W. Yeow, M.M.R. Howlader et al., Polymers and organic materials-based pH sensors for healthcare applications. Prog. Mater. Sci. 96, 174–216 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.008
- V. Osuna, A. Vega-Rios, E.A. Zaragoza-Contreras, I.A. Estrada-Moreno, R.B. Dominguez, Progress of polyaniline glucose sensors for diabetes mellitus management utilizing enzymatic and non-enzymatic detection. Biosensors 12, 137 (2022). https://doi.org/10.3390/bios12030137
- T. Lindfors, A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 531, 43–52 (2002). https://doi.org/10.1016/S0022-0728(02)01005-7
- Y. Tang, L. Zhong, W. Wang, Y. He, T. Han et al., Recent advances in wearable potentiometric pH sensors. Membranes 12, 504 (2022). https://doi.org/10.3390/membranes12050504
- J. Lee, I. Soltis, S.A. Tillery, S.H. Lee, H. Kim et al., Long-term stable pH sensor array with synergistic bilayer structure for 2D real-time mapping in cell culture monitoring. Biosens. Bioelectron. 254, 116223 (2024). https://doi.org/10.1016/j.bios.2024.116223
- T. Guinovart, G.A. Crespo, F.X. Rius, F.J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 821, 72–80 (2014). https://doi.org/10.1016/j.aca.2014.02.028
- M. Löffler, D. Zieker, J. Weinreich, S. Löb, I. Königsrainer et al., Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings. Diabet. Med. 28, 175–178 (2011). https://doi.org/10.1111/j.1464-5491.2010.03123.x
- X. Liu, P.B. Lillehoj, Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens. Bioelectron. 98, 189–194 (2017). https://doi.org/10.1016/j.bios.2017.06.053
- M.L. Griffiths, R.P. Barbagallo, J.T. Keer, Multiple and simultaneous fluorophore detection using fluorescence spectrometry and partial least-squares regression with sample-specific confidence intervals. Anal. Chem. 78, 513–523 (2006). https://doi.org/10.1021/ac051635p
- K. Kumar, Partial least square (PLS) analysis. Resonance 26, 429–442 (2021). https://doi.org/10.1007/s12045-021-1140-1
- P.S. Sampaio, A. Soares, A. Castanho, A.S. Almeida, J. Oliveira et al., Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 242, 196–204 (2018). https://doi.org/10.1016/j.foodchem.2017.09.058
- D. Cozzolino, M.J. Kwiatkowski, R.G. Dambergs, W.U. Cynkar, L.J. Janik et al., Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta 74, 711–716 (2008). https://doi.org/10.1016/j.talanta.2007.06.045
References
J. Ali, W. Jiang, A. Shahzad, J. Ifthikar, X. Yang et al., Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides. Chem. Eng. J. 425, 130679 (2021). https://doi.org/10.1016/j.cej.2021.130679
F.A. Alatraktchi, Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: towards on-site applications. Measurement 195, 111124 (2022). https://doi.org/10.1016/j.measurement.2022.111124
H. Boukhalfa, S.D. Reilly, R. Michalczyk, S. Iyer, M.P. Neu, Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015. Inorg. Chem. 45, 5607–5616 (2006). https://doi.org/10.1021/ic060196p
C.I. Günter, H.-G. Machens, Innovations in wound medicine. Wound Med. 4, 9–12 (2014). https://doi.org/10.1016/j.wndm.2013.11.001
D. Arcangeli, I. Gualandi, F. Mariani, M. Tessarolo, F. Ceccardi et al., Smart bandaid integrated with fully textile OECT for uric acid real-time monitoring in wound exudate. ACS Sens. 8, 1593–1608 (2023). https://doi.org/10.1021/acssensors.2c02728
N.T. Garland, J.W. Song, T. Ma, Y.J. Kim, A. Vázquez-Guardado et al., A miniaturized, battery-free, wireless wound monitor that predicts wound closure rate early. Adv. Healthc. Mater. 12, e2301280 (2023). https://doi.org/10.1002/adhm.202301280
P. Thirabowonkitphithan, P. Phuengmaung, A. Leelahavanichkul, W. Laiwattanapaisal, MWCNTs/PVA hydrogel-modified electrochemical sensors for ex vivo and in vivo detection of pyocyanin biomarker for Pseudomonas aeruginosa wound infection. ACS Appl. Electron. Mater. 5, 821–831 (2023). https://doi.org/10.1021/acsaelm.2c01396
D. Sharp, P. Gladstone, R.B. Smith, S. Forsythe, J. Davis, Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 77, 114–119 (2010). https://doi.org/10.1016/j.bioelechem.2009.07.008
A.M.V. Mohan, V. Rajendran, R.K. Mishra, M. Jayaraman, Recent advances and perspectives in sweat based wearable electrochemical sensors. Trac Trends Anal. Chem. 131, 116024 (2020). https://doi.org/10.1016/j.trac.2020.116024
A.A. Abdelaziz, A.M.A. Kamer, K.B. Al-Monofy, L.A. Al-Madboly, Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: its production and biological activities. Microb. Cell Fact. 22, 110 (2023). https://doi.org/10.1186/s12934-023-02122-1
H.J. Sismaet, A.J. Pinto, E.D. Goluch, Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens. Bioelectron. 97, 65–69 (2017). https://doi.org/10.1016/j.bios.2017.05.042
A.B. Alayande, M.M. Aung, I.S. Kim, Correlation between quorum sensing signal molecules and Pseudomonas aeruginosa’s biofilm development and virulency. Curr. Microbiol. 75, 787–793 (2018). https://doi.org/10.1007/s00284-018-1449-5
R. Aziz, M. Al Marjani, A. Thabit Jabbar, Extraction, purification and characterization of pyocyanin pigment from Pseudomonas aeruginosa and testing its biological efficacy in biochemical and cellular archives. Biochem. Cell. Arch. 20, 5585–5592 (2020)
M. Muller, Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic. Biol. Med. 41, 1670–1677 (2006). https://doi.org/10.1016/j.freeradbiomed.2006.09.004
M. Muller, Z. Li, P.K.M. Maitz, Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35, 500–508 (2009). https://doi.org/10.1016/j.burns.2008.11.010
D. Kang, N.V. Kirienko, An in vitro cell culture model for pyoverdine-mediated virulence. Pathogens 10, 9 (2020). https://doi.org/10.3390/pathogens10010009
B. Amini, M. Kamali, M. Salouti, P. Yaghmaei, Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanops DNA probe and endonuclease enzyme. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 199, 421–429 (2018). https://doi.org/10.1016/j.saa.2018.03.056
L.R. Mulcahy, V.M. Isabella, K. Lewis, Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 68, 1–12 (2014). https://doi.org/10.1007/s00248-013-0297-x
D.E. Angel, P. Lloyd, K. Carville, N. Santamaria, The clinical efficacy of two semi-quantitative wound-swabbing techniques in identifying the causative organism(s) in infected cutaneous wounds. Int. Wound J. 8, 176–185 (2011). https://doi.org/10.1111/j.1742-481X.2010.00765.x
S. Phan, C.H. Feng, R. Huang, Z.X. Lee, Y. Moua et al., Relative abundance and detection of Pseudomonas aeruginosa from chronic wound infections globally. Microorganisms 11, 1210 (2023). https://doi.org/10.3390/microorganisms11051210
R.A.S. Couto, J.L.F.C. Lima, M.B. Quinaz, Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146, 801–814 (2016). https://doi.org/10.1016/j.talanta.2015.06.011
F.A. Alatraktchi, S.B. Andersen, H.K. Johansen, S. Molin, W.E. Svendsen, Fast selective detection of pyocyanin using cyclic voltammetry. Sensors 16, 408 (2016). https://doi.org/10.3390/s16030408
J.I.A. Rashid, V. Kannan, M.H. Ahmad, A.A. Mon, S. Taufik et al., An electrochemical sensor based on gold nanops-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection. Mater. Sci. Eng. C 120, 111625 (2021). https://doi.org/10.1016/j.msec.2020.111625
N. Tang, Y. Zheng, X. Jiang, C. Zhou, H. Jin et al., Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines 12, 430 (2021). https://doi.org/10.3390/mi12040430
S.L. Percival, S. McCarty, J.A. Hunt, E.J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22, 174–186 (2014). https://doi.org/10.1111/wrr.12125
C. Wang, E. Shirzaei Sani, W. Gao, Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202111022
D.U. Lee, S.C. Kim, D.Y. Choi, W.K. Jung, M.J. Moon, Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects. Biomater. Res. 27, 14 (2023). https://doi.org/10.1186/s40824-023-00355-0
Y. Gao, D.T. Nguyen, T. Yeo, S.B. Lim, W.X. Tan et al., A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abg9614
F. Mariani, M. Serafini, I. Gualandi, D. Arcangeli, F. Decataldo et al., Advanced wound dressing for real-time pH monitoring. ACS Sens. 6, 2366–2377 (2021). https://doi.org/10.1021/acssensors.1c00552
B. Ciui, M. Tertiş, A. Cernat, R. Săndulescu, J. Wang et al., Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal. Chem. 90, 7761–7768 (2018). https://doi.org/10.1021/acs.analchem.8b01915
Z. Shi, C. Dai, P. Deng, X. Li, Y. Wu et al., Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens. Actuat. B Chem. 383, 133598 (2023). https://doi.org/10.1016/j.snb.2023.133598
K. Wang, Q. Ding, M. Qi, W. Zhang, Y. Hou et al., Integrated bilayer microneedle dressing and triboelectric nanogenerator for intelligent management of infected wounds. Adv. Funct. Mater. 34, 2316820 (2024). https://doi.org/10.1002/adfm.202316820
S. DeBritto, T.D. Gajbar, P. Satapute, L. Sundaram, R.Y. Lakshmikantha et al., Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep. 10, 1542 (2020). https://doi.org/10.1038/s41598-020-58335-6
P. D’Arpa, S.L.R. Karna, T. Chen, K.P. Leung, Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci. Rep. 11, 20632 (2021). https://doi.org/10.1038/s41598-021-00073-4
S. Sriwiriyajan, T. Ninpesh, Y. Sukpondma, T. Nasomyon, P. Graidist, Cytotoxicity screening of plants of genus Piper in breast cancer cell lines. Trop. J. Pharm. Res. 13, 921 (2014). https://doi.org/10.4314/tjpr.v13i6.14
F. Schollemann, J. Kunczik, H. Dohmeier, C.B. Pereira, A. Follmann et al., Infection probability index: implementation of an automated chronic wound infection marker. J. Clin. Med. 11, 169 (2021). https://doi.org/10.3390/jcm11010169
N. Baig, A. Waheed, M. Sajid, I. Khan, A.-N. Kawde et al., Porous graphene-based electrodes: advances in electrochemical sensing of environmental contaminants. Trends Environ. Anal. Chem. 30, e00120 (2021). https://doi.org/10.1016/j.teac.2021.e00120
F. De Nicola, P. Castrucci, M. Scarselli, F. Nanni, I. Cacciotti et al., Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings. Sci. Rep. 5, 8583 (2015). https://doi.org/10.1038/srep08583
J. Kim, W.-H. Khoh, B.-H. Wee, J.-D. Hong, Fabrication of flexible reduced graphene oxide–TiO2 freestanding films for supercapacitor application. RSC Adv. 5, 9904–9911 (2015). https://doi.org/10.1039/C4RA12980F
G. Cui, J.H. Yoo, J.S. Lee, J. Yoo, J.H. Uhm et al., Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 126, 1399–1403 (2001). https://doi.org/10.1039/b102934g
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
H. Trill, Diagnostic technologies for wound monitoring. Thesis (Ph.D.), Cranfield University (2006).
N.J. Trengove, S.R. Langton, M.C. Stacey, Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen. 4, 234–239 (1996). https://doi.org/10.1046/j.1524-475X.1996.40211.x
C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016
R.B. Louisa, N.M. Charne, J.S. Richard, M.B.M. Andrea, S. Geoff et al., The pH of wounds during healing and infection: A descriptive literature review. Wound Pract. Res. 25, 63–69 (2017)
S.P. Nischwitz, I. Bernardelli de Mattos, E. Hofmann, F. Groeber-Becker, M. Funk et al., Continuous pH monitoring in wounds using a composite indicator dressing—a feasibility study. Burns 45, 1336–1341 (2019). https://doi.org/10.1016/j.burns.2019.02.021
A.U. Alam, Y. Qin, S. Nambiar, J.T.W. Yeow, M.M.R. Howlader et al., Polymers and organic materials-based pH sensors for healthcare applications. Prog. Mater. Sci. 96, 174–216 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.008
V. Osuna, A. Vega-Rios, E.A. Zaragoza-Contreras, I.A. Estrada-Moreno, R.B. Dominguez, Progress of polyaniline glucose sensors for diabetes mellitus management utilizing enzymatic and non-enzymatic detection. Biosensors 12, 137 (2022). https://doi.org/10.3390/bios12030137
T. Lindfors, A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 531, 43–52 (2002). https://doi.org/10.1016/S0022-0728(02)01005-7
Y. Tang, L. Zhong, W. Wang, Y. He, T. Han et al., Recent advances in wearable potentiometric pH sensors. Membranes 12, 504 (2022). https://doi.org/10.3390/membranes12050504
J. Lee, I. Soltis, S.A. Tillery, S.H. Lee, H. Kim et al., Long-term stable pH sensor array with synergistic bilayer structure for 2D real-time mapping in cell culture monitoring. Biosens. Bioelectron. 254, 116223 (2024). https://doi.org/10.1016/j.bios.2024.116223
T. Guinovart, G.A. Crespo, F.X. Rius, F.J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 821, 72–80 (2014). https://doi.org/10.1016/j.aca.2014.02.028
M. Löffler, D. Zieker, J. Weinreich, S. Löb, I. Königsrainer et al., Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings. Diabet. Med. 28, 175–178 (2011). https://doi.org/10.1111/j.1464-5491.2010.03123.x
X. Liu, P.B. Lillehoj, Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens. Bioelectron. 98, 189–194 (2017). https://doi.org/10.1016/j.bios.2017.06.053
M.L. Griffiths, R.P. Barbagallo, J.T. Keer, Multiple and simultaneous fluorophore detection using fluorescence spectrometry and partial least-squares regression with sample-specific confidence intervals. Anal. Chem. 78, 513–523 (2006). https://doi.org/10.1021/ac051635p
K. Kumar, Partial least square (PLS) analysis. Resonance 26, 429–442 (2021). https://doi.org/10.1007/s12045-021-1140-1
P.S. Sampaio, A. Soares, A. Castanho, A.S. Almeida, J. Oliveira et al., Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 242, 196–204 (2018). https://doi.org/10.1016/j.foodchem.2017.09.058
D. Cozzolino, M.J. Kwiatkowski, R.G. Dambergs, W.U. Cynkar, L.J. Janik et al., Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta 74, 711–716 (2008). https://doi.org/10.1016/j.talanta.2007.06.045