Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges
Corresponding Author: Valeska P. Ting
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 54
Abstract
Introduction of multiple pore size regimes into metal–organic frameworks (MOFs) to form hierarchical porous structures can lead to improved performance of the material in various applications. In many cases, where interactions with bulky molecules are involved, enlarging the pore size of typically microporous MOF adsorbents or MOF catalysts is crucial for enhancing both mass transfer and molecular accessibility. In this review, we examine the range of synthetic strategies which have been reported thus far to prepare hierarchical MOFs or MOF composites with added macroporosity. These fabrication techniques can be either pre- or post-synthetic and include using hard or soft structural template agents, defect formation, routes involving supercritical CO2, and 3D printing. We also discuss potential applications and some of the challenges involved with current techniques, which must be addressed if any of these approaches are to be taken forward for industrial applications.
Highlights:
1 The advantages of macroporous metal–organic frameworks (MOFs) in comparison with micro- and mesoporous MOFs are discussed.
2 A range of synthetic methods for the fabrication and characterisation of hierarchical MOFs with macroporosity are reviewed.
3 The applications, advancements, and challenges of each method are compared and assessed in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Nugent, E.G. Giannopoulou, S.D. Burd, O. Elemento, E.G. Giannopoulou et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013). https://doi.org/10.1038/nature11893
- D.E. Jiang, V.R. Cooper, S. Dai, Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009). https://doi.org/10.1021/nl9021946
- K.M. Steel, W.J. Koros, Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41, 253–266 (2003). https://doi.org/10.1016/S0008-6223(02)00309-3
- Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 55, 217–230 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
- S. Rashidi, J.A. Esfahani, N. Karimi, Porous materials in building energy technologies—a review of the applications, modelling and experiments. Renew. Sustain. Energy Rev. 91, 229–247 (2018). https://doi.org/10.1016/j.rser.2018.03.092
- C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
- Y. Li, Z.Y. Fu, B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634 (2012). https://doi.org/10.1002/adfm.201200591
- S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26, 849–864 (2014). https://doi.org/10.1002/adma.201303115
- S. Wang, Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 117, 1–9 (2009). https://doi.org/10.1016/j.micromeso.2008.07.002
- P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryand imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
- P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas et al., Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008). https://doi.org/10.1021/ja710973k
- C. Perego, R. Millini, Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013). https://doi.org/10.1039/c2cs35244c
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/b807080f
- C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013). https://doi.org/10.1039/c2cs35378d
- A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005). https://doi.org/10.1016/j.micromeso.2004.06.030
- J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes et al., Recommendations for the Characterization of Porous Solids (Technical Report) (1994)
- K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (2007). https://doi.org/10.1351/pac198557040603
- W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016). https://doi.org/10.1039/c5cs00599j
- U. Betke, A. Lieb, Micro-macroporous composite materials—preparation techniques and selected applications: a review. Adv. Eng. Mater. 20, 1800252 (2018). https://doi.org/10.1002/adem.201800252
- X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/c6cs00829a
- P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney et al., Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
- D.A. Gómez-Gualdrón, Y.J. Colón, X. Zhang, T.C. Wang, Y.S. Chen et al., Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016). https://doi.org/10.1039/c6ee02104b
- J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez et al., Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). https://doi.org/10.1038/nature15732
- L. Zou, H.C. Zhou, Hydrogen storage in metal–organic frameworks, in Nanostructured Materials for Next-Generation Energy Storage and Conversion, ed. by Y.P. Chen, S. Bashir, J. Liu (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-662-53514-1_5
- J.M. Holcroft, K.J. Hartlieb, P.Z. Moghadam, J.G. Bell, G. Barin et al., Carbohydrate-mediated purification of petrochemicals. J. Am. Chem. Soc. 137, 5706–5719 (2015). https://doi.org/10.1021/ja511878b
- J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/b802426j
- J.B. DeCoste, G.W. Peterson, Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014). https://doi.org/10.1021/cr4006473
- X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal–organic frameworks for separation. Adv. Mater. 30, 1705189 (2018). https://doi.org/10.1002/adma.201705189
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/c4cs00094c
- C.D. Wu, Crystal engineering of metal–organic frameworks for heterogeneous catalysis. Select. Nanocatalysts Nanosci. 110, 271–298 (2011). https://doi.org/10.1002/9783527635689.ch8
- K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch et al., Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012). https://doi.org/10.1021/cr2003272
- T.M. McDonald, J.A. Mason, X. Kong, E.D. Bloch, D. Gygi et al., Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015). https://doi.org/10.1038/nature14327
- A.Ö. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu et al., Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009). https://doi.org/10.1021/ja9057234
- G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008). https://doi.org/10.1039/b618320b
- D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dincǎ, High electrical conductivity in Ni3(2,3,6,7,10,11- hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014). https://doi.org/10.1021/ja502765n
- H.Y. Guan, R.J. LeBlanc, S.Y. Xie, Y. Yue, Recent progress in the syntheses of mesoporous metal–organic framework materials. Coord. Chem. Rev. 369, 76–90 (2018). https://doi.org/10.1016/j.ccr.2018.05.001
- D. Liu, D. Zou, H. Zhu, J. Zhang, Mesoporous metal–organic frameworks: synthetic strategies and emerging applications. Small 14, 1801454 (2018). https://doi.org/10.1002/smll.201801454
- K. Wang, Y. Zhang, J. Zhao, C. Yan, Y. Wei et al., Facile synthesis of hierarchical porous solid catalysts with acid-base bifunctional active sites for the conversion of cellulose to 5-hydroxymethylfurfural. New J. Chem. 42, 18084–18095 (2018). https://doi.org/10.1039/c8nj03812k
- Q. Xiang, J. Yu, Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant 001 facets. Chin. J. Catal. 32, 525–531 (2011). https://doi.org/10.1016/S1872-2067(10)60186-6
- G. Xi, B. Yue, J. Cao, J. Ye, Fe3O4/WO3 Hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem. A Eur. J. 17, 5145–5154 (2011). https://doi.org/10.1002/chem.201002229
- L. Feng, S. Yuan, J.L. Li, K.Y. Wang, G.S. Day et al., Uncovering two principles of multivariate hierarchical metal–organic framework synthesis via retrosynthetic design. ACS Cent. Sci. 4, 1719–1726 (2018). https://doi.org/10.1021/acscentsci.8b00722
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023
- P. Klobes, K. Meyer, R.G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials (NIST Special Publications, Washington, 2006)
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951). https://doi.org/10.1021/ja01145a126
- L.G. Joyner, E.P. Barrett, R. Skold, The determination of pore volume and area distributions in porous substances. II. Comparison between nitrogen isotherm and mercury porosimeter methods. J. Am. Chem. Soc. 73, 3155–3158 (1951). https://doi.org/10.1021/ja01151a046
- L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Springer, Boston, 1987)
- J. Rouquerol, G.V. Baron, R. Denoyel, H. Giesche, J. Groen et al., The characterization of macroporous solids: an overview of the methodology. Microporous Mesoporous Mater. 154, 2–6 (2012). https://doi.org/10.1016/j.micromeso.2011.09.031
- A. Radlinski, M. Mastalerz, A. Hinde, M. Hainbuchner, H. Rauch et al., Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 59, 245–271 (2004). https://doi.org/10.1016/J.COAL.2004.03.002
- V.P. Ting, A.J. Ramirez-Cuesta, N. Bimbo, J.E. Sharpe, A. Noguera-Diaz et al., Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9, 8249–8254 (2015). https://doi.org/10.1021/acsnano.5b02623
- Y. Wang, F. De Carlo, D.C. Mancini, I. McNulty, B. Tieman et al., A high-throughput x-ray microtomography system at the advanced photon source. Rev. Sci. Instrum. 72, 2062 (2001). https://doi.org/10.1063/1.1355270
- O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012). https://doi.org/10.1021/ja3055639
- K. Matsuyama, Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. J. Supercrit. Fluids 134, 197–203 (2018). https://doi.org/10.1016/j.supflu.2017.12.004
- A. Taguchi, J.H. Smätt, M. Lindén, Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15, 1209 (2003). https://doi.org/10.1002/adma.200304848
- C. Xue, B. Tu, D. Zhao, Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic self-assembly. Nano Res. 2, 242–253 (2009). https://doi.org/10.1007/s12274-009-9022-y
- J.H. Smått, S. Schunk, M. Lindén, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354–2361 (2003). https://doi.org/10.1021/cm0213422
- C.M. Yang, J.H. Smått, B. Zibrowius, M. Lindén, Chemical removal of organic polymers from highly porous sol–gel-derived silica monoliths. New J. Chem. 28, 1520–1525 (2004). https://doi.org/10.1039/b407639g
- A.M. Nardes, R.A.J. Janssen, M. Kemerink, A morphological model for the solvent-enhanced conductivity of PEDOT: PSS thin films. Adv. Funct. Mater. 18, 865–871 (2008). https://doi.org/10.1002/adfm.200700796
- F. Sandra, M. Depardieu, Z. Mouline, G.L. Vignoles, Y. Iwamoto, P. Miele, R. Backov, S. Bernard, Polymer-derived silicoboron carbonitride foams for CO2 capture: from design to application as scaffolds for the in situ growth of metal–organic frameworks. Chem. A Eur. J. 22, 8346–8357 (2016). https://doi.org/10.1002/chem.201600060
- J. Ren, T. Segakweng, H.W. Langmi, B.C. North, M. Mathe, Ni foam-immobilized MIL-101(Cr) nanocrystals toward system integration for hydrogen storage. J. Alloys Compd. 645, S170–S173 (2015). https://doi.org/10.1016/j.jallcom.2015.01.083
- T. Granato, F. Testa, R. Olivo, Catalytic activity of HKUST-1 coated on ceramic foam. Microporous Mesoporous Mater. 153, 236–246 (2012). https://doi.org/10.1016/j.micromeso.2011.12.055
- Y. Xie, Y. Song, Y. Zhang, L. Xu, L. Miao, C. Peng, L. Wang, Cu metal–organic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J. Alloys Compd. 757, 105–111 (2018). https://doi.org/10.1016/j.jallcom.2018.05.064
- U. Betke, S. Proemmel, S. Rannabauer, A. Lieb, M. Scheffler, F. Scheffler, Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous Mesoporous Mater. 239, 209–220 (2017). https://doi.org/10.1016/j.micromeso.2016.10.011
- U. Betke, S. Proemmel, J.G. Eggebrecht, S. Rannabauer, A. Lieb, M. Scheffler, F. Scheffler, Micro-macroporous composite materials: SiC ceramic foams functionalized with the metal organic framework HKUST-1. Chem.-Ing.-Tech. 88(3), 264–273 (2016). https://doi.org/10.1002/cite.201500141
- U. Betke, M. Klaus, J.G. Eggebrecht, M. Scheffler, A. Lieb, MOFs meet macropores: dynamic direct crystallization of the microporous aluminum isophthalate CAU-10 on reticulated open-cellular alumina foams. Microporous Mesoporous Mater. 265, 43–56 (2018). https://doi.org/10.1016/j.micromeso.2018.01.020
- Y. Hu, H. Lian, L. Zhou, G. Li, In situ solvothermal growth of metal–organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Anal. Chem. 87, 406–412 (2015). https://doi.org/10.1021/ac502146c
- Y. Sun, F. Yang, Q. Wei, N. Wang, X. Qin et al., Oriented nano-microstructure-assisted controllable fabrication of metal–organic framework membranes on nickel foam. Adv. Mater. 28, 2374 (2016). https://doi.org/10.1002/adma.201505437
- H. Wang, Z.G. Qu, W. Zhang, L.Q. Zhang, A multi-scale porous composite adsorbent with copper benzene-1,3,5-tricarboxylate coating on copper foam. RSC Adv. 6, 52888–52897 (2016). https://doi.org/10.1039/c6ra08622e
- K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang et al., Ordered macro-microporous metal–organic framework single crystals. Science 359, 206–210 (2018). https://doi.org/10.1126/science.aao3403
- C. Duan, H. Zhang, M. Yang, F. Li, Y. Yu, J. Xiao, H. Xi, Templated fabrication of hierarchically porous metal–organic frameworks and simulation of crystal growth. Nanoscale Adv. 1, 1062–1069 (2019). https://doi.org/10.1039/c8na00262b
- K.Y.A. Lin, H.A. Chang, A zeolitic imidazole framework (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method. J. Mater. Chem. A 3, 20060–20064 (2015). https://doi.org/10.1039/c5ta04427h
- M.L. Pinto, S. Dias, J. Pires, Composite MOF foams: the example of UiO-66/polyurethane. ACS Appl. Mater. Interfaces. 5, 2360–2363 (2013). https://doi.org/10.1021/am303089g
- S. Cao, G. Gody, W. Zhao, S. Perrier, X. Peng, C. Ducati, D. Zhao, A.K. Cheetham, Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles. Chem. Sci. 4, 3573–3577 (2013). https://doi.org/10.1039/c3sc51336j
- S. Bo, W. Ren, C. Lei, Y. Xie, Y. Cai et al., Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water. J. Solid State Chem. 262, 135–141 (2018). https://doi.org/10.1016/j.jssc.2018.02.022
- W. Ren, J. Gao, C. Lei, Y. Xie, Y. Cai, Q. Ni, J. Yao, Recyclable metal–organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. 349, 766–774 (2018). https://doi.org/10.1016/j.cej.2018.05.143
- Y. Yuan, D. Yang, G. Mei, X. Hong, J. Wu, J. Zheng, J. Pang, Z. Yan, Preparation of konjac glucomannan-based zeolitic imidazolate framework-8 composite aerogels with high adsorptive capacity of ciprofloxacin from water. Colloids Surf. A 544, 187–195 (2018). https://doi.org/10.1016/j.colsurfa.2018.01.042
- J. Mao, M. Ge, J. Huang, Y. Lai, C. Lin, K. Zhang, K. Meng, Y. Tang, Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 5, 11873–11881 (2017). https://doi.org/10.1039/c7ta01343d
- N. Huang, H. Drake, J. Li, J. Pang, Y. Wang et al., Flexible and hierarchical metal–organic framework composites for high-performance catalysis. Angew. Chem. Int. Ed. 57, 8916–8920 (2018). https://doi.org/10.1002/anie.201803096
- N. Moitra, S. Fukumoto, J. Reboul, K. Sumida, Y. Zhu et al., Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(ii) hydroxide-based monoliths. Chem. Commun. 51, 3511–3514 (2015). https://doi.org/10.1039/c4cc09694k
- F. Xu, S. Xian, Q. Xia, Y. Li, Z. Li, Effect of textural properties on the adsorption and desorption of toluene on the metal–organic frameworks HKUST-1 and MIL-101. Adsorpt. Sci. Technol. 31, 325–339 (2013). https://doi.org/10.1260/0263-6174.31.4.325
- F.J. Ma, S.X. Liu, D.D. Liang, G.J. Ren, F. Wei, Y.G. Chen, Z.M. Su, Adsorption of volatile organic compounds in porous metal–organic frameworks functionalized by polyoxometalates. J. Solid State Chem. 184, 3034–3039 (2011). https://doi.org/10.1016/j.jssc.2011.09.002
- J.H. Kim, S.J. Lee, M.B. Kim, J.J. Lee, C.H. Lee, Sorption equilibrium and thermal regeneration of acetone and toluene vapors on an activated carbon. Ind. Eng. Chem. Res. 46, 4584–4594 (2007). https://doi.org/10.1021/ie0609362
- C.Y. Huang, M. Song, Z.Y. Gu, H.F. Wang, X.P. Yan, Probing the adsorption characteristic of metal–organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 45, 4490–4496 (2011). https://doi.org/10.1021/es200256q
- Y. Lu, Microporous silica prepared by organic templating: relationship between the molecular template and pore structure. Chem. Mater. 11, 1223–1229 (1999). https://doi.org/10.1021/cm980517y
- S. Hitz, R. Prins, Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J. Catal. 168, 194–206 (1997). https://doi.org/10.1006/jcat.1997.1659
- R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, J.J. Watkins, Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507–510 (2004). https://doi.org/10.1126/science.1092627
- C.J. Kepert, M.J. Rosseinsky, Zeolite-like crystal structure of an empty microporous molecular framework. Chem. Commun. 4, 375–376 (1999). https://doi.org/10.1039/a809746a
- S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang et al., Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017). https://doi.org/10.1038/ncomms15356
- S.Y. Kim, A.R. Kim, J.W. Yoon, H.J. Kim, Y.S. Bae, Creation of mesoporous defects in a microporous metal–organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem. Eng. J. 335, 94–100 (2018). https://doi.org/10.1016/j.cej.2017.10.078
- H. Huang, J.R. Li, K. Wang, T. Han, M. Tong et al., An in situ self-assembly template strategy for the preparation of hierarchical-pore metal–organic frameworks. Nat. Commun. 6, 8847 (2015). https://doi.org/10.1038/ncomms9847
- L.G. Qiu, T. Xu, Z.Q. Li, W. Wang, Y. Wu, X. Jiang, X.Y. Tian, L. De Zhang, Hierarchically micro- and mesoporous metal–organic frameworks with tunable porosity. Angew. Chem. Int. Ed. 47, 9487–9491 (2008). https://doi.org/10.1002/anie.200803640
- K.M. Choi, H.J. Jeon, J.K. Kang, O.M. Yaghi, Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011). https://doi.org/10.1021/ja204818q
- G. Cai, H.L. Jiang, A modulator-induced defect-formation strategy to hierarchically porous metal–organic frameworks with high stability. Angew. Chem. Int. Ed. 56, 563–567 (2017). https://doi.org/10.1002/anie.201610914
- J. Koo, I.C. Hwang, X. Yu, S. Saha, Y. Kim, K. Kim, Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 8, 6799–6803 (2017). https://doi.org/10.1039/c7sc02886e
- A. Ahmed, N. Hodgson, M. Barrow, R. Clowes, C.M. Robertson et al., Macroporous metal–organic framework microparticles with improved liquid phase separation. J. Mater. Chem. A 2, 9085–9090 (2014). https://doi.org/10.1039/c4ta00138a
- H.V. Doan, A. Sartbaeva, J.-C. Eloi, S. Davis, V.P. Ting, Defective hierarchical porous copper-based metal–organic frameworks synthesised via facile acid etching strategy. ArXiv preprint (2019). https://arxiv.org/abs/1904.10524v1
- F. Vermoortele, B. Bueken, G. Le Bars, B. Van De Voorde, M. Vandichel et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013). https://doi.org/10.1021/ja405078u
- M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui, F. Caruso, Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26, 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
- Y. Yoo, H.K. Jeong, Generation of covalently functionalized hierarchical IRMOF-3 by post-synthetic modification. Chem. Eng. J. 181–182, 740–745 (2012). https://doi.org/10.1016/j.cej.2011.11.048
- C. Liu, B. Zhang, J. Zhang, L. Peng, X. Kang et al., Gas promotes the crystallization of nano-sized metal–organic frameworks in ionic liquid. Chem. Commun. 51, 11445–114488 (2015). https://doi.org/10.1039/c5cc02503f
- A. López-Periago, P. López-Domínguez, J.P. Barrio, G. Tobias, C. Domingo, Binary supercritical CO2 solvent mixtures for the synthesis of 3D metal–organic frameworks. Microporous Mesoporous Mater. 234, 155–161 (2016). https://doi.org/10.1016/j.micromeso.2016.07.014
- N. Portolés-Gil, A. Lanza, N. Aliaga-Alcalde, J.A. Ayllón, M. Gemmi et al., Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography. ACS Sustain. Chem. Eng. 6, 12309–12319 (2018). https://doi.org/10.1021/acssuschemeng.8b02738
- E. Weidner, Impregnation via supercritical CO2—what we know and what we need to know. J. Supercrit. Fluids 134, 220–227 (2018). https://doi.org/10.1016/j.supflu.2017.12.024
- Y. Zhao, J. Zhang, J. Song, J. Li, J. Liu, T. Wu, P. Zhang, B. Han, Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chem. 13, 2078–2082 (2011). https://doi.org/10.1039/c1gc15340d
- A.I. Cooper, M.J. Rosseinsky, Metal–organic frameworks: improving pore performance. Nat. Chem. 1, 26–27 (2009). https://doi.org/10.1038/nchem.157
- A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009). https://doi.org/10.1021/ja808853q
- O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010). https://doi.org/10.1021/ar1000617
- R.A. Dodson, A.G. Wong-Foy, A.J. Matzger, The metal–organic framework collapse continuum: insights from two-dimensional powder X-ray diffraction. Chem. Mater. 30, 6559–6565 (2018). https://doi.org/10.1021/acs.chemmater.8b03378
- B. Zhang, J. Zhang, C. Liu, L. Peng, X. Sang et al., High-internal-phase emulsions stabilized by metal–organic frameworks and derivation of ultralight metal–organic aerogels. Sci. Rep. 6, 21401 (2016). https://doi.org/10.1038/srep21401
- L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen, C.Y. Su, A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal–organic aerogels. Nat. Commun. 4, 1774 (2013). https://doi.org/10.1038/ncomms2757
- N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (2005). https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2%3c22:aid-anie22%3e3.0.co;2-i
- A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002). https://doi.org/10.1021/cr0101306
- L. Peng, J. Zhang, J. Li, B. Han, Z. Xue, B. Zhang, J. Shi, G. Yang, Hollow metal–organic framework polyhedra synthesized by a CO2-ionic liquid interfacial templating route. J. Colloid Interface Sci. 416, 198–204 (2014). https://doi.org/10.1016/j.jcis.2013.10.041
- L. Peng, J. Zhang, Z. Xue, B. Han, X. Sang, C. Liu, G. Yang, Highly mesoporous metal–organic framework assembled in a switchable solvent. Nat. Commun. 5, 4465 (2014). https://doi.org/10.1038/ncomms5465
- H. Yu, D. Xu, Q. Xu, Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chem. Commun. 51, 13197–13200 (2015). https://doi.org/10.1039/c5cc04009d
- Y. Zhao, J. Zhang, B. Han, J. Song, J. Li, Q. Wang, Metal–organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew. Chem. Int. Ed. 50, 636–639 (2011). https://doi.org/10.1002/anie.201005314
- P. López-Domínguez, A.M. López-Periago, F.J. Fernández-Porras, J. Fraile, G. Tobias, C. Domingo, Supercritical CO2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO2 capture. J. CO2 Util. 18, 147–155 (2017). https://doi.org/10.1016/j.jcou.2017.01.019
- A.M. López-Periago, N. Portoles-Gil, P. López-Domínguez, J. Fraile, J. Saurina, N. Aliaga-Alcalde, G. Tobias, J.A. Ayllón, C. Domingo, Metal–organic frameworks precipitated by reactive crystallization in supercritical CO2. Cryst. Growth Des. 17, 2864–2872 (2017). https://doi.org/10.1021/acs.cgd.7b00378
- N. Portolés-Gil, S. Gowing, O. Vallcorba, C. Domingo, A.M. López-Periago, J.A. Ayllón, Supercritical CO2 utilization for the crystallization of 2D metal–organic frameworks using tert-butylpyridine additive. J. CO2 Util. 24, 444–453 (2018). https://doi.org/10.1016/j.jcou.2018.02.004
- H.V. Doan, Y. Fang, B. Yao, Z. Dong, T.J. White, A. Sartbaeva, U. Hintermair, V.P. Ting, Controlled formation of hierarchical metal–organic frameworks using CO2-expanded solvent systems. ACS Sustain. Chem. Eng. 5, 7887–7893 (2017). https://doi.org/10.1021/acssuschemeng.7b01429
- K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 37, 13865–13871 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.105
- R. Ameloot, E. Cobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, D.E. De Vos, Direct patterning of oriented metal–organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685–2688 (2010). https://doi.org/10.1002/adma.200903867
- Y. Suehiro, M. Nakajima, K. Yamada, M. Uematsu, Critical parameters of {xCO2 + (1 − x)CHF3} for x = (1.0000, 0.7496, 0.5013, and 0.2522). J. Chem. Thermodyn. 28, 1153–1164 (1996). https://doi.org/10.1006/jcht.1996.0101
- J. Ren, N.M. Musyoka, H.W. Langmi, A. Swartbooi, B.C. North, M. Mathe, A more efficient way to shape metal–organic framework (MOF) powder materials for hydrogen storage applications. Int. J. Hydrogen Energy 40, 4617–4622 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.011
- C. Zhou, L. Longley, A. Krajnc, G.J. Smales, A. Qiao et al., Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018). https://doi.org/10.1038/s41467-018-07532-z
- T.D. Bennett, J.C. Tan, Y. Yue, E. Baxter, C. Ducati et al., Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun. 6, 8079 (2015). https://doi.org/10.1038/ncomms9079
- J.M. Tuffnell, C.W. Ashling, J. Hou, S. Li, L. Longley, M.L.R. Gómez, T.D. Bennett, Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chem. Commun. (2019). https://doi.org/10.1039/c9cc01468c
- Y. Chen, X. Huang, S. Zhang, S. Li, S. Cao et al., Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138, 10810–10813 (2016). https://doi.org/10.1021/jacs.6b06959
- M.C. Mulakkal, R.S. Trask, V.P. Ting, A.M. Seddon, Responsive cellulose-hydrogel composite ink for 4D printing. Mater. Des. 160, 108–118 (2018). https://doi.org/10.1016/j.matdes.2018.09.009
- C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- J.C. Ruiz-Morales, A. Tarancón, J. Canales-Vázquez, J. Méndez-Ramos, L. Hernández-Afonso, P. Acosta-Mora, J.R. Marín Rueda, R. Fernández-González, Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 10, 846–859 (2017). https://doi.org/10.1039/c6ee03526d
- X. Zhou, C.J. Liu, Three-dimensional printing for catalytic applications: current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017). https://doi.org/10.1002/adfm.201701134
- I. Buj-Corral, A. Bagheri, O. Petit-Rojo, 3D printing of porous scaffolds with controlled porosity and pore size values. Materials 11, 1532 (2018). https://doi.org/10.3390/ma11091532
- T. Femmer, A.J.C. Kuehne, J. Torres-Rendon, A. Walther, M. Wessling, Print your membrane: rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist. J. Memb. Sci. 478, 12–18 (2015). https://doi.org/10.1016/j.memsci.2014.12.040
- S. Badalov, C.J. Arnusch, Ink-jet printing assisted fabrication of thin film composite membranes. J. Memb. Sci. 515, 79–85 (2016). https://doi.org/10.1016/j.memsci.2016.05.046
- Z.X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, D.A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Memb. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006
- C.R. Rambo, N. Travitzky, P. Greil, Conductive TiC/Ti–Cu/C composites fabricated by Ti–Cu alloy reactive infiltration into 3D-printed carbon performs. J. Compos. Mater. 49, 1971–1976 (2015). https://doi.org/10.1177/0021998314541307
- H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox, F. Rezaei, 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces. 8, 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647
- S. Couck, J. Lefevere, S. Mullens, L. Protasova, V. Meynen et al., CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem. Eng. J. 308, 719–726 (2017). https://doi.org/10.1016/j.cej.2016.09.046
- S. Couck, J. Cousin-Saint-Remi, S. Van der Perre, G.V. Baron, C. Minas, P. Ruch, J.F.M. Denayer, 3D-printed SAPO-34 monoliths for gas separation. Microporous Mesoporous Mater. 255, 185–191 (2018). https://doi.org/10.1016/j.micromeso.2017.07.014
- H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A.A. Rownaghi, F. Rezaei, Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces. 9, 7489–7498 (2017). https://doi.org/10.1021/acsami.6b16732
- C.R. Tubío, J. Azuaje, L. Escalante, A. Coelho, F. Guitián, E. Sotelo, A. Gil, 3D printing of a heterogeneous copper-based catalyst. J. Catal. 334, 110–115 (2016). https://doi.org/10.1016/j.jcat.2015.11.019
- O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schüpbach, A. Terfort, D. Zacher, R.A. Fischer, C. Wöll, Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nat. Mater. 8, 481–484 (2009). https://doi.org/10.1038/nmat2445
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/c7cs00041c
- H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces. 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
- R. Semino, J.C. Moreton, N.A. Ramsahye, S.M. Cohen, G. Maurin, Understanding the origins of metal–organic framework/polymer compatibility. Chem. Sci. 9, 315–324 (2018). https://doi.org/10.1039/c7sc04152g
- A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/c8cc10018g
- S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
- J.L. Zhuang, D. Ar, X.J. Yu, J.X. Liu, A. Terfort, Patterned deposition of metal–organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 25, 4631–4635 (2013). https://doi.org/10.1002/adma.201301626
- Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li, Q. Meng, R. Zhang, Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/c7ra10912a
- M.C. Kreider, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
- X. Li, L. Lachmanski, S. Safi, S. Sene, C. Serre, J.M. Grenèche, J. Zhang, R. Gref, New insights into the degradation mechanism of metal–organic frameworks drug carriers. Sci. Rep. 7, 13142 (2017). https://doi.org/10.1038/s41598-017-13323-1
- I. Bezverkhyy, G. Weber, J.P. Bellat, Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: effect of temperature and pH. Microporous Mesoporous Mater. 219, 117–124 (2016). https://doi.org/10.1016/j.micromeso.2015.07.037
References
P. Nugent, E.G. Giannopoulou, S.D. Burd, O. Elemento, E.G. Giannopoulou et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013). https://doi.org/10.1038/nature11893
D.E. Jiang, V.R. Cooper, S. Dai, Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009). https://doi.org/10.1021/nl9021946
K.M. Steel, W.J. Koros, Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41, 253–266 (2003). https://doi.org/10.1016/S0008-6223(02)00309-3
Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 55, 217–230 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
S. Rashidi, J.A. Esfahani, N. Karimi, Porous materials in building energy technologies—a review of the applications, modelling and experiments. Renew. Sustain. Energy Rev. 91, 229–247 (2018). https://doi.org/10.1016/j.rser.2018.03.092
C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
Y. Li, Z.Y. Fu, B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634 (2012). https://doi.org/10.1002/adfm.201200591
S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26, 849–864 (2014). https://doi.org/10.1002/adma.201303115
S. Wang, Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 117, 1–9 (2009). https://doi.org/10.1016/j.micromeso.2008.07.002
P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryand imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas et al., Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008). https://doi.org/10.1021/ja710973k
C. Perego, R. Millini, Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013). https://doi.org/10.1039/c2cs35244c
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/b807080f
C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013). https://doi.org/10.1039/c2cs35378d
A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005). https://doi.org/10.1016/j.micromeso.2004.06.030
J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes et al., Recommendations for the Characterization of Porous Solids (Technical Report) (1994)
K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (2007). https://doi.org/10.1351/pac198557040603
W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016). https://doi.org/10.1039/c5cs00599j
U. Betke, A. Lieb, Micro-macroporous composite materials—preparation techniques and selected applications: a review. Adv. Eng. Mater. 20, 1800252 (2018). https://doi.org/10.1002/adem.201800252
X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/c6cs00829a
P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney et al., Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
D.A. Gómez-Gualdrón, Y.J. Colón, X. Zhang, T.C. Wang, Y.S. Chen et al., Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016). https://doi.org/10.1039/c6ee02104b
J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez et al., Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015). https://doi.org/10.1038/nature15732
L. Zou, H.C. Zhou, Hydrogen storage in metal–organic frameworks, in Nanostructured Materials for Next-Generation Energy Storage and Conversion, ed. by Y.P. Chen, S. Bashir, J. Liu (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-662-53514-1_5
J.M. Holcroft, K.J. Hartlieb, P.Z. Moghadam, J.G. Bell, G. Barin et al., Carbohydrate-mediated purification of petrochemicals. J. Am. Chem. Soc. 137, 5706–5719 (2015). https://doi.org/10.1021/ja511878b
J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/b802426j
J.B. DeCoste, G.W. Peterson, Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014). https://doi.org/10.1021/cr4006473
X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal–organic frameworks for separation. Adv. Mater. 30, 1705189 (2018). https://doi.org/10.1002/adma.201705189
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/c4cs00094c
C.D. Wu, Crystal engineering of metal–organic frameworks for heterogeneous catalysis. Select. Nanocatalysts Nanosci. 110, 271–298 (2011). https://doi.org/10.1002/9783527635689.ch8
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch et al., Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012). https://doi.org/10.1021/cr2003272
T.M. McDonald, J.A. Mason, X. Kong, E.D. Bloch, D. Gygi et al., Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015). https://doi.org/10.1038/nature14327
A.Ö. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu et al., Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009). https://doi.org/10.1021/ja9057234
G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008). https://doi.org/10.1039/b618320b
D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dincǎ, High electrical conductivity in Ni3(2,3,6,7,10,11- hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014). https://doi.org/10.1021/ja502765n
H.Y. Guan, R.J. LeBlanc, S.Y. Xie, Y. Yue, Recent progress in the syntheses of mesoporous metal–organic framework materials. Coord. Chem. Rev. 369, 76–90 (2018). https://doi.org/10.1016/j.ccr.2018.05.001
D. Liu, D. Zou, H. Zhu, J. Zhang, Mesoporous metal–organic frameworks: synthetic strategies and emerging applications. Small 14, 1801454 (2018). https://doi.org/10.1002/smll.201801454
K. Wang, Y. Zhang, J. Zhao, C. Yan, Y. Wei et al., Facile synthesis of hierarchical porous solid catalysts with acid-base bifunctional active sites for the conversion of cellulose to 5-hydroxymethylfurfural. New J. Chem. 42, 18084–18095 (2018). https://doi.org/10.1039/c8nj03812k
Q. Xiang, J. Yu, Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant 001 facets. Chin. J. Catal. 32, 525–531 (2011). https://doi.org/10.1016/S1872-2067(10)60186-6
G. Xi, B. Yue, J. Cao, J. Ye, Fe3O4/WO3 Hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem. A Eur. J. 17, 5145–5154 (2011). https://doi.org/10.1002/chem.201002229
L. Feng, S. Yuan, J.L. Li, K.Y. Wang, G.S. Day et al., Uncovering two principles of multivariate hierarchical metal–organic framework synthesis via retrosynthetic design. ACS Cent. Sci. 4, 1719–1726 (2018). https://doi.org/10.1021/acscentsci.8b00722
S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023
P. Klobes, K. Meyer, R.G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials (NIST Special Publications, Washington, 2006)
E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951). https://doi.org/10.1021/ja01145a126
L.G. Joyner, E.P. Barrett, R. Skold, The determination of pore volume and area distributions in porous substances. II. Comparison between nitrogen isotherm and mercury porosimeter methods. J. Am. Chem. Soc. 73, 3155–3158 (1951). https://doi.org/10.1021/ja01151a046
L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Springer, Boston, 1987)
J. Rouquerol, G.V. Baron, R. Denoyel, H. Giesche, J. Groen et al., The characterization of macroporous solids: an overview of the methodology. Microporous Mesoporous Mater. 154, 2–6 (2012). https://doi.org/10.1016/j.micromeso.2011.09.031
A. Radlinski, M. Mastalerz, A. Hinde, M. Hainbuchner, H. Rauch et al., Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 59, 245–271 (2004). https://doi.org/10.1016/J.COAL.2004.03.002
V.P. Ting, A.J. Ramirez-Cuesta, N. Bimbo, J.E. Sharpe, A. Noguera-Diaz et al., Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9, 8249–8254 (2015). https://doi.org/10.1021/acsnano.5b02623
Y. Wang, F. De Carlo, D.C. Mancini, I. McNulty, B. Tieman et al., A high-throughput x-ray microtomography system at the advanced photon source. Rev. Sci. Instrum. 72, 2062 (2001). https://doi.org/10.1063/1.1355270
O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012). https://doi.org/10.1021/ja3055639
K. Matsuyama, Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. J. Supercrit. Fluids 134, 197–203 (2018). https://doi.org/10.1016/j.supflu.2017.12.004
A. Taguchi, J.H. Smätt, M. Lindén, Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 15, 1209 (2003). https://doi.org/10.1002/adma.200304848
C. Xue, B. Tu, D. Zhao, Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic self-assembly. Nano Res. 2, 242–253 (2009). https://doi.org/10.1007/s12274-009-9022-y
J.H. Smått, S. Schunk, M. Lindén, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater. 15, 2354–2361 (2003). https://doi.org/10.1021/cm0213422
C.M. Yang, J.H. Smått, B. Zibrowius, M. Lindén, Chemical removal of organic polymers from highly porous sol–gel-derived silica monoliths. New J. Chem. 28, 1520–1525 (2004). https://doi.org/10.1039/b407639g
A.M. Nardes, R.A.J. Janssen, M. Kemerink, A morphological model for the solvent-enhanced conductivity of PEDOT: PSS thin films. Adv. Funct. Mater. 18, 865–871 (2008). https://doi.org/10.1002/adfm.200700796
F. Sandra, M. Depardieu, Z. Mouline, G.L. Vignoles, Y. Iwamoto, P. Miele, R. Backov, S. Bernard, Polymer-derived silicoboron carbonitride foams for CO2 capture: from design to application as scaffolds for the in situ growth of metal–organic frameworks. Chem. A Eur. J. 22, 8346–8357 (2016). https://doi.org/10.1002/chem.201600060
J. Ren, T. Segakweng, H.W. Langmi, B.C. North, M. Mathe, Ni foam-immobilized MIL-101(Cr) nanocrystals toward system integration for hydrogen storage. J. Alloys Compd. 645, S170–S173 (2015). https://doi.org/10.1016/j.jallcom.2015.01.083
T. Granato, F. Testa, R. Olivo, Catalytic activity of HKUST-1 coated on ceramic foam. Microporous Mesoporous Mater. 153, 236–246 (2012). https://doi.org/10.1016/j.micromeso.2011.12.055
Y. Xie, Y. Song, Y. Zhang, L. Xu, L. Miao, C. Peng, L. Wang, Cu metal–organic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J. Alloys Compd. 757, 105–111 (2018). https://doi.org/10.1016/j.jallcom.2018.05.064
U. Betke, S. Proemmel, S. Rannabauer, A. Lieb, M. Scheffler, F. Scheffler, Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous Mesoporous Mater. 239, 209–220 (2017). https://doi.org/10.1016/j.micromeso.2016.10.011
U. Betke, S. Proemmel, J.G. Eggebrecht, S. Rannabauer, A. Lieb, M. Scheffler, F. Scheffler, Micro-macroporous composite materials: SiC ceramic foams functionalized with the metal organic framework HKUST-1. Chem.-Ing.-Tech. 88(3), 264–273 (2016). https://doi.org/10.1002/cite.201500141
U. Betke, M. Klaus, J.G. Eggebrecht, M. Scheffler, A. Lieb, MOFs meet macropores: dynamic direct crystallization of the microporous aluminum isophthalate CAU-10 on reticulated open-cellular alumina foams. Microporous Mesoporous Mater. 265, 43–56 (2018). https://doi.org/10.1016/j.micromeso.2018.01.020
Y. Hu, H. Lian, L. Zhou, G. Li, In situ solvothermal growth of metal–organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides. Anal. Chem. 87, 406–412 (2015). https://doi.org/10.1021/ac502146c
Y. Sun, F. Yang, Q. Wei, N. Wang, X. Qin et al., Oriented nano-microstructure-assisted controllable fabrication of metal–organic framework membranes on nickel foam. Adv. Mater. 28, 2374 (2016). https://doi.org/10.1002/adma.201505437
H. Wang, Z.G. Qu, W. Zhang, L.Q. Zhang, A multi-scale porous composite adsorbent with copper benzene-1,3,5-tricarboxylate coating on copper foam. RSC Adv. 6, 52888–52897 (2016). https://doi.org/10.1039/c6ra08622e
K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang et al., Ordered macro-microporous metal–organic framework single crystals. Science 359, 206–210 (2018). https://doi.org/10.1126/science.aao3403
C. Duan, H. Zhang, M. Yang, F. Li, Y. Yu, J. Xiao, H. Xi, Templated fabrication of hierarchically porous metal–organic frameworks and simulation of crystal growth. Nanoscale Adv. 1, 1062–1069 (2019). https://doi.org/10.1039/c8na00262b
K.Y.A. Lin, H.A. Chang, A zeolitic imidazole framework (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method. J. Mater. Chem. A 3, 20060–20064 (2015). https://doi.org/10.1039/c5ta04427h
M.L. Pinto, S. Dias, J. Pires, Composite MOF foams: the example of UiO-66/polyurethane. ACS Appl. Mater. Interfaces. 5, 2360–2363 (2013). https://doi.org/10.1021/am303089g
S. Cao, G. Gody, W. Zhao, S. Perrier, X. Peng, C. Ducati, D. Zhao, A.K. Cheetham, Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles. Chem. Sci. 4, 3573–3577 (2013). https://doi.org/10.1039/c3sc51336j
S. Bo, W. Ren, C. Lei, Y. Xie, Y. Cai et al., Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water. J. Solid State Chem. 262, 135–141 (2018). https://doi.org/10.1016/j.jssc.2018.02.022
W. Ren, J. Gao, C. Lei, Y. Xie, Y. Cai, Q. Ni, J. Yao, Recyclable metal–organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. 349, 766–774 (2018). https://doi.org/10.1016/j.cej.2018.05.143
Y. Yuan, D. Yang, G. Mei, X. Hong, J. Wu, J. Zheng, J. Pang, Z. Yan, Preparation of konjac glucomannan-based zeolitic imidazolate framework-8 composite aerogels with high adsorptive capacity of ciprofloxacin from water. Colloids Surf. A 544, 187–195 (2018). https://doi.org/10.1016/j.colsurfa.2018.01.042
J. Mao, M. Ge, J. Huang, Y. Lai, C. Lin, K. Zhang, K. Meng, Y. Tang, Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 5, 11873–11881 (2017). https://doi.org/10.1039/c7ta01343d
N. Huang, H. Drake, J. Li, J. Pang, Y. Wang et al., Flexible and hierarchical metal–organic framework composites for high-performance catalysis. Angew. Chem. Int. Ed. 57, 8916–8920 (2018). https://doi.org/10.1002/anie.201803096
N. Moitra, S. Fukumoto, J. Reboul, K. Sumida, Y. Zhu et al., Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(ii) hydroxide-based monoliths. Chem. Commun. 51, 3511–3514 (2015). https://doi.org/10.1039/c4cc09694k
F. Xu, S. Xian, Q. Xia, Y. Li, Z. Li, Effect of textural properties on the adsorption and desorption of toluene on the metal–organic frameworks HKUST-1 and MIL-101. Adsorpt. Sci. Technol. 31, 325–339 (2013). https://doi.org/10.1260/0263-6174.31.4.325
F.J. Ma, S.X. Liu, D.D. Liang, G.J. Ren, F. Wei, Y.G. Chen, Z.M. Su, Adsorption of volatile organic compounds in porous metal–organic frameworks functionalized by polyoxometalates. J. Solid State Chem. 184, 3034–3039 (2011). https://doi.org/10.1016/j.jssc.2011.09.002
J.H. Kim, S.J. Lee, M.B. Kim, J.J. Lee, C.H. Lee, Sorption equilibrium and thermal regeneration of acetone and toluene vapors on an activated carbon. Ind. Eng. Chem. Res. 46, 4584–4594 (2007). https://doi.org/10.1021/ie0609362
C.Y. Huang, M. Song, Z.Y. Gu, H.F. Wang, X.P. Yan, Probing the adsorption characteristic of metal–organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 45, 4490–4496 (2011). https://doi.org/10.1021/es200256q
Y. Lu, Microporous silica prepared by organic templating: relationship between the molecular template and pore structure. Chem. Mater. 11, 1223–1229 (1999). https://doi.org/10.1021/cm980517y
S. Hitz, R. Prins, Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J. Catal. 168, 194–206 (1997). https://doi.org/10.1006/jcat.1997.1659
R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, J.J. Watkins, Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507–510 (2004). https://doi.org/10.1126/science.1092627
C.J. Kepert, M.J. Rosseinsky, Zeolite-like crystal structure of an empty microporous molecular framework. Chem. Commun. 4, 375–376 (1999). https://doi.org/10.1039/a809746a
S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang et al., Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017). https://doi.org/10.1038/ncomms15356
S.Y. Kim, A.R. Kim, J.W. Yoon, H.J. Kim, Y.S. Bae, Creation of mesoporous defects in a microporous metal–organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem. Eng. J. 335, 94–100 (2018). https://doi.org/10.1016/j.cej.2017.10.078
H. Huang, J.R. Li, K. Wang, T. Han, M. Tong et al., An in situ self-assembly template strategy for the preparation of hierarchical-pore metal–organic frameworks. Nat. Commun. 6, 8847 (2015). https://doi.org/10.1038/ncomms9847
L.G. Qiu, T. Xu, Z.Q. Li, W. Wang, Y. Wu, X. Jiang, X.Y. Tian, L. De Zhang, Hierarchically micro- and mesoporous metal–organic frameworks with tunable porosity. Angew. Chem. Int. Ed. 47, 9487–9491 (2008). https://doi.org/10.1002/anie.200803640
K.M. Choi, H.J. Jeon, J.K. Kang, O.M. Yaghi, Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011). https://doi.org/10.1021/ja204818q
G. Cai, H.L. Jiang, A modulator-induced defect-formation strategy to hierarchically porous metal–organic frameworks with high stability. Angew. Chem. Int. Ed. 56, 563–567 (2017). https://doi.org/10.1002/anie.201610914
J. Koo, I.C. Hwang, X. Yu, S. Saha, Y. Kim, K. Kim, Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 8, 6799–6803 (2017). https://doi.org/10.1039/c7sc02886e
A. Ahmed, N. Hodgson, M. Barrow, R. Clowes, C.M. Robertson et al., Macroporous metal–organic framework microparticles with improved liquid phase separation. J. Mater. Chem. A 2, 9085–9090 (2014). https://doi.org/10.1039/c4ta00138a
H.V. Doan, A. Sartbaeva, J.-C. Eloi, S. Davis, V.P. Ting, Defective hierarchical porous copper-based metal–organic frameworks synthesised via facile acid etching strategy. ArXiv preprint (2019). https://arxiv.org/abs/1904.10524v1
F. Vermoortele, B. Bueken, G. Le Bars, B. Van De Voorde, M. Vandichel et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013). https://doi.org/10.1021/ja405078u
M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui, F. Caruso, Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26, 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
Y. Yoo, H.K. Jeong, Generation of covalently functionalized hierarchical IRMOF-3 by post-synthetic modification. Chem. Eng. J. 181–182, 740–745 (2012). https://doi.org/10.1016/j.cej.2011.11.048
C. Liu, B. Zhang, J. Zhang, L. Peng, X. Kang et al., Gas promotes the crystallization of nano-sized metal–organic frameworks in ionic liquid. Chem. Commun. 51, 11445–114488 (2015). https://doi.org/10.1039/c5cc02503f
A. López-Periago, P. López-Domínguez, J.P. Barrio, G. Tobias, C. Domingo, Binary supercritical CO2 solvent mixtures for the synthesis of 3D metal–organic frameworks. Microporous Mesoporous Mater. 234, 155–161 (2016). https://doi.org/10.1016/j.micromeso.2016.07.014
N. Portolés-Gil, A. Lanza, N. Aliaga-Alcalde, J.A. Ayllón, M. Gemmi et al., Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography. ACS Sustain. Chem. Eng. 6, 12309–12319 (2018). https://doi.org/10.1021/acssuschemeng.8b02738
E. Weidner, Impregnation via supercritical CO2—what we know and what we need to know. J. Supercrit. Fluids 134, 220–227 (2018). https://doi.org/10.1016/j.supflu.2017.12.024
Y. Zhao, J. Zhang, J. Song, J. Li, J. Liu, T. Wu, P. Zhang, B. Han, Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chem. 13, 2078–2082 (2011). https://doi.org/10.1039/c1gc15340d
A.I. Cooper, M.J. Rosseinsky, Metal–organic frameworks: improving pore performance. Nat. Chem. 1, 26–27 (2009). https://doi.org/10.1038/nchem.157
A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009). https://doi.org/10.1021/ja808853q
O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010). https://doi.org/10.1021/ar1000617
R.A. Dodson, A.G. Wong-Foy, A.J. Matzger, The metal–organic framework collapse continuum: insights from two-dimensional powder X-ray diffraction. Chem. Mater. 30, 6559–6565 (2018). https://doi.org/10.1021/acs.chemmater.8b03378
B. Zhang, J. Zhang, C. Liu, L. Peng, X. Sang et al., High-internal-phase emulsions stabilized by metal–organic frameworks and derivation of ultralight metal–organic aerogels. Sci. Rep. 6, 21401 (2016). https://doi.org/10.1038/srep21401
L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen, C.Y. Su, A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal–organic aerogels. Nat. Commun. 4, 1774 (2013). https://doi.org/10.1038/ncomms2757
N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (2005). https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2%3c22:aid-anie22%3e3.0.co;2-i
A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002). https://doi.org/10.1021/cr0101306
L. Peng, J. Zhang, J. Li, B. Han, Z. Xue, B. Zhang, J. Shi, G. Yang, Hollow metal–organic framework polyhedra synthesized by a CO2-ionic liquid interfacial templating route. J. Colloid Interface Sci. 416, 198–204 (2014). https://doi.org/10.1016/j.jcis.2013.10.041
L. Peng, J. Zhang, Z. Xue, B. Han, X. Sang, C. Liu, G. Yang, Highly mesoporous metal–organic framework assembled in a switchable solvent. Nat. Commun. 5, 4465 (2014). https://doi.org/10.1038/ncomms5465
H. Yu, D. Xu, Q. Xu, Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chem. Commun. 51, 13197–13200 (2015). https://doi.org/10.1039/c5cc04009d
Y. Zhao, J. Zhang, B. Han, J. Song, J. Li, Q. Wang, Metal–organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew. Chem. Int. Ed. 50, 636–639 (2011). https://doi.org/10.1002/anie.201005314
P. López-Domínguez, A.M. López-Periago, F.J. Fernández-Porras, J. Fraile, G. Tobias, C. Domingo, Supercritical CO2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO2 capture. J. CO2 Util. 18, 147–155 (2017). https://doi.org/10.1016/j.jcou.2017.01.019
A.M. López-Periago, N. Portoles-Gil, P. López-Domínguez, J. Fraile, J. Saurina, N. Aliaga-Alcalde, G. Tobias, J.A. Ayllón, C. Domingo, Metal–organic frameworks precipitated by reactive crystallization in supercritical CO2. Cryst. Growth Des. 17, 2864–2872 (2017). https://doi.org/10.1021/acs.cgd.7b00378
N. Portolés-Gil, S. Gowing, O. Vallcorba, C. Domingo, A.M. López-Periago, J.A. Ayllón, Supercritical CO2 utilization for the crystallization of 2D metal–organic frameworks using tert-butylpyridine additive. J. CO2 Util. 24, 444–453 (2018). https://doi.org/10.1016/j.jcou.2018.02.004
H.V. Doan, Y. Fang, B. Yao, Z. Dong, T.J. White, A. Sartbaeva, U. Hintermair, V.P. Ting, Controlled formation of hierarchical metal–organic frameworks using CO2-expanded solvent systems. ACS Sustain. Chem. Eng. 5, 7887–7893 (2017). https://doi.org/10.1021/acssuschemeng.7b01429
K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 37, 13865–13871 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.105
R. Ameloot, E. Cobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, D.E. De Vos, Direct patterning of oriented metal–organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685–2688 (2010). https://doi.org/10.1002/adma.200903867
Y. Suehiro, M. Nakajima, K. Yamada, M. Uematsu, Critical parameters of {xCO2 + (1 − x)CHF3} for x = (1.0000, 0.7496, 0.5013, and 0.2522). J. Chem. Thermodyn. 28, 1153–1164 (1996). https://doi.org/10.1006/jcht.1996.0101
J. Ren, N.M. Musyoka, H.W. Langmi, A. Swartbooi, B.C. North, M. Mathe, A more efficient way to shape metal–organic framework (MOF) powder materials for hydrogen storage applications. Int. J. Hydrogen Energy 40, 4617–4622 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.011
C. Zhou, L. Longley, A. Krajnc, G.J. Smales, A. Qiao et al., Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018). https://doi.org/10.1038/s41467-018-07532-z
T.D. Bennett, J.C. Tan, Y. Yue, E. Baxter, C. Ducati et al., Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun. 6, 8079 (2015). https://doi.org/10.1038/ncomms9079
J.M. Tuffnell, C.W. Ashling, J. Hou, S. Li, L. Longley, M.L.R. Gómez, T.D. Bennett, Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chem. Commun. (2019). https://doi.org/10.1039/c9cc01468c
Y. Chen, X. Huang, S. Zhang, S. Li, S. Cao et al., Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138, 10810–10813 (2016). https://doi.org/10.1021/jacs.6b06959
M.C. Mulakkal, R.S. Trask, V.P. Ting, A.M. Seddon, Responsive cellulose-hydrogel composite ink for 4D printing. Mater. Des. 160, 108–118 (2018). https://doi.org/10.1016/j.matdes.2018.09.009
C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
J.C. Ruiz-Morales, A. Tarancón, J. Canales-Vázquez, J. Méndez-Ramos, L. Hernández-Afonso, P. Acosta-Mora, J.R. Marín Rueda, R. Fernández-González, Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 10, 846–859 (2017). https://doi.org/10.1039/c6ee03526d
X. Zhou, C.J. Liu, Three-dimensional printing for catalytic applications: current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017). https://doi.org/10.1002/adfm.201701134
I. Buj-Corral, A. Bagheri, O. Petit-Rojo, 3D printing of porous scaffolds with controlled porosity and pore size values. Materials 11, 1532 (2018). https://doi.org/10.3390/ma11091532
T. Femmer, A.J.C. Kuehne, J. Torres-Rendon, A. Walther, M. Wessling, Print your membrane: rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist. J. Memb. Sci. 478, 12–18 (2015). https://doi.org/10.1016/j.memsci.2014.12.040
S. Badalov, C.J. Arnusch, Ink-jet printing assisted fabrication of thin film composite membranes. J. Memb. Sci. 515, 79–85 (2016). https://doi.org/10.1016/j.memsci.2016.05.046
Z.X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, D.A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Memb. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006
C.R. Rambo, N. Travitzky, P. Greil, Conductive TiC/Ti–Cu/C composites fabricated by Ti–Cu alloy reactive infiltration into 3D-printed carbon performs. J. Compos. Mater. 49, 1971–1976 (2015). https://doi.org/10.1177/0021998314541307
H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox, F. Rezaei, 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces. 8, 27753–27761 (2016). https://doi.org/10.1021/acsami.6b09647
S. Couck, J. Lefevere, S. Mullens, L. Protasova, V. Meynen et al., CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem. Eng. J. 308, 719–726 (2017). https://doi.org/10.1016/j.cej.2016.09.046
S. Couck, J. Cousin-Saint-Remi, S. Van der Perre, G.V. Baron, C. Minas, P. Ruch, J.F.M. Denayer, 3D-printed SAPO-34 monoliths for gas separation. Microporous Mesoporous Mater. 255, 185–191 (2018). https://doi.org/10.1016/j.micromeso.2017.07.014
H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A.A. Rownaghi, F. Rezaei, Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces. 9, 7489–7498 (2017). https://doi.org/10.1021/acsami.6b16732
C.R. Tubío, J. Azuaje, L. Escalante, A. Coelho, F. Guitián, E. Sotelo, A. Gil, 3D printing of a heterogeneous copper-based catalyst. J. Catal. 334, 110–115 (2016). https://doi.org/10.1016/j.jcat.2015.11.019
O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schüpbach, A. Terfort, D. Zacher, R.A. Fischer, C. Wöll, Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nat. Mater. 8, 481–484 (2009). https://doi.org/10.1038/nmat2445
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/c7cs00041c
H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces. 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
R. Semino, J.C. Moreton, N.A. Ramsahye, S.M. Cohen, G. Maurin, Understanding the origins of metal–organic framework/polymer compatibility. Chem. Sci. 9, 315–324 (2018). https://doi.org/10.1039/c7sc04152g
A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/c8cc10018g
S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
J.L. Zhuang, D. Ar, X.J. Yu, J.X. Liu, A. Terfort, Patterned deposition of metal–organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 25, 4631–4635 (2013). https://doi.org/10.1002/adma.201301626
Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li, Q. Meng, R. Zhang, Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/c7ra10912a
M.C. Kreider, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
X. Li, L. Lachmanski, S. Safi, S. Sene, C. Serre, J.M. Grenèche, J. Zhang, R. Gref, New insights into the degradation mechanism of metal–organic frameworks drug carriers. Sci. Rep. 7, 13142 (2017). https://doi.org/10.1038/s41598-017-13323-1
I. Bezverkhyy, G. Weber, J.P. Bellat, Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: effect of temperature and pH. Microporous Mesoporous Mater. 219, 117–124 (2016). https://doi.org/10.1016/j.micromeso.2015.07.037