Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries
Corresponding Author: Zhigang Xue
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 128
Abstract
The growing demands for energy storage systems, electric vehicles, and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries. It is essential to design functional separators with improved mechanical and electrochemical characteristics. This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques. In terms of electrolyte wettability and adhesion of the coating materials, we provide an overview of the current status of research on coated separators, in situ modified separators, and grafting modified separators, and elaborate additional performance parameters of interest. The characteristics of inorganics coated separators, organic framework coated separators and inorganic–organic coated separators from different fabrication methods are compared. Future directions regarding new modified materials, manufacturing process, quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
Highlights:
1 The commonly used modification methods for separator of lithium batteries are summarized, which include surface coating, in situ modification and grafting modification.
2 The adhesion of coating materials with the separators and wettability of the modified separators prepared from the three methods are compared.
3 The challenges and future directions of separator modification are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Yang, W. Wang, G. Meng, J. Zhang, Function-directed design of battery separators based on microporous polyolefin membranes. J. Mater. Chem. A 10(27), 14137–14170 (2022). https://doi.org/10.1039/D2TA03511A
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
- J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16, 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
- J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo et al., Unraveling the catalytic activity of Fe–based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv. Energy Mater. 11, 2100673 (2021). https://doi.org/10.1002/aenm.202100673
- M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
- H. Jia, C. Zeng, H.-S. Lim, A. Simmons, Y. Zhang et al., Important role of ion flux regulated by separators in lithium metal batteries. Adv. Mater. 36(19), 2311312 (2024). https://doi.org/10.1002/adma.202311312
- N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sust. Energ. Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
- M. Waqas, S. Ali, C. Feng, D. Chen, J. Han et al., Recent development in separators for high-temperature lithium-ion batteries. Small 15(33), 1901689 (2019). https://doi.org/10.1002/smll.201901689
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
- W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang et al., Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46(8), 2199–2236 (2017). https://doi.org/10.1039/C6CS00823B
- P. Arora, Z. Zhang, Battery separators. Chem. Rev. 104(10), 4419–4462 (2004). https://doi.org/10.1021/cr020738u
- M. Su, G. Huang, S. Wang, Y. Wang, H. Wang, High safety separators for rechargeable lithium batteries. Sci. China-Chem. 64(7), 1131–1156 (2021). https://doi.org/10.1007/s11426-021-1011-9
- Y. Yu, M. Liu, Z. Chen, Z. Zhang, T. Qiu et al., Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber Mater. 5(6), 1827–1851 (2023). https://doi.org/10.1007/s42765-023-00322-3
- H. Kim, U. Mattinen, V. Guccini, H. Liu, G. Salazar-Alvarez et al., Feasibility of chemically modified cellulose nanofiber membranes as lithium-ion battery separators. ACS Appl. Mater. Interfaces 12(37), 41211–41222 (2020). https://doi.org/10.1021/acsami.0c08820
- D. Lv, J. Chai, P. Wang, L. Zhu, C. Liu et al., Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydr. Polym. 251, 116975 (2021). https://doi.org/10.1016/j.carbpol.2020.116975
- K. Hwang, B. Kwon, H. Byun, Preparation of PVDF nanofiber membranes by electrospinning and their use as secondary battery separators. J. Membr. Sci. 378(1), 111–116 (2011). https://doi.org/10.1016/j.memsci.2011.06.005
- B. Yang, L. Wang, M. Zhang, W. Li, Q. Zhou et al., Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. J. Mater. Chem. A 9(22), 12923–12946 (2021). https://doi.org/10.1039/D1TA03125B
- T. Dong, W.U. Arifeen, J. Choi, K. Yoo, T. Ko, Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem. Eng. J. 398, 125646 (2020). https://doi.org/10.1016/j.cej.2020.125646
- X. Fu, C. Shang, M. Yang, E.M. Akinoglu, X. Wang et al., An ion-conductive separator for high safety Li metal batteries. J. Power Sources 475, 228687 (2020). https://doi.org/10.1016/j.jpowsour.2020.228687
- Y. Ding, H. Hou, Y. Zhao, Z. Zhu, H. Fong, Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67–103 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.006
- Y. Wang, S. Wang, J. Fang, L.-X. Ding, H. Wang, A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J. Membr. Sci. 537, 248–254 (2017). https://doi.org/10.1016/j.memsci.2017.05.023
- D. Li, H. Zhang, X. Li, Porous polyetherimide membranes with tunable morphology for lithium-ion battery. J. Membr. Sci. 565, 42–49 (2018). https://doi.org/10.1016/j.memsci.2018.08.011
- D. Li, D. Shi, K. Feng, X. Li, H. Zhang, Poly (ether etherketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J. Membr. Sci. 530, 125–131 (2017). https://doi.org/10.1016/j.memsci.2017.02.027
- D. Li, D. Shi, Y. Xia, L. Qiao, X. Li et al., Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 9(10), 8742–8750 (2017). https://doi.org/10.1021/acsami.6b16316
- Y. Yu, G. Jia, L. Zhao, H. Xiang, Z. Hu et al., Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries. Chem. Eng. J. 452, 139112 (2023). https://doi.org/10.1016/j.cej.2022.139112
- M.-H. Ryou, Y.M. Lee, J.-K. Park, J.W. Choi, Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 23(27), 3066–3070 (2011). https://doi.org/10.1002/adma.201100303
- K. Liu, D. Zhuo, H.-W. Lee, W. Liu, D. Lin et al., Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanop sandwiched separator. Adv. Mater. 29(4), 1603987 (2017). https://doi.org/10.1002/adma.201603987
- Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
- W. Pfleging, J. Pröll, A new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteries. J. Mater. Chem. A 2(36), 14918–14926 (2014). https://doi.org/10.1039/C4TA02353F
- H.-S. Jeong, E.-S. Choi, S.-Y. Lee, J.H. Kim, Evaporation-induced, close-packed silica nanop-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: advantageous effect of highly percolated, electrolyte-philic microporous architecture. J. Membr. Sci. 415–416, 513–519 (2012). https://doi.org/10.1016/j.memsci.2012.05.038
- J. Chen, S. Wang, D. Cai, H. Wang, Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. J. Membr. Sci. 449, 169–175 (2014). https://doi.org/10.1016/j.memsci.2013.08.028
- J. Huang, J. Liu, J. He, M. Wu, S. Qi et al., Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem. Int. Ed. 60(38), 20717–20722 (2021). https://doi.org/10.1002/anie.202107957
- Z. Wang, R. Pan, C. Xu, C. Ruan, K. Edström et al., Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Mater. 13, 283–292 (2018). https://doi.org/10.1016/j.ensm.2018.02.006
- J. Xiao, How lithium dendrites form in liquid batteries. Science 366(6464), 426–427 (2019). https://doi.org/10.1126/science.aay8672
- M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Polyimides as promising materials for lithium-ion batteries: a review. Nano-Micro Lett. 15(1), 135 (2023). https://doi.org/10.1007/s40820-023-01104-7
- M. Waqas, C. Tan, W. Lv, S. Ali, B. Boateng et al., A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries. ChemElectroChem 5(19), 2722–2728 (2018). https://doi.org/10.1002/celc.201800800
- S.S. Zhang, K. Xu, T.R. Jow, An inorganic composite membrane as the separator of Li-ion batteries. J. Power Sources 140(2), 361–364 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.034
- S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi et al., Surface modification of inorganic nanops for development of organic-inorganic nanocomposites—a review. Prog. Polym. Sci. 38(8), 1232–1261 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
- M.-H. Ryou, D.J. Lee, J.-N. Lee, Y.M. Lee, J.-K. Park et al., Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2(6), 645–650 (2012). https://doi.org/10.1002/aenm.201100687
- Z. Chen, W. Zhao, Q. Liu, Y. Xu, Q. Wang et al., Janus quasi-solid electrolyte membranes with asymmetric porous structure for high-performance lithium-metal batteries. Nano-Micro Lett. 16, 114 (2024). https://doi.org/10.1007/s40820-024-01325-4
- Y. Liang, C.-Z. Zhao, H. Yuan, Y. Chen, W. Zhang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1(1), 6–32 (2019). https://doi.org/10.1002/inf2.12000
- X. Huang, A lithium-ion battery separator prepared using a phase inversion process. J. Power Sources 216, 216–221 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.019
- B. Tong, X. Li, Towards separator safety of lithium-ion batteries: a review. Mat. Chem. Front. 8(2), 309–340 (2024). https://doi.org/10.1039/D3QM00951C
- H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7(12), 3857–3886 (2014). https://doi.org/10.1039/C4EE01432D
- D. Takemura, S. Aihara, K. Hamano, M. Kise, T. Nishimura et al., A powder p size effect on ceramic powder based separator for lithium rechargeable battery. J. Power Sources 146(1), 779–783 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.159
- W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wang et al., Water-based organic-inorganic hybrid coating for a high-performance separator. ACS Sustain. Chem. Eng. 4(7), 3794–3802 (2016). https://doi.org/10.1021/acssuschemeng.6b00499
- D. Fu, B. Luan, S. Argue, M.N. Bureau, I.J. Davidson, Nano SiO2 p formation and deposition on polypropylene separators for lithium-ion batteries. J. Power Sources 206, 325–333 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.130
- H.-S. Jeong, S.-Y. Lee, Closely packed SiO2 nanops/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196(16), 6716–6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
- H. Liu, J. Xu, B. Guo, X. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceram. Int. 40(9), 14105–14110 (2014). https://doi.org/10.1016/j.ceramint.2014.05.142
- S. Kennedy, J.-T. Kim, J. Kim, Y.M. Lee, I. Phiri et al., Synergistic effect of dual-ceramics for improving the dispersion stability and coating quality of aqueous ceramic coating slurries for polyethylene separators in Li secondary batteries. Batteries 8(8), 82 (2022). https://doi.org/10.3390/batteries8080082
- Z. Wang, H. Xiang, L. Wang, R. Xia, S. Nie et al., A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 553, 10–16 (2018). https://doi.org/10.1016/j.memsci.2018.02.040
- G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng et al., Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J. Power Sources 376, 177–183 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.086
- D. Yeon, Y. Lee, M.-H. Ryou, Y.M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochim. Acta 157, 282–289 (2015). https://doi.org/10.1016/j.electacta.2015.01.078
- C. Yang, H. Tong, C. Luo, S. Yuan, G. Chen et al., Boehmite p coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. J. Power Sources 348, 80–86 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.078
- J. Cho, Y.-C. Jung, Y.S. Lee, D.-W. Kim, High performance separator coated with amino-functionalized SiO2 ps for safety enhanced lithium-ion batteries. J. Membr. Sci. 535, 151–157 (2017). https://doi.org/10.1016/j.memsci.2017.04.042
- Z. Yu, S. Wu, C. Ji, F. Tang, L. Zhang et al., Enhancing the β phase of poly(vinylidene fluoride) nanofibrous membranes for thermostable separators in lithium-ion batteries. ACS Appl. Nano Mater. 6(12), 10340–10350 (2023). https://doi.org/10.1021/acsanm.3c01267
- S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, Ceramic nanop-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator. ACS Omega 4(15), 16309–16317 (2019). https://doi.org/10.1021/acsomega.9b01541
- X. Liang, Y. Yang, X. Jin, Z. Huang, F. Kang, The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 493, 1–7 (2015). https://doi.org/10.1016/j.memsci.2015.06.016
- M. Su, Y. Chen, S. Wang, H. Wang, Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries. Chin. Chem. Lett. 34(5), 107553 (2023). https://doi.org/10.1016/j.cclet.2022.05.067
- Y. Zhang, S. Du, Y. Pang, X. Gao, D. Luo et al., Enhanced thermostability and electrochemical performance of separators based on an organic-inorganic composite binder composed of polyvinyl alcohol and inorganic phosphate for lithium ion batteries. J. Alloys Compd. 895, 162646 (2022). https://doi.org/10.1016/j.jallcom.2021.162646
- D. Parikh, C.J. Jafta, B.P. Thapaliya, J. Sharma, H.M. Meyer et al., Al2O3/TiO2 coated separators: roll-to-roll processing and implications for improved battery safety and performance. J. Power Sources 507, 230259 (2021). https://doi.org/10.1016/j.jpowsour.2021.230259
- E.J. Cheng, K. Nishikawa, T. Abe, K. Kanamura, Polymer-in-ceramic flexible separators for Li-ion batteries. Ionics 28(11), 5089–5097 (2022). https://doi.org/10.1007/s11581-022-04752-8
- W. Xiao, J. Song, L. Huang, Z. Yang, Q. Qiao, PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries. Ceram. Int. 46(18), 29212–29221 (2020). https://doi.org/10.1016/j.ceramint.2020.08.095
- Y. Xiang, W. Zhu, W. Qiu, W. Guo, J. Lei et al., SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery. ChemistrySelect 3(3), 911–916 (2018). https://doi.org/10.1002/slct.201702529
- E. Shekarian, M.R. Jafari Nasr, T. Mohammadi, O. Bakhtiari, M. Javanbakht, Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator. J. Appl. Polym. Sci. 136(32), 47841 (2019). https://doi.org/10.1002/app.47841
- Z. Qiu, S. Yuan, Z. Wang, L. Shi, J.H. Jo et al., Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries. J. Power Sources 472, 228445 (2020). https://doi.org/10.1016/j.jpowsour.2020.228445
- S. Li, J. Lin, Y. Ding, P. Xu, X. Guo et al., Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries. ACS Nano 15(8), 13803–13813 (2021). https://doi.org/10.1021/acsnano.1c05585
- Y. Yang, J. Zhang, Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 8(25), 1801778 (2018). https://doi.org/10.1002/aenm.201801778
- J.Y. Kim, D.O. Shin, K.M. Kim, J. Oh, J. Kim et al., Graphene oxide induced surface modification for functional separators in lithium secondary batteries. Sci. Rep. 9(1), 2464 (2019). https://doi.org/10.1038/s41598-019-39237-8
- K. Kwon, J. Kim, K. Roh, P.J. Kim, J. Choi, Towards high performance Li metal batteries: surface functionalized graphene separator with improved electrochemical kinetics and stability. Electrochem. Commun. 157, 107598 (2023). https://doi.org/10.1016/j.elecom.2023.107598
- Y.J. Gong, J.W. Heo, H. Lee, H. Kim, J. Cho et al., Nonwoven rGO fiber-aramid separator for high-speed charging and discharging of Li metal anode. Adv. Energy Mater. 10(27), 2001479 (2020). https://doi.org/10.1002/aenm.202001479
- J. Yang, C. Cao, W. Qiao, J. Qiao, C. Tang et al., B/N co-doping rGO/BNNSs heterostructure with synergistic adsorption-electrocatalysis function enabling enhanced electrochemical performance of lithium-sulfur batteries. Chem. Eng. J. 467, 143377 (2023). https://doi.org/10.1016/j.cej.2023.143377
- L. Yang, L. Sheng, X. Gao, X. Xie, Y. Bai et al., rGO/Li-Al-LDH composite nanosheets modified commercial polypropylene (PP) separator to suppress lithium dendrites for lithium metal battery. Electrochim. Acta 430, 141073 (2022). https://doi.org/10.1016/j.electacta.2022.141073
- X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
- B. Zheng, L. Yu, Y. Zhao, J. Xi, Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries. Electrochim. Acta 295, 910–917 (2019). https://doi.org/10.1016/j.electacta.2018.11.145
- H. Pei, X. Guan, X. Chen, Y. Chen, Y. Yang et al., Multifunctional tri-layer aramid nanofiber composite separators for high-energy-density lithium-sulfur batteries. Nano Energy 126, 109680 (2024). https://doi.org/10.1016/j.nanoen.2024.109680
- H. Li, L. Sun, Y. Zhao, T. Tan, Y. Zhang, A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries. Appl. Surf. Sci. 466, 309–319 (2019). https://doi.org/10.1016/j.apsusc.2018.10.046
- J. Sheng, Q. Zhang, M. Liu, Z. Han, C. Li et al., Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries. Nano Lett. 21(19), 8447–8454 (2021). https://doi.org/10.1021/acs.nanolett.1c03106
- J. Liu, D. Cao, H. Yao, D. Liu, X. Zhang et al., Hexagonal boron nitride-coated polyimide ion track etched separator with enhanced thermal conductivity and high-temperature stability for lithium-ion batteries. ACS Appl. Energ. Mater. 5(7), 8639–8649 (2022). https://doi.org/10.1021/acsaem.2c01163
- J. Lee, C.-L. Lee, K. Park, I.-D. Kim, Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248, 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056
- J.-A. Choi, S.H. Kim, D.-W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 195(18), 6192–6196 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.020
- H. Luo, S. Ma, J. Liu, Y. Luo, X. Gao, Raspberry-like micro-size polymer with high spherical shape-retention capability and adhesion as binder for ceramic separators. Eur. Polym. J. 194, 112184 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112184
- W. Na, K.H. Koh, A.S. Lee, S. Cho, B. Ok et al., Binder-less chemical grafting of SiO2 nanops onto polyethylene separators for lithium-ion batteries. J. Membr. Sci. 573, 621–627 (2019). https://doi.org/10.1016/j.memsci.2018.12.039
- Y.-M. Song, S.-X. Qiu, S.-X. Feng, R. Zuo, Y.-T. Zhang et al., The role of carbon nanotubes in modern electrochemical energy storage: a comprehensive review. New Carbon Mater. 39, 1–38 (2024). https://doi.org/10.1016/S1872-5805(24)60878-4
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- Y. Yang, Z. Sun, Y. Wu, Z. Liang, F. Li et al., Porous organic framework materials (MOF, COF, and HOF) as the multifunctional separator for rechargeable lithium metal batteries. Small 20, 2401457 (2024). https://doi.org/10.1002/smll.202401457
- D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31(32), 2100505 (2021). https://doi.org/10.1002/adfm.202100505
- Y. Lu, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. A 16, 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
- Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
- J. Li, L. Chen, F. Wang, Z. Qin, Y. Zhang et al., Anionic metal-organic framework modified separator boosting efficient Li-ion transport. Chem. Eng. J. 451, 138536 (2023). https://doi.org/10.1016/j.cej.2022.138536
- X. Li, F. Zhang, M. Zhang, Z. Zhou, X. Zhou, Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery. J. Energy Storage 59, 106473 (2023). https://doi.org/10.1016/j.est.2022.106473
- S. Bian, G. Huang, Y. Xuan, B. He, J. Liu et al., Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries. J. Membr. Sci. 669, 121268 (2023). https://doi.org/10.1016/j.memsci.2022.121268
- Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Envion. Mater. 6(2), e12345 (2023). https://doi.org/10.1002/eem2.12345
- S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding et al., A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33(13), 2212466 (2023). https://doi.org/10.1002/adfm.202212466
- C. Wang, W. Li, Y. Jin, J. Liu, H. Wang et al., Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries. Small 19(28), 2300023 (2023). https://doi.org/10.1002/smll.202300023
- G.-H. Li, Y. Yang, J.-C. Cai, T. Wen, L.-C. Zhuang et al., Lithiophilic aromatic sites and porosity of COFs for a stable lithium metal anode. ACS Appl. Energ. Mater. 5(11), 13554–13561 (2022). https://doi.org/10.1021/acsaem.2c02233
- Y. Wang, R. Sun, Y. Chen, X. Wang, Y. Yang et al., Highly crystalline covalent triazine frameworks modified separator for lithium metal batteries. Energy Mater. 4(5), 400056 (2024). https://doi.org/10.20517/energymater.2023.133
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- L. He, T. Qiu, C. Xie, X. Tuo, A phase separation method toward PPTA-polypropylene nanocomposite separator for safe lithium ion batteries. J. Appl. Polym. Sci. 135(39), 46697 (2018). https://doi.org/10.1002/app.46697
- K.J. Kim, J.-H. Kim, M.-S. Park, H.K. Kwon, H. Kim et al., Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride-hexafluoropropylene co-polymer for Li-ion batteries. J. Power Sources 198, 298–302 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.086
- H. Lee, M. Alcoutlabi, J.V. Watson, X. Zhang, Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J. Appl. Polym. Sci. 129(4), 1939–1951 (2013). https://doi.org/10.1002/app.38894
- D.-W. Kim, J.-M. Ko, J.-H. Chun, S.-H. Kim, J.-K. Park, Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators. Electrochem. Commun. 3(10), 535–538 (2001). https://doi.org/10.1016/S1388-2481(01)00214-4
- W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34(18), 2314045 (2024). https://doi.org/10.1002/adfm.202314045
- J.-H. Park, W. Park, J.H. Kim, D. Ryoo, H.S. Kim et al., Close-packed poly(methyl methacrylate) nanop arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. J. Power Sources 196(16), 7035–7038 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
- M. Xiong, H. Tang, Y. Wang, M. Pan, Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr. Polym. 101, 1140–1146 (2014). https://doi.org/10.1016/j.carbpol.2013.10.073
- M.M. Rao, J.S. Liu, W.S. Li, Y. Liang, D.Y. Zhou, Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J. Membr. Sci. 322(2), 314–319 (2008). https://doi.org/10.1016/j.memsci.2008.06.004
- C. Zhang, H.-Q. Liang, J.-K. Pi, G.-P. Wu, Z.-K. Xu, Polypropylene separators with robust mussel-inspired coatings for high lithium-ion battery performances. Chin. J. Polym. Sci. 37(10), 1015–1022 (2019). https://doi.org/10.1007/s10118-019-2310-4
- J. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Pang et al., Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl. Mater. Interfaces 5(1), 128–134 (2013). https://doi.org/10.1021/am302290n
- J. Yu, N. Dong, B. Liu, G. Tian, S. Qi et al., A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chem. Eng. J. 442, 136314 (2022). https://doi.org/10.1016/j.cej.2022.136314
- D. Li, D. Shi, Z. Yuan, K. Feng, H. Zhang et al., A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery. J. Membr. Sci. 542, 1–7 (2017). https://doi.org/10.1016/j.memsci.2017.07.051
- C. Shi, P. Zhang, S. Huang, X. He, P. Yang et al., Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sources 298, 158–165 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.008
- Y. Zhai, N. Wang, X. Mao, Y. Si, J. Yu et al., Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J. Mater. Chem. A 2(35), 14511–14518 (2014). https://doi.org/10.1039/C4TA02151G
- Z. Li, Y. Xiong, S. Sun, L. Zhang, S. Li et al., Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J. Membr. Sci. 565, 50–60 (2018). https://doi.org/10.1016/j.memsci.2018.07.094
- H. Jeon, D. Yeon, T. Lee, J. Park, M.-H. Ryou et al., A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources 315, 161–168 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.037
- C. Li, S. Liu, C. Shi, G. Liang, Z. Lu et al., Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 10(1), 1363 (2019). https://doi.org/10.1038/s41467-019-09211-z
- Y. Deng, X. Song, Z. Ma, X. Zhang, D. Shu et al., Al2O3/PVDF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim. Acta 212, 416–425 (2016). https://doi.org/10.1016/j.electacta.2016.07.016
- Z. Zhang, W. Yuan, L. Li, Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37, 91–98 (2018). https://doi.org/10.1016/j.partic.2017.10.001
- C. Shi, J. Dai, C. Li, X. Shen, L. Peng et al., A modified ceramic-coating separator with high-temperature stability for lithium-ion battery. Polymers 9(5), 159 (2017). https://doi.org/10.3390/polym9050159
- X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai et al., A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5V high-voltage lithium-ion batteries with enhanced performance. J. Power Sources 407, 44–52 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.056
- P. Yang, P. Zhang, C. Shi, L. Chen, J. Dai et al., The functional separator coated with core–shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J. Membr. Sci. 474, 148–155 (2015). https://doi.org/10.1016/j.memsci.2014.09.047
- Z. Wang, X. Li, N. Dong, B. Liu, G. Tian et al., Novel ZrO2@polyimde nano-microspheres-coated polyethylene separators for high energy density and high safety Li-ion battery. Mater. Today Energy 30, 101155 (2022). https://doi.org/10.1016/j.mtener.2022.101155
- W. Fu, R. Xu, X. Zhang, Z. Tian, H. Huang et al., Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) ps. J. Power Sources 436, 226839 (2019). https://doi.org/10.1016/j.jpowsour.2019.226839
- P.J. Kim, V.G. Pol, High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer. Adv. Energy Mater. 8(36), 1802665 (2018). https://doi.org/10.1002/aenm.201802665
- D.-M. Shin, H. Son, K.U. Park, J. Choi, J. Suk et al., Al2O3 ceramic/nanocellulose-coated non-woven separator for lithium-metal batteries. Coatings 13(5), 916 (2023). https://doi.org/10.3390/coatings13050916
- D. Luo, M. Chen, J. Xu, X. Yin, J. Wu et al., Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos. Sci. Technol. 157, 119–125 (2018). https://doi.org/10.1016/j.compscitech.2018.01.023
- Y. Lee, H. Lee, T. Lee, M.-H. Ryou, Y.M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. J. Power Sources 294, 537–544 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.106
- X. Li, X. Sun, Interface design and development of coating materials in lithium-sulfur batteries. Adv. Funct. Mater. 28(30), 1801323 (2018). https://doi.org/10.1002/adfm.201801323
- F. Sun, X. He, X. Jiang, M. Osenberg, J. Li et al., Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Mater. Today 27, 21–32 (2019). https://doi.org/10.1016/j.mattod.2018.11.003
- S. Ali, M. Waqas, N. Chen, D. Chen, Y. Han et al., Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Compos. Pt. B-Eng. 174, 107025 (2019). https://doi.org/10.1016/j.compositesb.2019.107025
- H. Cha, Y. Lee, J. Kim, M. Park, J. Cho, Flexible 3D interlocking lithium-ion batteries. Adv. Energy Mater. 8(30), 1801917 (2018). https://doi.org/10.1002/aenm.201801917
- W. Yue, X. Li, J. Zhao, Y. Gao, N. Gao et al., Ultra-small ferromagnetic Fe3O4 nanops modified separator for high-rate and long cycling lithium-sulfur batteries. Batteries Supercaps 5(5), e202200020 (2022). https://doi.org/10.1002/batt.202200020
- Y. Yang, P. Mu, B. Li, A. Li, J. Zhang, In situ separator modification with an N-rich conjugated microporous polymer for the effective suppression of polysulfide shuttle and Li dendrite growth. ACS Appl. Mater. Interfaces 14(43), 49224–49232 (2022). https://doi.org/10.1021/acsami.2c15812
- J. Zhao, G. Yan, X. Zhang, Y. Feng, N. Li et al., In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem. Eng. J. 442, 136352 (2022). https://doi.org/10.1016/j.cej.2022.136352
- L. Zhang, F. Wan, X. Wang, H. Cao, X. Dai et al., Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 10(6), 5594–5602 (2018). https://doi.org/10.1021/acsami.7b18894
- V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, In situpolymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14(5), 2708–2788 (2021). https://doi.org/10.1039/d0ee03527k
- Y. Cao, H. Wu, G. Li, C. Liu, L. Cao et al., Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries. Nano Lett. 21(7), 2997–3006 (2021). https://doi.org/10.1021/acs.nanolett.1c00163
- S. Wu, Y. Yao, X. Nie, Z. Yu, Y. Yu et al., Interfacial engineering of binder-free janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small 18(28), 2202651 (2022). https://doi.org/10.1002/smll.202202651
- M. Das, K. Ghosh, M.W. Raja, Flexible ceramic based ‘paper separator’ with enhanced safety for high performance lithium-ion batteries: probing the effect of ceramics impregnation on electrochemical performances. J. Power Sources 606, 234573 (2024). https://doi.org/10.1016/j.jpowsour.2024.234573
- J. Gong, S. Shi, S. Cheng, K. Yang, P. Zheng et al., High-performance and safe lithium-ion battery with precise ultrathin Al2O3-coated polyethylene separator. Appl. Surf. Sci. 659, 159918 (2024). https://doi.org/10.1016/j.apsusc.2024.159918
- X. Huang, Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15(4), 649–662 (2010). https://doi.org/10.1007/s10008-010-1264-9
- H. Jeon, J. Choi, M.-H. Ryou, Y.M. Lee, Comparative study of the adhesion properties of ceramic composite separators using a surface and interfacial cutting analysis system for lithium-ion batteries. ACS Omega 2(5), 2159–2164 (2017). https://doi.org/10.1021/acsomega.7b00493
- Y. Liu, R. Zhang, J. Wang, Y. Wang, Current and future lithium-ion battery manufacturing. iScience 24(4), 102332 (2021). https://doi.org/10.1016/j.isci.2021.102332
- L. Kong, Y. Wang, H. Yu, B. Liu, S. Qi et al., In situ armoring: A robust, high-wettability, and fire-resistant hybrid separator for advanced and safe batteries. ACS Appl. Mater. Interfaces 11(3), 2978–2988 (2018). https://doi.org/10.1021/acsami.8b17521
- G. Dong, B. Liu, L. Kong, Y. Wang, G. Tian et al., Neoteric polyimide nanofiber encapsulated by the TiO2 armor as the tough, highly wettable, and flame-retardant separator for advanced lithium-ion batteries. ACS Sustain. Chem. Eng. 7(21), 17643–17652 (2019). https://doi.org/10.1021/acssuschemeng.9b03525
- Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott et al., Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2(8), 1022–1027 (2012). https://doi.org/10.1002/aenm.201100750
- W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao et al., Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator. ACS Appl. Energ. Mater. 2(6), 4167–4174 (2019). https://doi.org/10.1021/acsaem.9b00383
- J.W. Lee, A.M. Soomro, M. Waqas, M.A.U. Khalid, K.H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries. Int. J. Energy Res. 44(8), 7035–7046 (2020). https://doi.org/10.1002/er.5371
- H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao et al., Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 458, 217–224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004
- D. Wu, N. Dong, R. Wang, S. Qi, B. Liu et al., In situ construction of high-safety and non-flammable polyimide “ceramic” lithium-ion battery separator via SiO2 nano-encapsulation. Chem. Eng. J. 420, 129992 (2021). https://doi.org/10.1016/j.cej.2021.129992
- N. Dong, J. Wang, N. Chen, B. Liu, G. Tian et al., In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain. Chem. Eng. 9(18), 6250–6257 (2021). https://doi.org/10.1021/acssuschemeng.0c08818
- X. Liu, P. Chen, W. Wang, W. Li, Y. Rao et al., In situ reduction growth Sn-MoS2 on CNFs as advanced separator coating for improved-performance lithium sulfur batteries. J. Alloys Compd. 979, 173432 (2024). https://doi.org/10.1016/j.jallcom.2024.173432
- X. Lu, H. Wang, X. Liu, Z. Song, N. Jiang et al., Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium-sulfur batteries. J. Alloys Compd. 838, 155618 (2020). https://doi.org/10.1016/j.jallcom.2020.155618
- J. Wang, K. Wang, Z. Yang, X. Li, J. Gao et al., Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modulated separators. ACS Sustain. Chem. Eng. 8(4), 1741–1750 (2019). https://doi.org/10.1021/acssuschemeng.9b04970
- K. Ali, J. Ali, S.M. Mehdi, K.-H. Choi, Y.J. An, Rapid fabrication of Al2O3 encapsulations for organic electronic devices. Appl. Surf. Sci. 353, 1186–1194 (2015). https://doi.org/10.1016/j.apsusc.2015.07.032
- Q. Xu, Y. Yang, X. Wang, Z. Wang, W. Jin et al., Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances. J. Membr. Sci. 415–416, 435–443 (2012). https://doi.org/10.1016/j.memsci.2012.05.031
- Q. Xu, Y. Yang, J. Yang, X. Wang, Z. Wang et al., Plasma activation of porous polytetrafluoroethylene membranes for superior hydrophilicity and separation performances via atomic layer deposition of TiO2. J. Membr. Sci. 443, 62–68 (2013). https://doi.org/10.1016/j.memsci.2013.04.061
- S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2010). https://doi.org/10.1021/cr900056b
- Y. Jin, H. Yu, X. Liang, Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Appl. Phys. Rev. 8(3), 031301 (2021). https://doi.org/10.1063/5.0048337
- X. Wang, G. Yushin, Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 8(7), 1889–1904 (2015). https://doi.org/10.1039/c5ee01254f
- S. Cao, J. Tan, L. Ma, Y. Liu, Q. He et al., Covalent organic frameworks-based functional separators for rechargeable batteries: design, mechanism, and applications. Energy Storage Mater. 66(25), 103232 (2024). https://doi.org/10.1016/j.ensm.2024.103232
- W. Huang, X. Li, X. Yang, X. Zhang, H. Wang et al., The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mat. Chem. Front. 5(9), 3593–3613 (2021). https://doi.org/10.1039/d0qm00936a
- P. Chen, H. Ren, L. Yan, J. Shen, T. Wang et al., Metal-organic frameworks enabled high-performance separators for safety-reinforced lithium ion battery. ACS Sustain. Chem. Eng. 7(19), 16612–16619 (2019). https://doi.org/10.1021/acssuschemeng.9b03854
- T. Zhu, Y. Kong, B. Lyu, L. Cao, B. Shi et al., 3D covalent organic framework membrane with fast and selective ion transport. Nat. Commun. 14(1), 5926 (2023). https://doi.org/10.1038/s41467-023-41555-5
- R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939–943 (2008). https://doi.org/10.1126/science.1152516
- G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
- C. Zhou, Q. He, Z. Li, J. Meng, X. Hong et al., A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 395, 124979 (2020). https://doi.org/10.1016/j.cej.2020.124979
- Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
- J. Liu, J. Wang, L. Zhu, X. Chen, G. Yi et al., In situ grown MOFs and PVDF-HFP co-modified aramid gel nanofiber separator for high-safety lithium-sulfur batteries. J. Mater. Chem. A 10(26), 14098–14110 (2022). https://doi.org/10.1039/d2ta03301a
- M. Li, G. Yan, P. Zou, H. Ji, H. Wang et al., Dynamic disulfide bonds contained covalent organic framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. ACS Sustain. Chem. Eng. 10(41), 13638–13649 (2022). https://doi.org/10.1021/acssuschemeng.2c03498
- L. Han, Y. Yang, S. Sun, J. Yue, J. Li, Polydopamine-assisted in situ formation of a covalent organic framework on single-walled carbon nanotubes to multifunctionalize separators for advanced lithium-sulfur batteries. ACS Sustain. Chem. Eng. 11(23), 8431–8441 (2023). https://doi.org/10.1021/acssuschemeng.2c07568
- J. Yu, C. Mu, B. Yan, X. Qin, C. Shen et al., Nanop/MOF composites: preparations and applications. Mater. Horizons 4(4), 557–569 (2017). https://doi.org/10.1039/c6mh00586a
- H. Wen, B. Li, D. Yuan, H. Wang, T. Yildirim et al., A porous metal-organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. J. Mater. Chem. A 2(29), 11516–11522 (2014). https://doi.org/10.1039/c4ta01860e
- Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng et al., Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
- M. Jahan, Q. Bao, J.-X. Yang, K.P. Loh, Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 132(41), 14487–14495 (2010). https://doi.org/10.1021/ja105089w
- J. Yao, M. He, K. Wang, R. Chen, Z. Zhong et al., High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 15(18), 3601–3606 (2013). https://doi.org/10.1039/c3ce27093a
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103(27), 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
- A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43(1), 58–67 (2010). https://doi.org/10.1021/ar900116g
- Y. Yang, S. Yao, Y. Wu, J. Ding, Z. Liang et al., Hydrogen-bonded organic framework as superior separator with high lithium affinity C=N bond for low N/P ratio lithium metal batteries. Nano Lett. 23, 5061–5069 (2023). https://doi.org/10.1021/acs.nanolett.3c00801
- J. Yoo, S.-J. Cho, G.Y. Jung, S.H. Kim, K.-H. Choi et al., COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 16(5), 3292–3300 (2016). https://doi.org/10.1021/acs.nanolett.6b00870
- Y. Chen, K. Wang, L. Zhang, W. Guo, M. Li et al., Oriented carbon fiber/PEO functional modified polyethylene separator for high-performance lithium metal batteries. Mater. Lett. 332, 133511 (2023). https://doi.org/10.1016/j.matlet.2022.133511
- J.-Y. Sohn, J.-S. Im, J. Shin, Y.-C. Nho, PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J. Solid State Electrochem. 16(2), 551–556 (2011). https://doi.org/10.1007/s10008-011-1379-7
- Y. Wang, C. Yin, Z. Song, Q. Wang, Y. Lan et al., Application of PVDF organic ps coating on polyethylene separator for lithium ion batteries. Materials 12(19), 3125 (2019). https://doi.org/10.3390/ma12193125
- J. Song, M.-H. Ryou, B. Son, J.-N. Lee, D.J. Lee et al., Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 85, 524–530 (2012). https://doi.org/10.1016/j.electacta.2012.06.078
- C. Shi, J. Dai, S. Huang, C. Li, X. Shen et al., A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 518, 168–177 (2016). https://doi.org/10.1016/j.memsci.2016.06.046
- M. Zhou, Z. Zhang, J. Xu, J. Wei, J. Yu et al., PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J. Electroanal. Chem. 868, 114195 (2020). https://doi.org/10.1016/j.jelechem.2020.114195
- L. Pan, H. Wang, C. Wu, C. Liao, L. Li, Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(29), 16003–16010 (2015). https://doi.org/10.1021/acsami.5b04245
- H. Wang, L. Pan, C. Wu, D. Gao, S. Chen et al., Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries. J. Mater. Chem. A. 3(41), 20535–20540 (2015). https://doi.org/10.1039/c5ta06381g
- J. Li, S. Bi, M. Li, Y. Xian, Y. Shui et al., Rapid homogenization preparation of the mussel-inspired hydrophilic separator for high power lithium-ion batteries. J. Appl. Polym. Sci. 137(36), e49052 (2020). https://doi.org/10.1002/app.49052
- Y. Zhang, J. Yuan, Y. Song, X. Yin, C. Sun et al., Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-ion batteries and the role of the interfaces between separator and electrolyte. Electrochim. Acta 275, 25–31 (2018). https://doi.org/10.1016/j.electacta.2018.03.099
- S. Zheng, L. Mo, K. Chen, A. Chen, X. Zhang et al., Precise control of Li+ directed transport via electronegative polymer brushes on polyolefin separators for dendrite-free lithium deposition. Adv. Funct. Mater. 32(41), 2201430 (2022). https://doi.org/10.1002/adfm.202201430
- X. Guan, Y. Zhao, H. Pei, M. Zhao, Y. Wang et al., Metalloporphyrin conjugated porous polymer in-situ grown on a celgard separator as multifunctional polysulfide barrier and catalyst for high-performance Li-S batteries. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.144733
- S.M. Kang, I. You, W.K. Cho, H.K. Shon, T.G. Lee et al., One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. 49(49), 9401–9404 (2010). https://doi.org/10.1002/anie.201004693
- H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007). https://doi.org/10.1038/nature05968
- H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
- I. Novak, M. Šeruga, Š Komorsky-Lovrić, Square-wave and cyclic voltammetry of epicatechin gallate on glassy carbon electrode. J. Electroanal. Chem. 631(1–2), 71–75 (2009). https://doi.org/10.1016/j.jelechem.2009.03.005
- J. Chen, J. Bai, Chemiluminescence flow sensor with immobilized reagent for the determination of pyrogallol based on potassium hexacyanoferrate (III) oxidation. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 71(3), 989–992 (2008). https://doi.org/10.1016/j.saa.2008.02.022
- G. Bieker, M. Winter, P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. PCCP 17(14), 8670–8679 (2015). https://doi.org/10.1039/c4cp05865h
- H. Yang, M. Wu, Y. Li, Y. Chen, L. Wan et al., Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. J. Appl. Polym. Sci. 133(32), 43792 (2016). https://doi.org/10.1002/app.43792
- S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11(2), 2000802 (2020). https://doi.org/10.1002/aenm.202000802
- J. Luo, Q. Zhang, In situ polymer gel electrolyte in boosting scalable fibre lithium battery applications. Nano-Micro Lett. 16, 230 (2024). https://doi.org/10.1007/s40820-024-01451-z
- S. Zou, Y. Yang, J. Wang, X. Zhou, X. Wan et al., In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review. Energy Environ. Sci. 17, 4426–4460 (2024). https://doi.org/10.1039/D4EE00822G
- J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
- K. Guo, J. Wang, Z. Shi, Y. Wang, X. Xie et al., One-step in situ polymerization: a facile design strategy for block copolymer electrolytes. Angew. Chem. Int. Ed. 62(9), e202213606 (2023). https://doi.org/10.1002/anie.202213606
- D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
- L. Zhang, X. Li, M. Yang, W. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 41, 522–545 (2021). https://doi.org/10.1016/j.ensm.2021.06.033
- X. Zhu, X. Jiang, X. Ai, H. Yang, Y. Cao, TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J. Membr. Sci. 504, 97–103 (2016). https://doi.org/10.1016/j.memsci.2015.12.059
- X. Zhu, X. Jiang, X. Ai, H. Yang, Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl. Mater. Interfaces 7(43), 24119–24126 (2015). https://doi.org/10.1021/acsami.5b07230
- X. Wang, X. Jia, Q. Liang, J. Yang, Y. Li et al., Building polysulfides shuttle barrier with unblocked Li+ transit channels via in-situ grown FeOOH modified separator for Li-S batteries. Appl. Surf. Sci. 606, 154903 (2022). https://doi.org/10.1016/j.apsusc.2022.154903
- M. Yin, J. Huang, J. Yu, G. Chen, S. Qu et al., The polypropylene membrane modified by an atmospheric pressure plasma jet as a separator for lithium-ion button battery. Electrochim. Acta 260, 489–497 (2018). https://doi.org/10.1016/j.electacta.2017.12.119
- S. Cao, X. He, M. Chen, Y. Han, K. Wang et al., A CF4 plasma functionalized polypropylene separator for dendrite-free lithium metal anodes. J. Mater. Chem. A. 11(14), 7545–7555 (2023). https://doi.org/10.1039/d2ta09763j
- M. Liu, P. Zhang, L. Gou, Z. Hou, B, Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification. Mater. Lett. 208, 98–101 (2017). https://doi.org/10.1016/j.matlet.2017.05.031
- P. Zhao, J. Yang, Y. Shang, L. Wang, M. Fang et al., Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase. J. Energy Chem. 24(2), 138–144 (2015). https://doi.org/10.1016/S2095-4956(15)60294-7
- K. Min Yang, K. Yang, M. Cho, S. Kim, Y. Lee, Self-assembled functional layers onto separator toward practical lithium metal batteries. Chem. Eng. J. 454, 140191 (2023). https://doi.org/10.1016/j.cej.2022.140191
- Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan et al., Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 7(5), 3314–3322 (2015). https://doi.org/10.1021/am508149n
- W. Xu, Z. Wang, L. Shi, Y. Ma, S. Yuan et al., Layer-by-layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl. Mater. Interfaces 7(37), 20678–20686 (2015). https://doi.org/10.1021/acsami.5b05457
- W. Na, A.S. Lee, J.H. Lee, S.S. Hwang, E. Kim et al., Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl. Mater. Interfaces 8(20), 12852–12858 (2016). https://doi.org/10.1021/acsami.6b02735
- R. Laurita, M. Zaccaria, M. Gherardi, D. Fabiani, A. Merlettini et al., Plasma processing of electrospun Li-ion battery separators to improve electrolyte uptake. Plasma Process. Polym. 13(1), 124–133 (2015). https://doi.org/10.1002/ppap.201500145
- Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu et al., Plasma modified polypropylene membranes as the lithium-ion battery separators. Plasma Sci. Technol. 18(4), 424–429 (2016). https://doi.org/10.1088/1009-0630/18/4/16
- B. Li, Y. Li, D. Dai, K. Chang, H. Tang et al., Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl. Mater. Interfaces 7(36), 20184–20189 (2015). https://doi.org/10.1021/acsami.5b05718
- M.-K. Song, J.-Y. Cho, B.W. Cho, H.-W. Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J. Power Sources 110(1), 209–215 (2002). https://doi.org/10.1016/S0378-7753(02)00258-6
- X. Jiang, X. Zhu, X. Ai, H. Yang, Y. Cao, Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 9(31), 25970–25975 (2017). https://doi.org/10.1021/acsami.7b05535
- Q. Jiang, Z. Li, S. Wang, H. Zhang, A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Adv. 5(113), 92995–93001 (2015). https://doi.org/10.1039/c5ra18457f
- K. Gao, X. Hu, T. Yi, C. Dai, PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim. Acta 52(2), 443–449 (2006). https://doi.org/10.1016/j.electacta.2006.05.049
- J.Y. Kim, Y. Lee, D.Y. Lim, Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim. Acta 54(14), 3714–3719 (2009). https://doi.org/10.1016/j.electacta.2009.01.055
- K.J. Kim, M.-S. Park, T. Yim, J.-S. Yu, Y.-J. Kim, Electron-beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. J. Appl. Electrochem. 44(3), 345–352 (2014). https://doi.org/10.1007/s10800-014-0661-7
- J. Li, Y. Huang, S. Zhang, W. Jia, X. Wang et al., Decoration of silica nanops on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9(8), 7499–7504 (2017). https://doi.org/10.1021/acsami.7b00065
- S.Y. Jin, J. Manuel, X. Zhao, W.H. Park, J.-H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017). https://doi.org/10.1016/j.jiec.2016.08.021
- W. Ye, Z. Fan, X. Zhou, Z. Xue, Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries. Energy Mater. 4(4), 400049 (2024). https://doi.org/10.20517/energymater.2023.129
- H. Xiang, F. Zhang, B. Zou, Q. Hou, C. Cheng et al., High-performance lithium batteries achieved by electrospun MXene-enhanced cation-selective membranes. J. Membr. Sci. 704, 122867 (2024). https://doi.org/10.1016/j.memsci.2024.122867
- Z. Li, Q. Pan, P. Yang, S. Jiang, Z. Zheng et al., Enhancing the cycle performance of lithium–sulfur batteries by coating the separator with a cation-selective polymer layer. Chem. Eur. J. 29, e202302334 (2023). https://doi.org/10.1002/chem.202302334
- Q. Zhao, R. Zhou, C. Wang, J. Kang, Q. Zhang et al., Anion immobilization enabled by cation-selective separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2112711 (2022). https://doi.org/10.1002/adfm.202112711
- L. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang et al., A nano fiber-gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 3(2), 100090 (2023). https://doi.org/10.1016/j.esci.2022.100090
References
Y. Yang, W. Wang, G. Meng, J. Zhang, Function-directed design of battery separators based on microporous polyolefin membranes. J. Mater. Chem. A 10(27), 14137–14170 (2022). https://doi.org/10.1039/D2TA03511A
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16, 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo et al., Unraveling the catalytic activity of Fe–based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv. Energy Mater. 11, 2100673 (2021). https://doi.org/10.1002/aenm.202100673
M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
H. Jia, C. Zeng, H.-S. Lim, A. Simmons, Y. Zhang et al., Important role of ion flux regulated by separators in lithium metal batteries. Adv. Mater. 36(19), 2311312 (2024). https://doi.org/10.1002/adma.202311312
N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sust. Energ. Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
M. Waqas, S. Ali, C. Feng, D. Chen, J. Han et al., Recent development in separators for high-temperature lithium-ion batteries. Small 15(33), 1901689 (2019). https://doi.org/10.1002/smll.201901689
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang et al., Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46(8), 2199–2236 (2017). https://doi.org/10.1039/C6CS00823B
P. Arora, Z. Zhang, Battery separators. Chem. Rev. 104(10), 4419–4462 (2004). https://doi.org/10.1021/cr020738u
M. Su, G. Huang, S. Wang, Y. Wang, H. Wang, High safety separators for rechargeable lithium batteries. Sci. China-Chem. 64(7), 1131–1156 (2021). https://doi.org/10.1007/s11426-021-1011-9
Y. Yu, M. Liu, Z. Chen, Z. Zhang, T. Qiu et al., Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber Mater. 5(6), 1827–1851 (2023). https://doi.org/10.1007/s42765-023-00322-3
H. Kim, U. Mattinen, V. Guccini, H. Liu, G. Salazar-Alvarez et al., Feasibility of chemically modified cellulose nanofiber membranes as lithium-ion battery separators. ACS Appl. Mater. Interfaces 12(37), 41211–41222 (2020). https://doi.org/10.1021/acsami.0c08820
D. Lv, J. Chai, P. Wang, L. Zhu, C. Liu et al., Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydr. Polym. 251, 116975 (2021). https://doi.org/10.1016/j.carbpol.2020.116975
K. Hwang, B. Kwon, H. Byun, Preparation of PVDF nanofiber membranes by electrospinning and their use as secondary battery separators. J. Membr. Sci. 378(1), 111–116 (2011). https://doi.org/10.1016/j.memsci.2011.06.005
B. Yang, L. Wang, M. Zhang, W. Li, Q. Zhou et al., Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. J. Mater. Chem. A 9(22), 12923–12946 (2021). https://doi.org/10.1039/D1TA03125B
T. Dong, W.U. Arifeen, J. Choi, K. Yoo, T. Ko, Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem. Eng. J. 398, 125646 (2020). https://doi.org/10.1016/j.cej.2020.125646
X. Fu, C. Shang, M. Yang, E.M. Akinoglu, X. Wang et al., An ion-conductive separator for high safety Li metal batteries. J. Power Sources 475, 228687 (2020). https://doi.org/10.1016/j.jpowsour.2020.228687
Y. Ding, H. Hou, Y. Zhao, Z. Zhu, H. Fong, Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67–103 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.006
Y. Wang, S. Wang, J. Fang, L.-X. Ding, H. Wang, A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J. Membr. Sci. 537, 248–254 (2017). https://doi.org/10.1016/j.memsci.2017.05.023
D. Li, H. Zhang, X. Li, Porous polyetherimide membranes with tunable morphology for lithium-ion battery. J. Membr. Sci. 565, 42–49 (2018). https://doi.org/10.1016/j.memsci.2018.08.011
D. Li, D. Shi, K. Feng, X. Li, H. Zhang, Poly (ether etherketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J. Membr. Sci. 530, 125–131 (2017). https://doi.org/10.1016/j.memsci.2017.02.027
D. Li, D. Shi, Y. Xia, L. Qiao, X. Li et al., Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 9(10), 8742–8750 (2017). https://doi.org/10.1021/acsami.6b16316
Y. Yu, G. Jia, L. Zhao, H. Xiang, Z. Hu et al., Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries. Chem. Eng. J. 452, 139112 (2023). https://doi.org/10.1016/j.cej.2022.139112
M.-H. Ryou, Y.M. Lee, J.-K. Park, J.W. Choi, Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 23(27), 3066–3070 (2011). https://doi.org/10.1002/adma.201100303
K. Liu, D. Zhuo, H.-W. Lee, W. Liu, D. Lin et al., Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanop sandwiched separator. Adv. Mater. 29(4), 1603987 (2017). https://doi.org/10.1002/adma.201603987
Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
W. Pfleging, J. Pröll, A new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteries. J. Mater. Chem. A 2(36), 14918–14926 (2014). https://doi.org/10.1039/C4TA02353F
H.-S. Jeong, E.-S. Choi, S.-Y. Lee, J.H. Kim, Evaporation-induced, close-packed silica nanop-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: advantageous effect of highly percolated, electrolyte-philic microporous architecture. J. Membr. Sci. 415–416, 513–519 (2012). https://doi.org/10.1016/j.memsci.2012.05.038
J. Chen, S. Wang, D. Cai, H. Wang, Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. J. Membr. Sci. 449, 169–175 (2014). https://doi.org/10.1016/j.memsci.2013.08.028
J. Huang, J. Liu, J. He, M. Wu, S. Qi et al., Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem. Int. Ed. 60(38), 20717–20722 (2021). https://doi.org/10.1002/anie.202107957
Z. Wang, R. Pan, C. Xu, C. Ruan, K. Edström et al., Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Mater. 13, 283–292 (2018). https://doi.org/10.1016/j.ensm.2018.02.006
J. Xiao, How lithium dendrites form in liquid batteries. Science 366(6464), 426–427 (2019). https://doi.org/10.1126/science.aay8672
M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Polyimides as promising materials for lithium-ion batteries: a review. Nano-Micro Lett. 15(1), 135 (2023). https://doi.org/10.1007/s40820-023-01104-7
M. Waqas, C. Tan, W. Lv, S. Ali, B. Boateng et al., A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries. ChemElectroChem 5(19), 2722–2728 (2018). https://doi.org/10.1002/celc.201800800
S.S. Zhang, K. Xu, T.R. Jow, An inorganic composite membrane as the separator of Li-ion batteries. J. Power Sources 140(2), 361–364 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.034
S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi et al., Surface modification of inorganic nanops for development of organic-inorganic nanocomposites—a review. Prog. Polym. Sci. 38(8), 1232–1261 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
M.-H. Ryou, D.J. Lee, J.-N. Lee, Y.M. Lee, J.-K. Park et al., Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2(6), 645–650 (2012). https://doi.org/10.1002/aenm.201100687
Z. Chen, W. Zhao, Q. Liu, Y. Xu, Q. Wang et al., Janus quasi-solid electrolyte membranes with asymmetric porous structure for high-performance lithium-metal batteries. Nano-Micro Lett. 16, 114 (2024). https://doi.org/10.1007/s40820-024-01325-4
Y. Liang, C.-Z. Zhao, H. Yuan, Y. Chen, W. Zhang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1(1), 6–32 (2019). https://doi.org/10.1002/inf2.12000
X. Huang, A lithium-ion battery separator prepared using a phase inversion process. J. Power Sources 216, 216–221 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.019
B. Tong, X. Li, Towards separator safety of lithium-ion batteries: a review. Mat. Chem. Front. 8(2), 309–340 (2024). https://doi.org/10.1039/D3QM00951C
H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7(12), 3857–3886 (2014). https://doi.org/10.1039/C4EE01432D
D. Takemura, S. Aihara, K. Hamano, M. Kise, T. Nishimura et al., A powder p size effect on ceramic powder based separator for lithium rechargeable battery. J. Power Sources 146(1), 779–783 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.159
W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wang et al., Water-based organic-inorganic hybrid coating for a high-performance separator. ACS Sustain. Chem. Eng. 4(7), 3794–3802 (2016). https://doi.org/10.1021/acssuschemeng.6b00499
D. Fu, B. Luan, S. Argue, M.N. Bureau, I.J. Davidson, Nano SiO2 p formation and deposition on polypropylene separators for lithium-ion batteries. J. Power Sources 206, 325–333 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.130
H.-S. Jeong, S.-Y. Lee, Closely packed SiO2 nanops/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196(16), 6716–6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
H. Liu, J. Xu, B. Guo, X. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceram. Int. 40(9), 14105–14110 (2014). https://doi.org/10.1016/j.ceramint.2014.05.142
S. Kennedy, J.-T. Kim, J. Kim, Y.M. Lee, I. Phiri et al., Synergistic effect of dual-ceramics for improving the dispersion stability and coating quality of aqueous ceramic coating slurries for polyethylene separators in Li secondary batteries. Batteries 8(8), 82 (2022). https://doi.org/10.3390/batteries8080082
Z. Wang, H. Xiang, L. Wang, R. Xia, S. Nie et al., A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 553, 10–16 (2018). https://doi.org/10.1016/j.memsci.2018.02.040
G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng et al., Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J. Power Sources 376, 177–183 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.086
D. Yeon, Y. Lee, M.-H. Ryou, Y.M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochim. Acta 157, 282–289 (2015). https://doi.org/10.1016/j.electacta.2015.01.078
C. Yang, H. Tong, C. Luo, S. Yuan, G. Chen et al., Boehmite p coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. J. Power Sources 348, 80–86 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.078
J. Cho, Y.-C. Jung, Y.S. Lee, D.-W. Kim, High performance separator coated with amino-functionalized SiO2 ps for safety enhanced lithium-ion batteries. J. Membr. Sci. 535, 151–157 (2017). https://doi.org/10.1016/j.memsci.2017.04.042
Z. Yu, S. Wu, C. Ji, F. Tang, L. Zhang et al., Enhancing the β phase of poly(vinylidene fluoride) nanofibrous membranes for thermostable separators in lithium-ion batteries. ACS Appl. Nano Mater. 6(12), 10340–10350 (2023). https://doi.org/10.1021/acsanm.3c01267
S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, Ceramic nanop-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator. ACS Omega 4(15), 16309–16317 (2019). https://doi.org/10.1021/acsomega.9b01541
X. Liang, Y. Yang, X. Jin, Z. Huang, F. Kang, The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 493, 1–7 (2015). https://doi.org/10.1016/j.memsci.2015.06.016
M. Su, Y. Chen, S. Wang, H. Wang, Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries. Chin. Chem. Lett. 34(5), 107553 (2023). https://doi.org/10.1016/j.cclet.2022.05.067
Y. Zhang, S. Du, Y. Pang, X. Gao, D. Luo et al., Enhanced thermostability and electrochemical performance of separators based on an organic-inorganic composite binder composed of polyvinyl alcohol and inorganic phosphate for lithium ion batteries. J. Alloys Compd. 895, 162646 (2022). https://doi.org/10.1016/j.jallcom.2021.162646
D. Parikh, C.J. Jafta, B.P. Thapaliya, J. Sharma, H.M. Meyer et al., Al2O3/TiO2 coated separators: roll-to-roll processing and implications for improved battery safety and performance. J. Power Sources 507, 230259 (2021). https://doi.org/10.1016/j.jpowsour.2021.230259
E.J. Cheng, K. Nishikawa, T. Abe, K. Kanamura, Polymer-in-ceramic flexible separators for Li-ion batteries. Ionics 28(11), 5089–5097 (2022). https://doi.org/10.1007/s11581-022-04752-8
W. Xiao, J. Song, L. Huang, Z. Yang, Q. Qiao, PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries. Ceram. Int. 46(18), 29212–29221 (2020). https://doi.org/10.1016/j.ceramint.2020.08.095
Y. Xiang, W. Zhu, W. Qiu, W. Guo, J. Lei et al., SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery. ChemistrySelect 3(3), 911–916 (2018). https://doi.org/10.1002/slct.201702529
E. Shekarian, M.R. Jafari Nasr, T. Mohammadi, O. Bakhtiari, M. Javanbakht, Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator. J. Appl. Polym. Sci. 136(32), 47841 (2019). https://doi.org/10.1002/app.47841
Z. Qiu, S. Yuan, Z. Wang, L. Shi, J.H. Jo et al., Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries. J. Power Sources 472, 228445 (2020). https://doi.org/10.1016/j.jpowsour.2020.228445
S. Li, J. Lin, Y. Ding, P. Xu, X. Guo et al., Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries. ACS Nano 15(8), 13803–13813 (2021). https://doi.org/10.1021/acsnano.1c05585
Y. Yang, J. Zhang, Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 8(25), 1801778 (2018). https://doi.org/10.1002/aenm.201801778
J.Y. Kim, D.O. Shin, K.M. Kim, J. Oh, J. Kim et al., Graphene oxide induced surface modification for functional separators in lithium secondary batteries. Sci. Rep. 9(1), 2464 (2019). https://doi.org/10.1038/s41598-019-39237-8
K. Kwon, J. Kim, K. Roh, P.J. Kim, J. Choi, Towards high performance Li metal batteries: surface functionalized graphene separator with improved electrochemical kinetics and stability. Electrochem. Commun. 157, 107598 (2023). https://doi.org/10.1016/j.elecom.2023.107598
Y.J. Gong, J.W. Heo, H. Lee, H. Kim, J. Cho et al., Nonwoven rGO fiber-aramid separator for high-speed charging and discharging of Li metal anode. Adv. Energy Mater. 10(27), 2001479 (2020). https://doi.org/10.1002/aenm.202001479
J. Yang, C. Cao, W. Qiao, J. Qiao, C. Tang et al., B/N co-doping rGO/BNNSs heterostructure with synergistic adsorption-electrocatalysis function enabling enhanced electrochemical performance of lithium-sulfur batteries. Chem. Eng. J. 467, 143377 (2023). https://doi.org/10.1016/j.cej.2023.143377
L. Yang, L. Sheng, X. Gao, X. Xie, Y. Bai et al., rGO/Li-Al-LDH composite nanosheets modified commercial polypropylene (PP) separator to suppress lithium dendrites for lithium metal battery. Electrochim. Acta 430, 141073 (2022). https://doi.org/10.1016/j.electacta.2022.141073
X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
B. Zheng, L. Yu, Y. Zhao, J. Xi, Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries. Electrochim. Acta 295, 910–917 (2019). https://doi.org/10.1016/j.electacta.2018.11.145
H. Pei, X. Guan, X. Chen, Y. Chen, Y. Yang et al., Multifunctional tri-layer aramid nanofiber composite separators for high-energy-density lithium-sulfur batteries. Nano Energy 126, 109680 (2024). https://doi.org/10.1016/j.nanoen.2024.109680
H. Li, L. Sun, Y. Zhao, T. Tan, Y. Zhang, A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries. Appl. Surf. Sci. 466, 309–319 (2019). https://doi.org/10.1016/j.apsusc.2018.10.046
J. Sheng, Q. Zhang, M. Liu, Z. Han, C. Li et al., Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries. Nano Lett. 21(19), 8447–8454 (2021). https://doi.org/10.1021/acs.nanolett.1c03106
J. Liu, D. Cao, H. Yao, D. Liu, X. Zhang et al., Hexagonal boron nitride-coated polyimide ion track etched separator with enhanced thermal conductivity and high-temperature stability for lithium-ion batteries. ACS Appl. Energ. Mater. 5(7), 8639–8649 (2022). https://doi.org/10.1021/acsaem.2c01163
J. Lee, C.-L. Lee, K. Park, I.-D. Kim, Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248, 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056
J.-A. Choi, S.H. Kim, D.-W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 195(18), 6192–6196 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.020
H. Luo, S. Ma, J. Liu, Y. Luo, X. Gao, Raspberry-like micro-size polymer with high spherical shape-retention capability and adhesion as binder for ceramic separators. Eur. Polym. J. 194, 112184 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112184
W. Na, K.H. Koh, A.S. Lee, S. Cho, B. Ok et al., Binder-less chemical grafting of SiO2 nanops onto polyethylene separators for lithium-ion batteries. J. Membr. Sci. 573, 621–627 (2019). https://doi.org/10.1016/j.memsci.2018.12.039
Y.-M. Song, S.-X. Qiu, S.-X. Feng, R. Zuo, Y.-T. Zhang et al., The role of carbon nanotubes in modern electrochemical energy storage: a comprehensive review. New Carbon Mater. 39, 1–38 (2024). https://doi.org/10.1016/S1872-5805(24)60878-4
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
Y. Yang, Z. Sun, Y. Wu, Z. Liang, F. Li et al., Porous organic framework materials (MOF, COF, and HOF) as the multifunctional separator for rechargeable lithium metal batteries. Small 20, 2401457 (2024). https://doi.org/10.1002/smll.202401457
D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31(32), 2100505 (2021). https://doi.org/10.1002/adfm.202100505
Y. Lu, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. A 16, 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang et al., Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(33), 2102938 (2021). https://doi.org/10.1002/adfm.202102938
J. Li, L. Chen, F. Wang, Z. Qin, Y. Zhang et al., Anionic metal-organic framework modified separator boosting efficient Li-ion transport. Chem. Eng. J. 451, 138536 (2023). https://doi.org/10.1016/j.cej.2022.138536
X. Li, F. Zhang, M. Zhang, Z. Zhou, X. Zhou, Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery. J. Energy Storage 59, 106473 (2023). https://doi.org/10.1016/j.est.2022.106473
S. Bian, G. Huang, Y. Xuan, B. He, J. Liu et al., Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries. J. Membr. Sci. 669, 121268 (2023). https://doi.org/10.1016/j.memsci.2022.121268
Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Envion. Mater. 6(2), e12345 (2023). https://doi.org/10.1002/eem2.12345
S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding et al., A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33(13), 2212466 (2023). https://doi.org/10.1002/adfm.202212466
C. Wang, W. Li, Y. Jin, J. Liu, H. Wang et al., Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries. Small 19(28), 2300023 (2023). https://doi.org/10.1002/smll.202300023
G.-H. Li, Y. Yang, J.-C. Cai, T. Wen, L.-C. Zhuang et al., Lithiophilic aromatic sites and porosity of COFs for a stable lithium metal anode. ACS Appl. Energ. Mater. 5(11), 13554–13561 (2022). https://doi.org/10.1021/acsaem.2c02233
Y. Wang, R. Sun, Y. Chen, X. Wang, Y. Yang et al., Highly crystalline covalent triazine frameworks modified separator for lithium metal batteries. Energy Mater. 4(5), 400056 (2024). https://doi.org/10.20517/energymater.2023.133
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
L. He, T. Qiu, C. Xie, X. Tuo, A phase separation method toward PPTA-polypropylene nanocomposite separator for safe lithium ion batteries. J. Appl. Polym. Sci. 135(39), 46697 (2018). https://doi.org/10.1002/app.46697
K.J. Kim, J.-H. Kim, M.-S. Park, H.K. Kwon, H. Kim et al., Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride-hexafluoropropylene co-polymer for Li-ion batteries. J. Power Sources 198, 298–302 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.086
H. Lee, M. Alcoutlabi, J.V. Watson, X. Zhang, Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J. Appl. Polym. Sci. 129(4), 1939–1951 (2013). https://doi.org/10.1002/app.38894
D.-W. Kim, J.-M. Ko, J.-H. Chun, S.-H. Kim, J.-K. Park, Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators. Electrochem. Commun. 3(10), 535–538 (2001). https://doi.org/10.1016/S1388-2481(01)00214-4
W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34(18), 2314045 (2024). https://doi.org/10.1002/adfm.202314045
J.-H. Park, W. Park, J.H. Kim, D. Ryoo, H.S. Kim et al., Close-packed poly(methyl methacrylate) nanop arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. J. Power Sources 196(16), 7035–7038 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
M. Xiong, H. Tang, Y. Wang, M. Pan, Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr. Polym. 101, 1140–1146 (2014). https://doi.org/10.1016/j.carbpol.2013.10.073
M.M. Rao, J.S. Liu, W.S. Li, Y. Liang, D.Y. Zhou, Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J. Membr. Sci. 322(2), 314–319 (2008). https://doi.org/10.1016/j.memsci.2008.06.004
C. Zhang, H.-Q. Liang, J.-K. Pi, G.-P. Wu, Z.-K. Xu, Polypropylene separators with robust mussel-inspired coatings for high lithium-ion battery performances. Chin. J. Polym. Sci. 37(10), 1015–1022 (2019). https://doi.org/10.1007/s10118-019-2310-4
J. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Pang et al., Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl. Mater. Interfaces 5(1), 128–134 (2013). https://doi.org/10.1021/am302290n
J. Yu, N. Dong, B. Liu, G. Tian, S. Qi et al., A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chem. Eng. J. 442, 136314 (2022). https://doi.org/10.1016/j.cej.2022.136314
D. Li, D. Shi, Z. Yuan, K. Feng, H. Zhang et al., A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery. J. Membr. Sci. 542, 1–7 (2017). https://doi.org/10.1016/j.memsci.2017.07.051
C. Shi, P. Zhang, S. Huang, X. He, P. Yang et al., Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sources 298, 158–165 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.008
Y. Zhai, N. Wang, X. Mao, Y. Si, J. Yu et al., Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J. Mater. Chem. A 2(35), 14511–14518 (2014). https://doi.org/10.1039/C4TA02151G
Z. Li, Y. Xiong, S. Sun, L. Zhang, S. Li et al., Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J. Membr. Sci. 565, 50–60 (2018). https://doi.org/10.1016/j.memsci.2018.07.094
H. Jeon, D. Yeon, T. Lee, J. Park, M.-H. Ryou et al., A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources 315, 161–168 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.037
C. Li, S. Liu, C. Shi, G. Liang, Z. Lu et al., Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 10(1), 1363 (2019). https://doi.org/10.1038/s41467-019-09211-z
Y. Deng, X. Song, Z. Ma, X. Zhang, D. Shu et al., Al2O3/PVDF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim. Acta 212, 416–425 (2016). https://doi.org/10.1016/j.electacta.2016.07.016
Z. Zhang, W. Yuan, L. Li, Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37, 91–98 (2018). https://doi.org/10.1016/j.partic.2017.10.001
C. Shi, J. Dai, C. Li, X. Shen, L. Peng et al., A modified ceramic-coating separator with high-temperature stability for lithium-ion battery. Polymers 9(5), 159 (2017). https://doi.org/10.3390/polym9050159
X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai et al., A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5V high-voltage lithium-ion batteries with enhanced performance. J. Power Sources 407, 44–52 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.056
P. Yang, P. Zhang, C. Shi, L. Chen, J. Dai et al., The functional separator coated with core–shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J. Membr. Sci. 474, 148–155 (2015). https://doi.org/10.1016/j.memsci.2014.09.047
Z. Wang, X. Li, N. Dong, B. Liu, G. Tian et al., Novel ZrO2@polyimde nano-microspheres-coated polyethylene separators for high energy density and high safety Li-ion battery. Mater. Today Energy 30, 101155 (2022). https://doi.org/10.1016/j.mtener.2022.101155
W. Fu, R. Xu, X. Zhang, Z. Tian, H. Huang et al., Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) ps. J. Power Sources 436, 226839 (2019). https://doi.org/10.1016/j.jpowsour.2019.226839
P.J. Kim, V.G. Pol, High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer. Adv. Energy Mater. 8(36), 1802665 (2018). https://doi.org/10.1002/aenm.201802665
D.-M. Shin, H. Son, K.U. Park, J. Choi, J. Suk et al., Al2O3 ceramic/nanocellulose-coated non-woven separator for lithium-metal batteries. Coatings 13(5), 916 (2023). https://doi.org/10.3390/coatings13050916
D. Luo, M. Chen, J. Xu, X. Yin, J. Wu et al., Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos. Sci. Technol. 157, 119–125 (2018). https://doi.org/10.1016/j.compscitech.2018.01.023
Y. Lee, H. Lee, T. Lee, M.-H. Ryou, Y.M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. J. Power Sources 294, 537–544 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.106
X. Li, X. Sun, Interface design and development of coating materials in lithium-sulfur batteries. Adv. Funct. Mater. 28(30), 1801323 (2018). https://doi.org/10.1002/adfm.201801323
F. Sun, X. He, X. Jiang, M. Osenberg, J. Li et al., Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Mater. Today 27, 21–32 (2019). https://doi.org/10.1016/j.mattod.2018.11.003
S. Ali, M. Waqas, N. Chen, D. Chen, Y. Han et al., Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Compos. Pt. B-Eng. 174, 107025 (2019). https://doi.org/10.1016/j.compositesb.2019.107025
H. Cha, Y. Lee, J. Kim, M. Park, J. Cho, Flexible 3D interlocking lithium-ion batteries. Adv. Energy Mater. 8(30), 1801917 (2018). https://doi.org/10.1002/aenm.201801917
W. Yue, X. Li, J. Zhao, Y. Gao, N. Gao et al., Ultra-small ferromagnetic Fe3O4 nanops modified separator for high-rate and long cycling lithium-sulfur batteries. Batteries Supercaps 5(5), e202200020 (2022). https://doi.org/10.1002/batt.202200020
Y. Yang, P. Mu, B. Li, A. Li, J. Zhang, In situ separator modification with an N-rich conjugated microporous polymer for the effective suppression of polysulfide shuttle and Li dendrite growth. ACS Appl. Mater. Interfaces 14(43), 49224–49232 (2022). https://doi.org/10.1021/acsami.2c15812
J. Zhao, G. Yan, X. Zhang, Y. Feng, N. Li et al., In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem. Eng. J. 442, 136352 (2022). https://doi.org/10.1016/j.cej.2022.136352
L. Zhang, F. Wan, X. Wang, H. Cao, X. Dai et al., Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 10(6), 5594–5602 (2018). https://doi.org/10.1021/acsami.7b18894
V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, In situpolymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14(5), 2708–2788 (2021). https://doi.org/10.1039/d0ee03527k
Y. Cao, H. Wu, G. Li, C. Liu, L. Cao et al., Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries. Nano Lett. 21(7), 2997–3006 (2021). https://doi.org/10.1021/acs.nanolett.1c00163
S. Wu, Y. Yao, X. Nie, Z. Yu, Y. Yu et al., Interfacial engineering of binder-free janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small 18(28), 2202651 (2022). https://doi.org/10.1002/smll.202202651
M. Das, K. Ghosh, M.W. Raja, Flexible ceramic based ‘paper separator’ with enhanced safety for high performance lithium-ion batteries: probing the effect of ceramics impregnation on electrochemical performances. J. Power Sources 606, 234573 (2024). https://doi.org/10.1016/j.jpowsour.2024.234573
J. Gong, S. Shi, S. Cheng, K. Yang, P. Zheng et al., High-performance and safe lithium-ion battery with precise ultrathin Al2O3-coated polyethylene separator. Appl. Surf. Sci. 659, 159918 (2024). https://doi.org/10.1016/j.apsusc.2024.159918
X. Huang, Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15(4), 649–662 (2010). https://doi.org/10.1007/s10008-010-1264-9
H. Jeon, J. Choi, M.-H. Ryou, Y.M. Lee, Comparative study of the adhesion properties of ceramic composite separators using a surface and interfacial cutting analysis system for lithium-ion batteries. ACS Omega 2(5), 2159–2164 (2017). https://doi.org/10.1021/acsomega.7b00493
Y. Liu, R. Zhang, J. Wang, Y. Wang, Current and future lithium-ion battery manufacturing. iScience 24(4), 102332 (2021). https://doi.org/10.1016/j.isci.2021.102332
L. Kong, Y. Wang, H. Yu, B. Liu, S. Qi et al., In situ armoring: A robust, high-wettability, and fire-resistant hybrid separator for advanced and safe batteries. ACS Appl. Mater. Interfaces 11(3), 2978–2988 (2018). https://doi.org/10.1021/acsami.8b17521
G. Dong, B. Liu, L. Kong, Y. Wang, G. Tian et al., Neoteric polyimide nanofiber encapsulated by the TiO2 armor as the tough, highly wettable, and flame-retardant separator for advanced lithium-ion batteries. ACS Sustain. Chem. Eng. 7(21), 17643–17652 (2019). https://doi.org/10.1021/acssuschemeng.9b03525
Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott et al., Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2(8), 1022–1027 (2012). https://doi.org/10.1002/aenm.201100750
W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao et al., Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator. ACS Appl. Energ. Mater. 2(6), 4167–4174 (2019). https://doi.org/10.1021/acsaem.9b00383
J.W. Lee, A.M. Soomro, M. Waqas, M.A.U. Khalid, K.H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries. Int. J. Energy Res. 44(8), 7035–7046 (2020). https://doi.org/10.1002/er.5371
H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao et al., Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 458, 217–224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004
D. Wu, N. Dong, R. Wang, S. Qi, B. Liu et al., In situ construction of high-safety and non-flammable polyimide “ceramic” lithium-ion battery separator via SiO2 nano-encapsulation. Chem. Eng. J. 420, 129992 (2021). https://doi.org/10.1016/j.cej.2021.129992
N. Dong, J. Wang, N. Chen, B. Liu, G. Tian et al., In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain. Chem. Eng. 9(18), 6250–6257 (2021). https://doi.org/10.1021/acssuschemeng.0c08818
X. Liu, P. Chen, W. Wang, W. Li, Y. Rao et al., In situ reduction growth Sn-MoS2 on CNFs as advanced separator coating for improved-performance lithium sulfur batteries. J. Alloys Compd. 979, 173432 (2024). https://doi.org/10.1016/j.jallcom.2024.173432
X. Lu, H. Wang, X. Liu, Z. Song, N. Jiang et al., Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium-sulfur batteries. J. Alloys Compd. 838, 155618 (2020). https://doi.org/10.1016/j.jallcom.2020.155618
J. Wang, K. Wang, Z. Yang, X. Li, J. Gao et al., Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modulated separators. ACS Sustain. Chem. Eng. 8(4), 1741–1750 (2019). https://doi.org/10.1021/acssuschemeng.9b04970
K. Ali, J. Ali, S.M. Mehdi, K.-H. Choi, Y.J. An, Rapid fabrication of Al2O3 encapsulations for organic electronic devices. Appl. Surf. Sci. 353, 1186–1194 (2015). https://doi.org/10.1016/j.apsusc.2015.07.032
Q. Xu, Y. Yang, X. Wang, Z. Wang, W. Jin et al., Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances. J. Membr. Sci. 415–416, 435–443 (2012). https://doi.org/10.1016/j.memsci.2012.05.031
Q. Xu, Y. Yang, J. Yang, X. Wang, Z. Wang et al., Plasma activation of porous polytetrafluoroethylene membranes for superior hydrophilicity and separation performances via atomic layer deposition of TiO2. J. Membr. Sci. 443, 62–68 (2013). https://doi.org/10.1016/j.memsci.2013.04.061
S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2010). https://doi.org/10.1021/cr900056b
Y. Jin, H. Yu, X. Liang, Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Appl. Phys. Rev. 8(3), 031301 (2021). https://doi.org/10.1063/5.0048337
X. Wang, G. Yushin, Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 8(7), 1889–1904 (2015). https://doi.org/10.1039/c5ee01254f
S. Cao, J. Tan, L. Ma, Y. Liu, Q. He et al., Covalent organic frameworks-based functional separators for rechargeable batteries: design, mechanism, and applications. Energy Storage Mater. 66(25), 103232 (2024). https://doi.org/10.1016/j.ensm.2024.103232
W. Huang, X. Li, X. Yang, X. Zhang, H. Wang et al., The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mat. Chem. Front. 5(9), 3593–3613 (2021). https://doi.org/10.1039/d0qm00936a
P. Chen, H. Ren, L. Yan, J. Shen, T. Wang et al., Metal-organic frameworks enabled high-performance separators for safety-reinforced lithium ion battery. ACS Sustain. Chem. Eng. 7(19), 16612–16619 (2019). https://doi.org/10.1021/acssuschemeng.9b03854
T. Zhu, Y. Kong, B. Lyu, L. Cao, B. Shi et al., 3D covalent organic framework membrane with fast and selective ion transport. Nat. Commun. 14(1), 5926 (2023). https://doi.org/10.1038/s41467-023-41555-5
R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939–943 (2008). https://doi.org/10.1126/science.1152516
G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
C. Zhou, Q. He, Z. Li, J. Meng, X. Hong et al., A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 395, 124979 (2020). https://doi.org/10.1016/j.cej.2020.124979
Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
J. Liu, J. Wang, L. Zhu, X. Chen, G. Yi et al., In situ grown MOFs and PVDF-HFP co-modified aramid gel nanofiber separator for high-safety lithium-sulfur batteries. J. Mater. Chem. A 10(26), 14098–14110 (2022). https://doi.org/10.1039/d2ta03301a
M. Li, G. Yan, P. Zou, H. Ji, H. Wang et al., Dynamic disulfide bonds contained covalent organic framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. ACS Sustain. Chem. Eng. 10(41), 13638–13649 (2022). https://doi.org/10.1021/acssuschemeng.2c03498
L. Han, Y. Yang, S. Sun, J. Yue, J. Li, Polydopamine-assisted in situ formation of a covalent organic framework on single-walled carbon nanotubes to multifunctionalize separators for advanced lithium-sulfur batteries. ACS Sustain. Chem. Eng. 11(23), 8431–8441 (2023). https://doi.org/10.1021/acssuschemeng.2c07568
J. Yu, C. Mu, B. Yan, X. Qin, C. Shen et al., Nanop/MOF composites: preparations and applications. Mater. Horizons 4(4), 557–569 (2017). https://doi.org/10.1039/c6mh00586a
H. Wen, B. Li, D. Yuan, H. Wang, T. Yildirim et al., A porous metal-organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. J. Mater. Chem. A 2(29), 11516–11522 (2014). https://doi.org/10.1039/c4ta01860e
Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng et al., Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
M. Jahan, Q. Bao, J.-X. Yang, K.P. Loh, Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 132(41), 14487–14495 (2010). https://doi.org/10.1021/ja105089w
J. Yao, M. He, K. Wang, R. Chen, Z. Zhong et al., High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 15(18), 3601–3606 (2013). https://doi.org/10.1039/c3ce27093a
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103(27), 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43(1), 58–67 (2010). https://doi.org/10.1021/ar900116g
Y. Yang, S. Yao, Y. Wu, J. Ding, Z. Liang et al., Hydrogen-bonded organic framework as superior separator with high lithium affinity C=N bond for low N/P ratio lithium metal batteries. Nano Lett. 23, 5061–5069 (2023). https://doi.org/10.1021/acs.nanolett.3c00801
J. Yoo, S.-J. Cho, G.Y. Jung, S.H. Kim, K.-H. Choi et al., COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 16(5), 3292–3300 (2016). https://doi.org/10.1021/acs.nanolett.6b00870
Y. Chen, K. Wang, L. Zhang, W. Guo, M. Li et al., Oriented carbon fiber/PEO functional modified polyethylene separator for high-performance lithium metal batteries. Mater. Lett. 332, 133511 (2023). https://doi.org/10.1016/j.matlet.2022.133511
J.-Y. Sohn, J.-S. Im, J. Shin, Y.-C. Nho, PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J. Solid State Electrochem. 16(2), 551–556 (2011). https://doi.org/10.1007/s10008-011-1379-7
Y. Wang, C. Yin, Z. Song, Q. Wang, Y. Lan et al., Application of PVDF organic ps coating on polyethylene separator for lithium ion batteries. Materials 12(19), 3125 (2019). https://doi.org/10.3390/ma12193125
J. Song, M.-H. Ryou, B. Son, J.-N. Lee, D.J. Lee et al., Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 85, 524–530 (2012). https://doi.org/10.1016/j.electacta.2012.06.078
C. Shi, J. Dai, S. Huang, C. Li, X. Shen et al., A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 518, 168–177 (2016). https://doi.org/10.1016/j.memsci.2016.06.046
M. Zhou, Z. Zhang, J. Xu, J. Wei, J. Yu et al., PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J. Electroanal. Chem. 868, 114195 (2020). https://doi.org/10.1016/j.jelechem.2020.114195
L. Pan, H. Wang, C. Wu, C. Liao, L. Li, Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(29), 16003–16010 (2015). https://doi.org/10.1021/acsami.5b04245
H. Wang, L. Pan, C. Wu, D. Gao, S. Chen et al., Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries. J. Mater. Chem. A. 3(41), 20535–20540 (2015). https://doi.org/10.1039/c5ta06381g
J. Li, S. Bi, M. Li, Y. Xian, Y. Shui et al., Rapid homogenization preparation of the mussel-inspired hydrophilic separator for high power lithium-ion batteries. J. Appl. Polym. Sci. 137(36), e49052 (2020). https://doi.org/10.1002/app.49052
Y. Zhang, J. Yuan, Y. Song, X. Yin, C. Sun et al., Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-ion batteries and the role of the interfaces between separator and electrolyte. Electrochim. Acta 275, 25–31 (2018). https://doi.org/10.1016/j.electacta.2018.03.099
S. Zheng, L. Mo, K. Chen, A. Chen, X. Zhang et al., Precise control of Li+ directed transport via electronegative polymer brushes on polyolefin separators for dendrite-free lithium deposition. Adv. Funct. Mater. 32(41), 2201430 (2022). https://doi.org/10.1002/adfm.202201430
X. Guan, Y. Zhao, H. Pei, M. Zhao, Y. Wang et al., Metalloporphyrin conjugated porous polymer in-situ grown on a celgard separator as multifunctional polysulfide barrier and catalyst for high-performance Li-S batteries. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.144733
S.M. Kang, I. You, W.K. Cho, H.K. Shon, T.G. Lee et al., One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. 49(49), 9401–9404 (2010). https://doi.org/10.1002/anie.201004693
H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007). https://doi.org/10.1038/nature05968
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
I. Novak, M. Šeruga, Š Komorsky-Lovrić, Square-wave and cyclic voltammetry of epicatechin gallate on glassy carbon electrode. J. Electroanal. Chem. 631(1–2), 71–75 (2009). https://doi.org/10.1016/j.jelechem.2009.03.005
J. Chen, J. Bai, Chemiluminescence flow sensor with immobilized reagent for the determination of pyrogallol based on potassium hexacyanoferrate (III) oxidation. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 71(3), 989–992 (2008). https://doi.org/10.1016/j.saa.2008.02.022
G. Bieker, M. Winter, P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. PCCP 17(14), 8670–8679 (2015). https://doi.org/10.1039/c4cp05865h
H. Yang, M. Wu, Y. Li, Y. Chen, L. Wan et al., Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. J. Appl. Polym. Sci. 133(32), 43792 (2016). https://doi.org/10.1002/app.43792
S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11(2), 2000802 (2020). https://doi.org/10.1002/aenm.202000802
J. Luo, Q. Zhang, In situ polymer gel electrolyte in boosting scalable fibre lithium battery applications. Nano-Micro Lett. 16, 230 (2024). https://doi.org/10.1007/s40820-024-01451-z
S. Zou, Y. Yang, J. Wang, X. Zhou, X. Wan et al., In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review. Energy Environ. Sci. 17, 4426–4460 (2024). https://doi.org/10.1039/D4EE00822G
J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
K. Guo, J. Wang, Z. Shi, Y. Wang, X. Xie et al., One-step in situ polymerization: a facile design strategy for block copolymer electrolytes. Angew. Chem. Int. Ed. 62(9), e202213606 (2023). https://doi.org/10.1002/anie.202213606
D. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj et al., Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59(38), 16725–16734 (2020). https://doi.org/10.1002/anie.202007008
L. Zhang, X. Li, M. Yang, W. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 41, 522–545 (2021). https://doi.org/10.1016/j.ensm.2021.06.033
X. Zhu, X. Jiang, X. Ai, H. Yang, Y. Cao, TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J. Membr. Sci. 504, 97–103 (2016). https://doi.org/10.1016/j.memsci.2015.12.059
X. Zhu, X. Jiang, X. Ai, H. Yang, Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl. Mater. Interfaces 7(43), 24119–24126 (2015). https://doi.org/10.1021/acsami.5b07230
X. Wang, X. Jia, Q. Liang, J. Yang, Y. Li et al., Building polysulfides shuttle barrier with unblocked Li+ transit channels via in-situ grown FeOOH modified separator for Li-S batteries. Appl. Surf. Sci. 606, 154903 (2022). https://doi.org/10.1016/j.apsusc.2022.154903
M. Yin, J. Huang, J. Yu, G. Chen, S. Qu et al., The polypropylene membrane modified by an atmospheric pressure plasma jet as a separator for lithium-ion button battery. Electrochim. Acta 260, 489–497 (2018). https://doi.org/10.1016/j.electacta.2017.12.119
S. Cao, X. He, M. Chen, Y. Han, K. Wang et al., A CF4 plasma functionalized polypropylene separator for dendrite-free lithium metal anodes. J. Mater. Chem. A. 11(14), 7545–7555 (2023). https://doi.org/10.1039/d2ta09763j
M. Liu, P. Zhang, L. Gou, Z. Hou, B, Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification. Mater. Lett. 208, 98–101 (2017). https://doi.org/10.1016/j.matlet.2017.05.031
P. Zhao, J. Yang, Y. Shang, L. Wang, M. Fang et al., Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase. J. Energy Chem. 24(2), 138–144 (2015). https://doi.org/10.1016/S2095-4956(15)60294-7
K. Min Yang, K. Yang, M. Cho, S. Kim, Y. Lee, Self-assembled functional layers onto separator toward practical lithium metal batteries. Chem. Eng. J. 454, 140191 (2023). https://doi.org/10.1016/j.cej.2022.140191
Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan et al., Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 7(5), 3314–3322 (2015). https://doi.org/10.1021/am508149n
W. Xu, Z. Wang, L. Shi, Y. Ma, S. Yuan et al., Layer-by-layer deposition of organic-inorganic hybrid multilayer on microporous polyethylene separator to enhance the electrochemical performance of lithium-ion battery. ACS Appl. Mater. Interfaces 7(37), 20678–20686 (2015). https://doi.org/10.1021/acsami.5b05457
W. Na, A.S. Lee, J.H. Lee, S.S. Hwang, E. Kim et al., Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl. Mater. Interfaces 8(20), 12852–12858 (2016). https://doi.org/10.1021/acsami.6b02735
R. Laurita, M. Zaccaria, M. Gherardi, D. Fabiani, A. Merlettini et al., Plasma processing of electrospun Li-ion battery separators to improve electrolyte uptake. Plasma Process. Polym. 13(1), 124–133 (2015). https://doi.org/10.1002/ppap.201500145
Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu et al., Plasma modified polypropylene membranes as the lithium-ion battery separators. Plasma Sci. Technol. 18(4), 424–429 (2016). https://doi.org/10.1088/1009-0630/18/4/16
B. Li, Y. Li, D. Dai, K. Chang, H. Tang et al., Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl. Mater. Interfaces 7(36), 20184–20189 (2015). https://doi.org/10.1021/acsami.5b05718
M.-K. Song, J.-Y. Cho, B.W. Cho, H.-W. Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J. Power Sources 110(1), 209–215 (2002). https://doi.org/10.1016/S0378-7753(02)00258-6
X. Jiang, X. Zhu, X. Ai, H. Yang, Y. Cao, Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 9(31), 25970–25975 (2017). https://doi.org/10.1021/acsami.7b05535
Q. Jiang, Z. Li, S. Wang, H. Zhang, A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Adv. 5(113), 92995–93001 (2015). https://doi.org/10.1039/c5ra18457f
K. Gao, X. Hu, T. Yi, C. Dai, PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim. Acta 52(2), 443–449 (2006). https://doi.org/10.1016/j.electacta.2006.05.049
J.Y. Kim, Y. Lee, D.Y. Lim, Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim. Acta 54(14), 3714–3719 (2009). https://doi.org/10.1016/j.electacta.2009.01.055
K.J. Kim, M.-S. Park, T. Yim, J.-S. Yu, Y.-J. Kim, Electron-beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. J. Appl. Electrochem. 44(3), 345–352 (2014). https://doi.org/10.1007/s10800-014-0661-7
J. Li, Y. Huang, S. Zhang, W. Jia, X. Wang et al., Decoration of silica nanops on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9(8), 7499–7504 (2017). https://doi.org/10.1021/acsami.7b00065
S.Y. Jin, J. Manuel, X. Zhao, W.H. Park, J.-H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017). https://doi.org/10.1016/j.jiec.2016.08.021
W. Ye, Z. Fan, X. Zhou, Z. Xue, Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries. Energy Mater. 4(4), 400049 (2024). https://doi.org/10.20517/energymater.2023.129
H. Xiang, F. Zhang, B. Zou, Q. Hou, C. Cheng et al., High-performance lithium batteries achieved by electrospun MXene-enhanced cation-selective membranes. J. Membr. Sci. 704, 122867 (2024). https://doi.org/10.1016/j.memsci.2024.122867
Z. Li, Q. Pan, P. Yang, S. Jiang, Z. Zheng et al., Enhancing the cycle performance of lithium–sulfur batteries by coating the separator with a cation-selective polymer layer. Chem. Eur. J. 29, e202302334 (2023). https://doi.org/10.1002/chem.202302334
Q. Zhao, R. Zhou, C. Wang, J. Kang, Q. Zhang et al., Anion immobilization enabled by cation-selective separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2112711 (2022). https://doi.org/10.1002/adfm.202112711
L. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang et al., A nano fiber-gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 3(2), 100090 (2023). https://doi.org/10.1016/j.esci.2022.100090