Wireless, Multifunctional System-Integrated Programmable Soft Robot
Corresponding Author: Suk‑Won Hwang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 152
Abstract
Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots, although most studies are limited to designs, controls, or physical/mechanical motions. Here, we present a transformable, reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics. Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes. Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot, and the performances of wireless circuit, sensors, and devices are independent of a variety of activities, all of which are verified by theoretical studies. Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand, environments-responsive movements/metamorphoses, and optoelectrical detection and stimulation. Further improvements to a miniaturized, sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants.
Highlights:
1 A soft, untethered electronic robot that integrates magnetically responsive engineered composites, enabling reversible programming and a diverse range of motions and shapes.
2 Seamless integration of a meticulously designed soft/flexible electronic system with the magnetic soft robot guarantees the stable and accurate execution of multi-modal electrical functions while preserving the integrity of its mechanical movement.
3 The comprehensive demonstration illustrates the feasibility of the untethered, integrated magnetic soft robot, highlighting its stable operation, adaptability, and ability to perform complex tasks under diverse conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
- H.U. Chung, A.Y. Rwei, A. Hourlier-Fargette, S. Xu, K. Lee et al., Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020). https://doi.org/10.1038/s41591-020-0792-9
- S.M.A. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021). https://doi.org/10.1038/s41528-021-00107-x
- Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
- D. Kim, B. Kim, B. Shin, D. Shin, C.-K. Lee et al., Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat. Commun. 13, 4155 (2022). https://doi.org/10.1038/s41467-022-31893-1
- K. Wang, L.W. Yap, S. Gong, R. Wang, S.J. Wang et al., Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31, 2008347 (2021). https://doi.org/10.1002/adfm.202008347
- J. Wang, M. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21, 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
- S. Yu, T.H. Park, W. Jiang, S.W. Lee, E.H. Kim, Soft human–machine interface sensing displays: materials and devices. Adv. Mater. 35, 2204964 (2023). https://doi.org/10.1002/adma.202204964
- S.M. Mirvakili, R. Langer, Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021). https://doi.org/10.1038/s41928-021-00614-9
- S.M. Won, L. Cai, P. Gutruf, J.A. Rogers et al., Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021). https://doi.org/10.1038/s41551-021-00683-3
- W.B. Han, G.-J. Ko, T.-M. Jang, S.-W. Hwang, Materials, devices, and applications for wearable and implantable electronics. ACS Appl. Electron. Mater. 3, 485–503 (2021). https://doi.org/10.1021/acsaelm.0c00724
- W.B. Han, J.H. Lee, J.-W. Shin, S.-W. Hwang, Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, 2002211 (2020). https://doi.org/10.1002/adma.202002211
- D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543
- M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018). https://doi.org/10.1038/s41578-018-0022-y
- S.I. Rich, R.J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112 (2018). https://doi.org/10.1038/s41928-018-0024-1
- M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2021). https://doi.org/10.1038/s41578-021-00389-7
- Y. Kim, X. Zhao, Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022). https://doi.org/10.1021/acs.chemrev.1c00481
- D. Son, M.C. Ugurlu, M. Sitti, Permanent magnet array–driven navigation of wireless millirobots inside soft tissues. Sci. Adv. 7, eabi8932 (2021). https://doi.org/10.1126/sciadv.abi8932
- Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki et al., Telerobotically controlled magnetic soft continuum robots for neurovascular interventins. 2022 International Conference on Robotics and Automation (ICRA). May 23–27, 2022, Philadelphia, PA, USA. IEEE, (2022)., pp.9600–9606.
- Y. Shen, D. Jin, M. Fu, S. Liu, Z. Xu, Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat. Commun. 14, 1–14 (2023). https://doi.org/10.1038/s41467-023-41920-4
- W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). https://doi.org/10.1038/nature2544
- Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018). https://doi.org/10.1038/s41586-018-0185-0
- H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 9, 3944 (2018). https://doi.org/10.1038/s41467-018-06491-9
- S. Won, S. Kim, J.E. Park, J. Jeon, J.J. Wie, On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nat. Commun. 10, 4751 (2019). https://doi.org/10.1038/s41467-019-12679-4
- H. Deng, K. Sattari, Y. Xie, P. Liao, Z. Yan et al., Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat. Commun. 11, 6325 (2020). https://doi.org/10.1038/s41467-020-20229-6
- Y. Alapan, A.C. Karacakol, S.N. Guzelhan, I. Isik, M. Sitti, Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020). https://doi.org/10.1126/sciadv.abc6414
- C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
- Q. Ze, S. Wu, J. Dai, S. Leanza, G. Ikeda et al., Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022). https://doi.org/10.1038/s41467-022-30802-w
- S. Yi, L. Wang, Z. Chen, J. Wang, X. Song, High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13, 4177 (2022). https://doi.org/10.1038/s41467-022-31900-5
- Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki et al., Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 7, 9907 (2022). https://doi.org/10.1126/scirobotics.abg9907
- Z. Chen, Y. Wang, H. Chen, J. Law, H. Pu, A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 15, 1–13 (2024). https://doi.org/10.1038/s41467-024-44995-9
- X. Liu, L. Wang, Y. Xiang, F. Liao, N. Li, Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 9, eadh2479 (2024). https://doi.org/10.1126/scirobotics.adh2479
- H. Lu, Y. Hong, Y. Yang, Z. Yang, Y. Shen, Battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Adv. Sci. 7, 2000069 (2020). https://doi.org/10.1002/advs.202000069
- Y. Dong, L. Wang, N. Xia, Z. Yang, C. Zhang et al., Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci. Adv. 8, eabn8932 (2022). https://doi.org/10.1126/sciadv.abn8932
- S.S. Nardekar, S.-J. Kim, Untethered magnetic soft robot with ultra-flexible wirelessly rechargeable micro-supercapacitor as an onboard power source. Adv. Sci. 10, 2303918 (2023). https://doi.org/10.1002/advs.202303918
- R.H. Soon, Z. Yin, M.A. Dogan, N.O. Dogan, M.E. Tiryaki et al., Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023). https://doi.org/10.1038/s41467-023-38689-x
- H. Song, H. Lee, J. Lee, J.K. Choe, S. Lee et al., Reprogrammable ferromagnetic domains for reconfigurable soft magnetic actuators. Nano Lett. 20, 5185–5192 (2020). https://doi.org/10.1021/acs.nanolett.0c01418
- G. Chen, B. Ma, J. Zhang, Y. Chen, H. Liu, Reprogrammable magnetic soft robots based on low melting alloys. Adv. Intell. Syst. 5, 2300173 (2023). https://doi.org/10.1002/aisy.202300173
- S. Jana, S. Martini, Phase behavior of binary blends of four different waxes. J. Am. Oil Chem. Soc. 93, 543–554 (2016). https://doi.org/10.1007/s11746-016-2789-6
- M. Agarwal, B. Kuldeep, A.P. John, K. Maheshwari, R. Dohare, Experimental study on novel phase change composites for thermal energy storage. J. Therm. Anal. Calorim. 147, 7243–7252 (2022). https://doi.org/10.1007/s10973-021-11023-7
- M.E. Mendoza-Duarte, I.A. Estrada-Moreno, E.I. López-Martínez, A. Vega-Rios, Effect of the addition of different natural waxes on the mechanical and rheological behavior of PLA—A comparative study. Polymers 15, 305 (2023). https://doi.org/10.3390/polym15020305
- S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990). https://doi.org/10.1007/BF00580110
- Y. Kim, G.A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4, aax7329 (2019). https://doi.org/10.1126/scirobotics.aax7329
- L. Wang, D. Zheng, P. Harker, A.B. Patel, C. Guo, Evolutionary design of magnetic soft continuum robots. Proc. Natl. Acad. Sci. U. S. A. 118, 21922118 (2021). https://doi.org/10.1073/pnas.2021922118
- X. Du, H. Cui, T. Xu, C. Huang, Y. Wang, Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 30, 1909202 (2020). https://doi.org/10.1002/adfm.201909202
- G. Shin et al., Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509-521.e3 (2017). https://doi.org/10.1016/j.neuron.2016.12.031
- G. Shin, A.M. Gomez, R. Al-Hasani, Y. Jeong, J. Kim et al., Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018). https://doi.org/10.1038/s41928-018-0175-0
- D. Kim, B. Park, J. Park, H.H. Park, S. Ahnk, Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot. AIP Adv. 8, 056723 (2018). https://doi.org/10.1063/1.5007774
- Q. Guo, J. Koo, Z. Xie, R. Avila, X. Yu, A bioresorbable magnetically coupled system for low-frequency wireless power transfer. Adv. Funct. Mater. 29, 1905451 (2019). https://doi.org/10.1002/adfm.201905451
- S. Hudgens, M. Kastner, H. Fritzsche, Diamagnetic susceptibility of tetrahedral semiconductors. Phys. Rev. Lett. 33, 1552–1555 (1974). https://doi.org/10.1103/physrevlett.33.1552
References
D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
H.U. Chung, A.Y. Rwei, A. Hourlier-Fargette, S. Xu, K. Lee et al., Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020). https://doi.org/10.1038/s41591-020-0792-9
S.M.A. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021). https://doi.org/10.1038/s41528-021-00107-x
Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
D. Kim, B. Kim, B. Shin, D. Shin, C.-K. Lee et al., Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat. Commun. 13, 4155 (2022). https://doi.org/10.1038/s41467-022-31893-1
K. Wang, L.W. Yap, S. Gong, R. Wang, S.J. Wang et al., Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31, 2008347 (2021). https://doi.org/10.1002/adfm.202008347
J. Wang, M. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21, 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
S. Yu, T.H. Park, W. Jiang, S.W. Lee, E.H. Kim, Soft human–machine interface sensing displays: materials and devices. Adv. Mater. 35, 2204964 (2023). https://doi.org/10.1002/adma.202204964
S.M. Mirvakili, R. Langer, Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021). https://doi.org/10.1038/s41928-021-00614-9
S.M. Won, L. Cai, P. Gutruf, J.A. Rogers et al., Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021). https://doi.org/10.1038/s41551-021-00683-3
W.B. Han, G.-J. Ko, T.-M. Jang, S.-W. Hwang, Materials, devices, and applications for wearable and implantable electronics. ACS Appl. Electron. Mater. 3, 485–503 (2021). https://doi.org/10.1021/acsaelm.0c00724
W.B. Han, J.H. Lee, J.-W. Shin, S.-W. Hwang, Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, 2002211 (2020). https://doi.org/10.1002/adma.202002211
D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543
M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018). https://doi.org/10.1038/s41578-018-0022-y
S.I. Rich, R.J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112 (2018). https://doi.org/10.1038/s41928-018-0024-1
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2021). https://doi.org/10.1038/s41578-021-00389-7
Y. Kim, X. Zhao, Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022). https://doi.org/10.1021/acs.chemrev.1c00481
D. Son, M.C. Ugurlu, M. Sitti, Permanent magnet array–driven navigation of wireless millirobots inside soft tissues. Sci. Adv. 7, eabi8932 (2021). https://doi.org/10.1126/sciadv.abi8932
Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki et al., Telerobotically controlled magnetic soft continuum robots for neurovascular interventins. 2022 International Conference on Robotics and Automation (ICRA). May 23–27, 2022, Philadelphia, PA, USA. IEEE, (2022)., pp.9600–9606.
Y. Shen, D. Jin, M. Fu, S. Liu, Z. Xu, Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat. Commun. 14, 1–14 (2023). https://doi.org/10.1038/s41467-023-41920-4
W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). https://doi.org/10.1038/nature2544
Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018). https://doi.org/10.1038/s41586-018-0185-0
H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 9, 3944 (2018). https://doi.org/10.1038/s41467-018-06491-9
S. Won, S. Kim, J.E. Park, J. Jeon, J.J. Wie, On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nat. Commun. 10, 4751 (2019). https://doi.org/10.1038/s41467-019-12679-4
H. Deng, K. Sattari, Y. Xie, P. Liao, Z. Yan et al., Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat. Commun. 11, 6325 (2020). https://doi.org/10.1038/s41467-020-20229-6
Y. Alapan, A.C. Karacakol, S.N. Guzelhan, I. Isik, M. Sitti, Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020). https://doi.org/10.1126/sciadv.abc6414
C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021). https://doi.org/10.1038/s41467-021-25386-w
Q. Ze, S. Wu, J. Dai, S. Leanza, G. Ikeda et al., Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022). https://doi.org/10.1038/s41467-022-30802-w
S. Yi, L. Wang, Z. Chen, J. Wang, X. Song, High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13, 4177 (2022). https://doi.org/10.1038/s41467-022-31900-5
Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki et al., Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 7, 9907 (2022). https://doi.org/10.1126/scirobotics.abg9907
Z. Chen, Y. Wang, H. Chen, J. Law, H. Pu, A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 15, 1–13 (2024). https://doi.org/10.1038/s41467-024-44995-9
X. Liu, L. Wang, Y. Xiang, F. Liao, N. Li, Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 9, eadh2479 (2024). https://doi.org/10.1126/scirobotics.adh2479
H. Lu, Y. Hong, Y. Yang, Z. Yang, Y. Shen, Battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Adv. Sci. 7, 2000069 (2020). https://doi.org/10.1002/advs.202000069
Y. Dong, L. Wang, N. Xia, Z. Yang, C. Zhang et al., Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci. Adv. 8, eabn8932 (2022). https://doi.org/10.1126/sciadv.abn8932
S.S. Nardekar, S.-J. Kim, Untethered magnetic soft robot with ultra-flexible wirelessly rechargeable micro-supercapacitor as an onboard power source. Adv. Sci. 10, 2303918 (2023). https://doi.org/10.1002/advs.202303918
R.H. Soon, Z. Yin, M.A. Dogan, N.O. Dogan, M.E. Tiryaki et al., Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023). https://doi.org/10.1038/s41467-023-38689-x
H. Song, H. Lee, J. Lee, J.K. Choe, S. Lee et al., Reprogrammable ferromagnetic domains for reconfigurable soft magnetic actuators. Nano Lett. 20, 5185–5192 (2020). https://doi.org/10.1021/acs.nanolett.0c01418
G. Chen, B. Ma, J. Zhang, Y. Chen, H. Liu, Reprogrammable magnetic soft robots based on low melting alloys. Adv. Intell. Syst. 5, 2300173 (2023). https://doi.org/10.1002/aisy.202300173
S. Jana, S. Martini, Phase behavior of binary blends of four different waxes. J. Am. Oil Chem. Soc. 93, 543–554 (2016). https://doi.org/10.1007/s11746-016-2789-6
M. Agarwal, B. Kuldeep, A.P. John, K. Maheshwari, R. Dohare, Experimental study on novel phase change composites for thermal energy storage. J. Therm. Anal. Calorim. 147, 7243–7252 (2022). https://doi.org/10.1007/s10973-021-11023-7
M.E. Mendoza-Duarte, I.A. Estrada-Moreno, E.I. López-Martínez, A. Vega-Rios, Effect of the addition of different natural waxes on the mechanical and rheological behavior of PLA—A comparative study. Polymers 15, 305 (2023). https://doi.org/10.3390/polym15020305
S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990). https://doi.org/10.1007/BF00580110
Y. Kim, G.A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots. Sci. Robot. 4, aax7329 (2019). https://doi.org/10.1126/scirobotics.aax7329
L. Wang, D. Zheng, P. Harker, A.B. Patel, C. Guo, Evolutionary design of magnetic soft continuum robots. Proc. Natl. Acad. Sci. U. S. A. 118, 21922118 (2021). https://doi.org/10.1073/pnas.2021922118
X. Du, H. Cui, T. Xu, C. Huang, Y. Wang, Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 30, 1909202 (2020). https://doi.org/10.1002/adfm.201909202
G. Shin et al., Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509-521.e3 (2017). https://doi.org/10.1016/j.neuron.2016.12.031
G. Shin, A.M. Gomez, R. Al-Hasani, Y. Jeong, J. Kim et al., Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018). https://doi.org/10.1038/s41928-018-0175-0
D. Kim, B. Park, J. Park, H.H. Park, S. Ahnk, Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot. AIP Adv. 8, 056723 (2018). https://doi.org/10.1063/1.5007774
Q. Guo, J. Koo, Z. Xie, R. Avila, X. Yu, A bioresorbable magnetically coupled system for low-frequency wireless power transfer. Adv. Funct. Mater. 29, 1905451 (2019). https://doi.org/10.1002/adfm.201905451
S. Hudgens, M. Kastner, H. Fritzsche, Diamagnetic susceptibility of tetrahedral semiconductors. Phys. Rev. Lett. 33, 1552–1555 (1974). https://doi.org/10.1103/physrevlett.33.1552