In Situ Polymerization in COF Boosts Li-Ion Conduction in Solid Polymer Electrolytes for Li Metal Batteries
Corresponding Author: Zhigang Xue
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 248
Abstract
Solid polymer electrolytes (SPEs) have garnered considerable interest in the field of lithium metal batteries (LMBs) owing to their exceptional mechanical strength, excellent designability, and heightened safety characteristics. However, their inherently low ion transport efficiency poses a major challenge for their application in LMBs. To address this issue, covalent organic framework (COF) with their ordered ion transport channels, chemical stability, large specific surface area, and designable multifunctional sites has shown promising potential to enhance lithium-ion conduction. Here, we prepared an anionic COF, TpPa-COOLi, which can catalyze the ring-opening copolymerization of cyclic lactone monomers for the in situ fabrication of SPEs. The design leverages the high specific surface area of COF to facilitate the absorption of polymerization precursor and catalyze the polymerization within the pores, forming additional COF-polymer junctions that enhance ion transport pathways. The partial exfoliation of COF achieved through these junctions improved its dispersion within the polymer matrix, preserving ion transport channels and facilitating ion transport across COF grain boundaries. By controlling variables to alter the crystallinity of TpPa-COOLi and the presence of –COOLi substituents, TpPa-COOLi with partial long-range order and –COOLi substituents exhibited superior electrochemical performance. This research demonstrates the potential in constructing high-performance SPEs for LMBs.
Highlights:
1 Solid polymer electrolytes formed in situ via covalent organic framework-induced ring-opening copolymerization.
2 Solid polymer electrolytes with a high lithium-ion transference number and desirable interfacial compatibility.
3 Li⁺ migration mechanisms investigated with density functional theory and molecular dynamics simulations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, J. Lu, Z. Chen, K. Amine, A 30 years of lithium-ion batteries. Adv. Mater. 30, e1800561 (2018). https://doi.org/10.1002/adma.201800561
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/C7CS00863E
- H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
- Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
- Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), e2110423 (2023). https://doi.org/10.1002/adma.202110423
- X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
- J. Kang, N. Deng, B. Cheng, W. Kang, Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries. J. Energy Chem. 92, 26–42 (2024). https://doi.org/10.1016/j.jechem.2023.12.035
- M. Li, M. Kolek, J.E. Frerichs, W. Sun, X. Hou et al., Investigation of polymer/ceramic composite solid electrolyte system: the case of PEO/LGPS composite electrolytes. ACS Sustain. Chem. Eng. 9(34), 11314–11322 (2021). https://doi.org/10.1021/acssuschemeng.1c00904
- Z. Zhang, X. Wang, X. Li, J. Zhao, G. Liu et al., Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater. Today Sustain. 21, 100316 (2023). https://doi.org/10.1016/j.mtsust.2023.100316
- J. Xue, Z. Sun, B. Sun, C. Zhao, Y. Yang et al., Covalent organic framework-based materials for advanced lithium metal batteries. ACS Nano 18(27), 17439–17468 (2024). https://doi.org/10.1021/acsnano.4c05040
- H. Zhu, S. Li, L. Peng, W. Zhong, Q. Wu et al., Review of MOF-guided ion transport for lithium metal battery electrolytes. Nano Energy 125, 109571 (2024). https://doi.org/10.1016/j.nanoen.2024.109571
- H. Bao, D. Chen, B. Liao, Y. Yi, R. Liu et al., Enhanced ionic conduction in metal–organic-framework-based quasi-solid-state electrolytes: mechanistic insights. Energy Fuels 38(12), 11275–11283 (2024). https://doi.org/10.1021/acs.energyfuels.4c01821
- S. Duan, L. Qian, Y. Zheng, Y. Zhu, X. Liu et al., Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 36(32), 2314120 (2024). https://doi.org/10.1002/adma.202314120
- Y. Tao, W. Wei, Q. Gu, X. Jiang, D. Li, Desilicated zeolite ZSM-5 based composite polymer electrolytes for solid-state lithium metal batteries. Mater. Lett. 351, 134934 (2023). https://doi.org/10.1016/j.matlet.2023.134934
- J. Sun, F. Kang, D. Yan, T. Ding, Y. Wang et al., Recent progress in using covalent organic frameworks to stabilize metal anodes for highly-efficient rechargeable batteries. Angew. Chem. Int. Ed. 63(28), e202406511 (2024). https://doi.org/10.1002/anie.202406511
- D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31(32), 2100505 (2021). https://doi.org/10.1002/adfm.202100505
- Y. Kim, C. Li, J. Huang, Y. Yuan, Y. Tian et al., Ionic covalent organic framework solid-state electrolytes. Adv. Mater. 36(40), e2407761 (2024). https://doi.org/10.1002/adma.202407761
- H. Zhao, X. Bo, X. Wang, Y. Ren, Z. Wei et al., Recent advances and perspectives in single-ion COF-based solid electrolytes. Batteries 9(9), 432 (2023). https://doi.org/10.3390/batteries9090432
- Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
- G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
- G. Zhao, Z. Mei, L. Duan, Q. An, Y. Yang et al., COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy 5(2), e248 (2023). https://doi.org/10.1002/cey2.248
- C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem. Int. Ed. 60(47), 24915–24923 (2021). https://doi.org/10.1002/anie.202107444
- D. Dong, H. Zhang, B. Zhou, Y. Sun, H. Zhang et al., Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 55(10), 1458–1461 (2019). https://doi.org/10.1039/c8cc08725c
- D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34(23), 2201410 (2022). https://doi.org/10.1002/adma.202201410
- M. Cui, H. Zhao, Y. Qin, S. Zhang, R. Zhao et al., Regulation of lithium-ion flux by nanotopology lithiophilic boron-oxygen dipole in solid polymer electrolytes for lithium-metal batteries. Energy Environ. Mater. 7(4), e12659 (2024). https://doi.org/10.1002/eem2.12659
- A. Saleem, R. Iqbal, M.K. Majeed, A. Hussain, A.R. Akbar et al., Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 128, 109848 (2024). https://doi.org/10.1016/j.nanoen.2024.109848
- J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu et al., Boosting selective Na+ migration kinetics in structuring composite polymer electrolyte realizes ultrastable all-solid-state sodium batteries. Adv. Funct. Mater. 34(26), 2313496 (2024). https://doi.org/10.1002/adfm.202313496
- Y. Wang, Q. Hao, Q. Lv, X. Shang, M. Wu et al., The research progress on COF solid-state electrolytes for lithium batteries. Chem. Commun. 60(74), 10046–10063 (2024). https://doi.org/10.1039/D4CC02262A
- S.E. Neumann, J. Kwon, C. Gropp, L. Ma, R. Giovine et al., The propensity for covalent organic frameworks to template polymer entanglement. Science 383(6689), 1337–1343 (2024). https://doi.org/10.1126/science.adf2573
- C. Li, D.D. Wang, G.S.H. Poon Ho, Z. Zhang, J. Huang et al., Anthraquinone-based silicate covalent organic frameworks as solid electrolyte interphase for high-performance lithium-metal batteries. J. Am. Chem. Soc. 145(45), 24603–24614 (2023). https://doi.org/10.1021/jacs.3c06723
- B. Sun, J. Mindemark, E.V. Morozov, L.T. Costa, M. Bergman et al., Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations. Phys. Chem. Chem. Phys. 18(14), 9504–9513 (2016). https://doi.org/10.1039/C6CP00757K
- E. Oledzka, S.S. Narine, Organic acids catalyzed polymerization of ε-caprolactone: synthesis and characterization. J. Appl. Polym. Sci. 119(4), 1873–1882 (2011). https://doi.org/10.1002/app.32897
- Y. Nakayama, S. Kosaka, K. Yamaguchi, G. Yamazaki, R. Tanaka et al., Controlled ring-opening polymerization of l-lactide and ε-caprolactone catalyzed by aluminum-based Lewis pairs or Lewis acid alone. J. Polym. Sci. Part A Polym. Chem. 55(2), 297–303 (2017). https://doi.org/10.1002/pola.28383
- T. Saito, Y. Aizawa, T. Yamamoto, K. Tajima, T. Isono et al., Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules 51(3), 689–696 (2018). https://doi.org/10.1021/acs.macromol.7b02566
- I. Jain, P. Malik, Advances in urea and thiourea catalyzed ring opening polymerization: a brief overview. Eur. Polym. J. 133, 109791 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109791
- S. Wang, L. Zhang, Q. Zeng, J. Guan, H. Gao et al., Designing polymer electrolytes via ring-opening polymerization for advanced lithium batteries. Adv. Energy Mater. 14(3), 2302876 (2024). https://doi.org/10.1002/aenm.202302876
- K. Takojima, T. Saito, C. Vevert, V. Ladelta, P. Bilalis et al., Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polym. J. 52(1), 103–110 (2020). https://doi.org/10.1038/s41428-019-0264-6
- H. Tian, F. Wu, P. Chen, X. Peng, H. Fang, Microwave-assisted in situ polymerization of polycaprolactone/boron nitride composites with enhanced thermal conductivity and mechanical properties. Polym. Int. 69(7), 635–643 (2020). https://doi.org/10.1002/pi.6000
- S. Bujok, J. Hodan, H. Beneš, Effects of immobilized ionic liquid on properties of biodegradable polycaprolactone/LDH nanocomposites prepared by in situ polymerization and melt-blending techniques. Nanomaterials 10(5), 969 (2020). https://doi.org/10.3390/nano10050969
- O. Hernández-Guerrero, B.F. Campillo-Illanes, M.L. Domínguez-Patiño, R. Benavente, H. Martínez et al., Comparative studies of the mechanical and thermal properties of clay/copolymer nanocomposites synthesized by two in situ methods and solution blending method. J. Polym. Res. 27(5), 106 (2020). https://doi.org/10.1007/s10965-019-1966-3
- K. Jiang, J. Wang, C. Zuo, S. Li, S. Li et al., Facile fabrication of polymer electrolytes via lithium salt-accelerated thiol-Michael addition for lithium-ion batteries. Macromolecules 53(17), 7450–7459 (2020). https://doi.org/10.1021/acs.macromol.0c01302
- J. Hu, W. Wang, H. Peng, M. Guo, Y. Feng et al., Flexible organic–inorganic hybrid solid electrolytes formed via thiol–acrylate photopolymerization. Macromolecules 50(5), 1970–1980 (2017). https://doi.org/10.1021/acs.macromol.7b00035
- T. Qiu, T. Wang, W. Tang, Y. Li, Y. Li et al., Rapidly synthesized single-ion conductive hydrogel electrolyte for high-performance quasi-solid-state zinc-ion batteries. Angew. Chem. Int. Ed. 62(45), e202312020 (2023). https://doi.org/10.1002/anie.202312020
- X. Yang, L. Fang, J. Li, C. Liu, L. Zhong et al., Multipolar conjugated polymer framework derived ionic sieves via electronic modulation for long-life all-solid-state Li batteries. Angew. Chem. Int. Ed. 63(23), e202401957 (2024). https://doi.org/10.1002/anie.202401957
- W. Ye, J. Wang, C. Zhang, Z. Xue, Eutectic solution enables powerful click reaction for in situ construction of advanced gel electrolytes. Energy Environ. Mater. 6(4), e12579 (2023). https://doi.org/10.1002/eem2.12579
- W. Ye, J. Wang, Z. Shi, K. Guo, Z. Xue, Facile fabrication of cross-linked polymer electrolyte via imidazole-based deep eutectic solvent-induced in situ polymerizations. J. Membr. Sci. 696, 122541 (2024). https://doi.org/10.1016/j.memsci.2024.122541
- T.W. Kang, J.-H. Lee, J. Lee, J.H. Park, J.-H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35(30), 2301308 (2023). https://doi.org/10.1002/adma.202301308
- K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141(14), 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
- R.H. Choi, J. So, Y. Kim, D. Lee, H.R. Byon, Li+ conduction of soft-base anion-immobilized covalent organic frameworks for all-solid-state lithium–metal batteries. ACS Energy Lett. 9(11), 5341–5348 (2024). https://doi.org/10.1021/acsenergylett.4c01941
- X. Pang, B. Shi, Y. Liu, Y. Li, Y. Zhang et al., Phosphorylated covalent organic framework membranes toward ultrafast single lithium-ion transport. Adv. Mater. 36(52), e2413022 (2024). https://doi.org/10.1002/adma.202413022
- W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
- Z. Hou, S. Xia, C. Niu, Y. Pang, H. Sun et al., Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries. Carbon Energy 4(4), 506–516 (2022). https://doi.org/10.1002/cey2.190
- C. Zhang, Z. Jiang, P. Guo, J. Song, C. Shi, Covalent organic frameworks (COFs) as fast lithium-ion transport fillers for solid polymer electrolytes. Chem. Eng. J. 503, 158146 (2025). https://doi.org/10.1016/j.cej.2024.158146
- T. Liu, Y. Zhong, Z. Yan, B. He, T. Liu et al., Fabrication of scalable covalent organic framework membrane-based electrolytes for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 63(50), e202411535 (2024). https://doi.org/10.1002/anie.202411535
References
M. Li, J. Lu, Z. Chen, K. Amine, A 30 years of lithium-ion batteries. Adv. Mater. 30, e1800561 (2018). https://doi.org/10.1002/adma.201800561
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/C7CS00863E
H. Yang, M. Jing, L. Wang, H. Xu, X. Yan et al., PDOL-based solid electrolyte toward practical application: opportunities and challenges. Nano-Micro Lett. 16(1), 127 (2024). https://doi.org/10.1007/s40820-024-01354-z
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), e2110423 (2023). https://doi.org/10.1002/adma.202110423
X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
J. Kang, N. Deng, B. Cheng, W. Kang, Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries. J. Energy Chem. 92, 26–42 (2024). https://doi.org/10.1016/j.jechem.2023.12.035
M. Li, M. Kolek, J.E. Frerichs, W. Sun, X. Hou et al., Investigation of polymer/ceramic composite solid electrolyte system: the case of PEO/LGPS composite electrolytes. ACS Sustain. Chem. Eng. 9(34), 11314–11322 (2021). https://doi.org/10.1021/acssuschemeng.1c00904
Z. Zhang, X. Wang, X. Li, J. Zhao, G. Liu et al., Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater. Today Sustain. 21, 100316 (2023). https://doi.org/10.1016/j.mtsust.2023.100316
J. Xue, Z. Sun, B. Sun, C. Zhao, Y. Yang et al., Covalent organic framework-based materials for advanced lithium metal batteries. ACS Nano 18(27), 17439–17468 (2024). https://doi.org/10.1021/acsnano.4c05040
H. Zhu, S. Li, L. Peng, W. Zhong, Q. Wu et al., Review of MOF-guided ion transport for lithium metal battery electrolytes. Nano Energy 125, 109571 (2024). https://doi.org/10.1016/j.nanoen.2024.109571
H. Bao, D. Chen, B. Liao, Y. Yi, R. Liu et al., Enhanced ionic conduction in metal–organic-framework-based quasi-solid-state electrolytes: mechanistic insights. Energy Fuels 38(12), 11275–11283 (2024). https://doi.org/10.1021/acs.energyfuels.4c01821
S. Duan, L. Qian, Y. Zheng, Y. Zhu, X. Liu et al., Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 36(32), 2314120 (2024). https://doi.org/10.1002/adma.202314120
Y. Tao, W. Wei, Q. Gu, X. Jiang, D. Li, Desilicated zeolite ZSM-5 based composite polymer electrolytes for solid-state lithium metal batteries. Mater. Lett. 351, 134934 (2023). https://doi.org/10.1016/j.matlet.2023.134934
J. Sun, F. Kang, D. Yan, T. Ding, Y. Wang et al., Recent progress in using covalent organic frameworks to stabilize metal anodes for highly-efficient rechargeable batteries. Angew. Chem. Int. Ed. 63(28), e202406511 (2024). https://doi.org/10.1002/anie.202406511
D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng et al., Covalent organic frameworks for batteries. Adv. Funct. Mater. 31(32), 2100505 (2021). https://doi.org/10.1002/adfm.202100505
Y. Kim, C. Li, J. Huang, Y. Yuan, Y. Tian et al., Ionic covalent organic framework solid-state electrolytes. Adv. Mater. 36(40), e2407761 (2024). https://doi.org/10.1002/adma.202407761
H. Zhao, X. Bo, X. Wang, Y. Ren, Z. Wei et al., Recent advances and perspectives in single-ion COF-based solid electrolytes. Batteries 9(9), 432 (2023). https://doi.org/10.3390/batteries9090432
Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
G. Zhao, Z. Mei, L. Duan, Q. An, Y. Yang et al., COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy 5(2), e248 (2023). https://doi.org/10.1002/cey2.248
C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem. Int. Ed. 60(47), 24915–24923 (2021). https://doi.org/10.1002/anie.202107444
D. Dong, H. Zhang, B. Zhou, Y. Sun, H. Zhang et al., Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 55(10), 1458–1461 (2019). https://doi.org/10.1039/c8cc08725c
D. Guo, D.B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas et al., Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34(23), 2201410 (2022). https://doi.org/10.1002/adma.202201410
M. Cui, H. Zhao, Y. Qin, S. Zhang, R. Zhao et al., Regulation of lithium-ion flux by nanotopology lithiophilic boron-oxygen dipole in solid polymer electrolytes for lithium-metal batteries. Energy Environ. Mater. 7(4), e12659 (2024). https://doi.org/10.1002/eem2.12659
A. Saleem, R. Iqbal, M.K. Majeed, A. Hussain, A.R. Akbar et al., Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 128, 109848 (2024). https://doi.org/10.1016/j.nanoen.2024.109848
J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu et al., Boosting selective Na+ migration kinetics in structuring composite polymer electrolyte realizes ultrastable all-solid-state sodium batteries. Adv. Funct. Mater. 34(26), 2313496 (2024). https://doi.org/10.1002/adfm.202313496
Y. Wang, Q. Hao, Q. Lv, X. Shang, M. Wu et al., The research progress on COF solid-state electrolytes for lithium batteries. Chem. Commun. 60(74), 10046–10063 (2024). https://doi.org/10.1039/D4CC02262A
S.E. Neumann, J. Kwon, C. Gropp, L. Ma, R. Giovine et al., The propensity for covalent organic frameworks to template polymer entanglement. Science 383(6689), 1337–1343 (2024). https://doi.org/10.1126/science.adf2573
C. Li, D.D. Wang, G.S.H. Poon Ho, Z. Zhang, J. Huang et al., Anthraquinone-based silicate covalent organic frameworks as solid electrolyte interphase for high-performance lithium-metal batteries. J. Am. Chem. Soc. 145(45), 24603–24614 (2023). https://doi.org/10.1021/jacs.3c06723
B. Sun, J. Mindemark, E.V. Morozov, L.T. Costa, M. Bergman et al., Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations. Phys. Chem. Chem. Phys. 18(14), 9504–9513 (2016). https://doi.org/10.1039/C6CP00757K
E. Oledzka, S.S. Narine, Organic acids catalyzed polymerization of ε-caprolactone: synthesis and characterization. J. Appl. Polym. Sci. 119(4), 1873–1882 (2011). https://doi.org/10.1002/app.32897
Y. Nakayama, S. Kosaka, K. Yamaguchi, G. Yamazaki, R. Tanaka et al., Controlled ring-opening polymerization of l-lactide and ε-caprolactone catalyzed by aluminum-based Lewis pairs or Lewis acid alone. J. Polym. Sci. Part A Polym. Chem. 55(2), 297–303 (2017). https://doi.org/10.1002/pola.28383
T. Saito, Y. Aizawa, T. Yamamoto, K. Tajima, T. Isono et al., Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules 51(3), 689–696 (2018). https://doi.org/10.1021/acs.macromol.7b02566
I. Jain, P. Malik, Advances in urea and thiourea catalyzed ring opening polymerization: a brief overview. Eur. Polym. J. 133, 109791 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109791
S. Wang, L. Zhang, Q. Zeng, J. Guan, H. Gao et al., Designing polymer electrolytes via ring-opening polymerization for advanced lithium batteries. Adv. Energy Mater. 14(3), 2302876 (2024). https://doi.org/10.1002/aenm.202302876
K. Takojima, T. Saito, C. Vevert, V. Ladelta, P. Bilalis et al., Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polym. J. 52(1), 103–110 (2020). https://doi.org/10.1038/s41428-019-0264-6
H. Tian, F. Wu, P. Chen, X. Peng, H. Fang, Microwave-assisted in situ polymerization of polycaprolactone/boron nitride composites with enhanced thermal conductivity and mechanical properties. Polym. Int. 69(7), 635–643 (2020). https://doi.org/10.1002/pi.6000
S. Bujok, J. Hodan, H. Beneš, Effects of immobilized ionic liquid on properties of biodegradable polycaprolactone/LDH nanocomposites prepared by in situ polymerization and melt-blending techniques. Nanomaterials 10(5), 969 (2020). https://doi.org/10.3390/nano10050969
O. Hernández-Guerrero, B.F. Campillo-Illanes, M.L. Domínguez-Patiño, R. Benavente, H. Martínez et al., Comparative studies of the mechanical and thermal properties of clay/copolymer nanocomposites synthesized by two in situ methods and solution blending method. J. Polym. Res. 27(5), 106 (2020). https://doi.org/10.1007/s10965-019-1966-3
K. Jiang, J. Wang, C. Zuo, S. Li, S. Li et al., Facile fabrication of polymer electrolytes via lithium salt-accelerated thiol-Michael addition for lithium-ion batteries. Macromolecules 53(17), 7450–7459 (2020). https://doi.org/10.1021/acs.macromol.0c01302
J. Hu, W. Wang, H. Peng, M. Guo, Y. Feng et al., Flexible organic–inorganic hybrid solid electrolytes formed via thiol–acrylate photopolymerization. Macromolecules 50(5), 1970–1980 (2017). https://doi.org/10.1021/acs.macromol.7b00035
T. Qiu, T. Wang, W. Tang, Y. Li, Y. Li et al., Rapidly synthesized single-ion conductive hydrogel electrolyte for high-performance quasi-solid-state zinc-ion batteries. Angew. Chem. Int. Ed. 62(45), e202312020 (2023). https://doi.org/10.1002/anie.202312020
X. Yang, L. Fang, J. Li, C. Liu, L. Zhong et al., Multipolar conjugated polymer framework derived ionic sieves via electronic modulation for long-life all-solid-state Li batteries. Angew. Chem. Int. Ed. 63(23), e202401957 (2024). https://doi.org/10.1002/anie.202401957
W. Ye, J. Wang, C. Zhang, Z. Xue, Eutectic solution enables powerful click reaction for in situ construction of advanced gel electrolytes. Energy Environ. Mater. 6(4), e12579 (2023). https://doi.org/10.1002/eem2.12579
W. Ye, J. Wang, Z. Shi, K. Guo, Z. Xue, Facile fabrication of cross-linked polymer electrolyte via imidazole-based deep eutectic solvent-induced in situ polymerizations. J. Membr. Sci. 696, 122541 (2024). https://doi.org/10.1016/j.memsci.2024.122541
T.W. Kang, J.-H. Lee, J. Lee, J.H. Park, J.-H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35(30), 2301308 (2023). https://doi.org/10.1002/adma.202301308
K. Jeong, S. Park, G.Y. Jung, S.H. Kim, Y.H. Lee et al., Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141(14), 5880–5885 (2019). https://doi.org/10.1021/jacs.9b00543
R.H. Choi, J. So, Y. Kim, D. Lee, H.R. Byon, Li+ conduction of soft-base anion-immobilized covalent organic frameworks for all-solid-state lithium–metal batteries. ACS Energy Lett. 9(11), 5341–5348 (2024). https://doi.org/10.1021/acsenergylett.4c01941
X. Pang, B. Shi, Y. Liu, Y. Li, Y. Zhang et al., Phosphorylated covalent organic framework membranes toward ultrafast single lithium-ion transport. Adv. Mater. 36(52), e2413022 (2024). https://doi.org/10.1002/adma.202413022
W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
Z. Hou, S. Xia, C. Niu, Y. Pang, H. Sun et al., Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries. Carbon Energy 4(4), 506–516 (2022). https://doi.org/10.1002/cey2.190
C. Zhang, Z. Jiang, P. Guo, J. Song, C. Shi, Covalent organic frameworks (COFs) as fast lithium-ion transport fillers for solid polymer electrolytes. Chem. Eng. J. 503, 158146 (2025). https://doi.org/10.1016/j.cej.2024.158146
T. Liu, Y. Zhong, Z. Yan, B. He, T. Liu et al., Fabrication of scalable covalent organic framework membrane-based electrolytes for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 63(50), e202411535 (2024). https://doi.org/10.1002/anie.202411535