Aggregation-Induced Emissive Scintillators: A New Frontier for Radiation Detection and Imaging
Corresponding Author: Guangda Niu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 160
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states, overcoming the typical quenching observed in conventional organic materials. Since its discovery in 2001, AIE has driven significant advances in fields like OLEDs and biological imaging, earning recognition in fundamental research. However, its application in high-energy radiation detection remains underexplored. Organic scintillators, though widely used, face challenges such as low light yield and poor radiation attenuation. AIE materials offer promising solutions by improving light yield, response speed, and radiation attenuation. This review summarizes the design strategies behind AIE scintillators and their very recent applications in X-ray, γ-ray, and fast neutron detection. We highlight their advantages in enhancing detection sensitivity, reducing background noise, and achieving high-resolution imaging. By addressing the current challenges, we believe AIE materials will play a pivotal role in advancing future radiation detection and imaging technologies.
Highlights:
1 Summarizes the high quantum efficiency and rapid response of aggregation-induced emission (AIE) materials in radiation detection, showcasing their advantages in high-energy radiation signal detection.
2 Reviews the progress in AIE materials’ radiation response for efficient detection of X-rays, γ rays, neutrons, and other radiation types.
3 Long term stability, device integration, and adaptability to diverse radiation forms remain key challenges for broader AIE material applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- ff, S.A. Payne, E. van Loef et al., Strontium and barium iodide high light yield scintillators. Appl. Phys. Lett. 92, 083508 (2008). https://doi.org/10.1063/1.2885728
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
- F. Maddalena, L. Tjahjana, A. Xie, S.Z. Arramel et al., Inorganic, organic, and perovskite halides with nanotechnology for high–light yield X- and γ-ray scintillators. Crystals 9, 88 (2019). https://doi.org/10.3390/cryst9020088
- W. Ma, Y. Su, Q. Zhang, C. Deng, L. Pasquali et al., Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022). https://doi.org/10.1038/s41563-021-01132-x
- R. Dhali, D.A.P. Huu, F. Bertocchi, C. Sissa, F. Terenziani, A. Painelli, Understanding TADF: a joint experimental and theoretical study of DMAC-TRZ. Phys. Chem. Chem. Phys. 23(1), 378–387 (2021). https://doi.org/10.1039/D0CP05982J
- A.E. Iskandrian, F.G. Hage, Nuclear cardiac imaging: principles and applications (Oxford University Press, New York, 2024)
- W. Alamro, B.C. Seet, Review of practical antennas for microwave and millimetre-wave medical imaging. Electromag. Waves Antenn Biomed. Appl. (2021). https://doi.org/10.1049/PBHE033E_ch6
- K. Sakhatskyi, B. Turedi, G.J. Matt, E. Wu, A. Sakhatska et al., Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photonics 17, 510–517 (2023). https://doi.org/10.1038/s41566-023-01207-y
- J.-X. Wang, L. Gutiérrez-Arzaluz, X. Wang, M. Almalki, J. Yin et al., Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter 5, 253–265 (2022). https://doi.org/10.1016/j.matt.2021.11.012
- J.-X. Wang, L. Gutiérrez-Arzaluz, X. Wang, T. He, Y. Zhang et al., Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photonics 16, 869–875 (2022). https://doi.org/10.1038/s41566-022-01092-x
- N.S. Treister, M.T. Brennan, T.P. Sollecito, B.L. Schmidt, L.L. Patton et al., Exposed bone in patients with head and neck cancer treated with radiation therapy: an analysis of the observational study of dental outcomes in head and neck cancer patients (OraRad). Cancer 128, 487–496 (2022). https://doi.org/10.1002/cncr.33948
- R. Booij, N.F. Kämmerling, E.H.G. Oei, A. Persson, E. Tesselaar, Assessment of visibility of bone structures in the wrist using normal and half of the radiation dose with photon-counting detector CT. Eur. J. Radiol. 159, 110662 (2023). https://doi.org/10.1016/j.ejrad.2022.110662
- S.S. Khedmatgozar Dolati, P. Malla, J.D. Ortiz, A. Mehrabi, A. Nanni, Identifying NDT methods for damage detection in concrete elements reinforced or strengthened with FRP. Eng. Struct. 287, 116155 (2023). https://doi.org/10.1016/j.engstruct.2023.116155
- J.-X. Wang, Y. Wang, I. Nadinov, J. Yin, L. Gutiérrez-Arzaluz et al., Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Mater. Lett. 4, 1668–1675 (2022). https://doi.org/10.1021/acsmaterialslett.2c00498
- L. Zhang, X. Wang, X. Wang, X. Wang, Y. Luo et al., Fabrication of a large-area flexible scintillating membrane for high-resolution X-ray imaging using an AIEgen-functionalized metal-organic framework. Inorg. Chem. 62, 6421–6427 (2023). https://doi.org/10.1021/acs.inorgchem.3c00381
- Q.C. Peng, Y.B. Si, J.W. Yuan, Q. Yang, Z.Y. Gao et al., High performance dynamic X-ray flexible imaging realized using a copper iodide cluster-based MOF microcrystal scintillator. Angew. Chem. Int. Ed. 62, e202308194 (2023). https://doi.org/10.1002/anie.202308194
- R.-W. Huang, X. Song, S. Chen, J. Yin, P. Maity et al., Radioluminescent Cu–Au metal nanoclusters: synthesis and self-assembly for efficient X-ray scintillation and imaging. J. Am. Chem. Soc. 145, 13816–13827 (2023). https://doi.org/10.1021/jacs.3c02612
- S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh et al., Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016). https://doi.org/10.1038/nphoton.2016.139
- A. Goldstein, P. Veres, E. Burns, M.S. Briggs, R. Hamburg et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41
- K. Siegbahn, Alpha- Beta- and Gamma -ray Spectroscopy (Elsevier, The Netherlands, 2012)
- F. Liu, R. Wu, J. Wei, W. Nie, A.D. Mohite et al., Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy. ACS Energy Lett. 7, 1066–1085 (2022). https://doi.org/10.1021/acsenergylett.2c00031
- İ Akkurt, F. Waheed, H. Akyildirim, K. Gunoglu, Performance of NaI(Tl) detector for gamma-ray spectroscopy. Indian J. Phys. 96, 2941–2947 (2022). https://doi.org/10.1007/s12648-021-02210-1
- A.E. Bolotnikov, K. Ackley, G.S. Camarda, Y. Cui, J.F. Eger et al., High-efficiency CdZnTe gamma-ray detectors. IEEE Trans. Nucl. Sci. 62, 3193–3198 (2015). https://doi.org/10.1109/tns.2015.2493444
- Z. Liu, W. Xue, Z. Cai, G. Zhang, D. Zhang, A facile and convenient fluorescence detection of gamma-ray radiation based on the aggregation-induced emission. J. Mater. Chem. 21, 14487 (2011). https://doi.org/10.1039/c1jm12400e
- M. Ottolenghi, G. Stein, The radiation chemistry of chloroform. Radiat. Res. 14, 281 (1961). https://doi.org/10.2307/3570922
- H.R. Werner, R.F. Firestone, Kinetics of the γ-ray-induced decomposition of Chloroform1. J. Phys. Chem. 69, 840–849 (1965). https://doi.org/10.1021/j100887a023
- M.M. Kondo, W.F. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst. Water Res. 25, 823–827 (1991). https://doi.org/10.1016/0043-1354(91)90162-J
- C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Technol. 25, 494–500 (1991). https://doi.org/10.1021/es00015a018
- H. Shirayama, Y. Tohezo, S. Taguchi, Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water. Water Res. 35, 1941–1950 (2001). https://doi.org/10.1016/S0043-1354(00)00480-2
- J.-M. Han, M. Xu, B. Wang, N. Wu, X. Yang et al., Low dose detection of γ radiation via solvent assisted fluorescence quenching. J. Am. Chem. Soc. 136, 5090–5096 (2014). https://doi.org/10.1021/ja500262n
- X. Dong, F. Hu, Z. Liu, G. Zhang, D. Zhang, A fluorescent turn-on low dose detection of gamma-radiation based on aggregation-induced emission. Chem. Commun. 51, 3892–3895 (2015). https://doi.org/10.1039/C4CC10133B
- K.M. McCall, K. Sakhatskyi, E. Lehmann, B. Walfort, A.S. Losko et al., Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano 14, 14686–14697 (2020). https://doi.org/10.1021/acsnano.0c06381
- M. Schulz, E. Lehmann, A. Losko, Nondestructive material characterization methods. Neutron Imaging. (Elsevier, The Netherlands, 2024)
- M. Nallaperumal, G.N. Namboodiri, T. Roy, Neutron imaging for aerospace applications. Neutron Imaging (Springer, Singapore, 2022)
- N. Cindro, A survey of fast-neutron reactions. Rev. Mod. Phys. 38, 391–446 (1966). https://doi.org/10.1103/revmodphys.38.391
- C. Zeitlin, A.J. Castro, K.B. Beard, M. Abdelmelek, B.M. Hayes et al., Results from the radiation assessment detector on the international space station, part 2: the fast neutron detector. Life Sci. Space Res. 39, 76–85 (2023). https://doi.org/10.1016/j.lssr.2023.03.005
- Q. Sun, Z. Hao, J. Li, Z. Liu, H. Wang et al., Dual discrimination of fast neutrons from strong γ noise using organic single-crystal scintillator. Matter 6, 274–284 (2023). https://doi.org/10.1016/j.matt.2022.10.010
References
ff, S.A. Payne, E. van Loef et al., Strontium and barium iodide high light yield scintillators. Appl. Phys. Lett. 92, 083508 (2008). https://doi.org/10.1063/1.2885728
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
F. Maddalena, L. Tjahjana, A. Xie, S.Z. Arramel et al., Inorganic, organic, and perovskite halides with nanotechnology for high–light yield X- and γ-ray scintillators. Crystals 9, 88 (2019). https://doi.org/10.3390/cryst9020088
W. Ma, Y. Su, Q. Zhang, C. Deng, L. Pasquali et al., Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022). https://doi.org/10.1038/s41563-021-01132-x
R. Dhali, D.A.P. Huu, F. Bertocchi, C. Sissa, F. Terenziani, A. Painelli, Understanding TADF: a joint experimental and theoretical study of DMAC-TRZ. Phys. Chem. Chem. Phys. 23(1), 378–387 (2021). https://doi.org/10.1039/D0CP05982J
A.E. Iskandrian, F.G. Hage, Nuclear cardiac imaging: principles and applications (Oxford University Press, New York, 2024)
W. Alamro, B.C. Seet, Review of practical antennas for microwave and millimetre-wave medical imaging. Electromag. Waves Antenn Biomed. Appl. (2021). https://doi.org/10.1049/PBHE033E_ch6
K. Sakhatskyi, B. Turedi, G.J. Matt, E. Wu, A. Sakhatska et al., Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photonics 17, 510–517 (2023). https://doi.org/10.1038/s41566-023-01207-y
J.-X. Wang, L. Gutiérrez-Arzaluz, X. Wang, M. Almalki, J. Yin et al., Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter 5, 253–265 (2022). https://doi.org/10.1016/j.matt.2021.11.012
J.-X. Wang, L. Gutiérrez-Arzaluz, X. Wang, T. He, Y. Zhang et al., Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photonics 16, 869–875 (2022). https://doi.org/10.1038/s41566-022-01092-x
N.S. Treister, M.T. Brennan, T.P. Sollecito, B.L. Schmidt, L.L. Patton et al., Exposed bone in patients with head and neck cancer treated with radiation therapy: an analysis of the observational study of dental outcomes in head and neck cancer patients (OraRad). Cancer 128, 487–496 (2022). https://doi.org/10.1002/cncr.33948
R. Booij, N.F. Kämmerling, E.H.G. Oei, A. Persson, E. Tesselaar, Assessment of visibility of bone structures in the wrist using normal and half of the radiation dose with photon-counting detector CT. Eur. J. Radiol. 159, 110662 (2023). https://doi.org/10.1016/j.ejrad.2022.110662
S.S. Khedmatgozar Dolati, P. Malla, J.D. Ortiz, A. Mehrabi, A. Nanni, Identifying NDT methods for damage detection in concrete elements reinforced or strengthened with FRP. Eng. Struct. 287, 116155 (2023). https://doi.org/10.1016/j.engstruct.2023.116155
J.-X. Wang, Y. Wang, I. Nadinov, J. Yin, L. Gutiérrez-Arzaluz et al., Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Mater. Lett. 4, 1668–1675 (2022). https://doi.org/10.1021/acsmaterialslett.2c00498
L. Zhang, X. Wang, X. Wang, X. Wang, Y. Luo et al., Fabrication of a large-area flexible scintillating membrane for high-resolution X-ray imaging using an AIEgen-functionalized metal-organic framework. Inorg. Chem. 62, 6421–6427 (2023). https://doi.org/10.1021/acs.inorgchem.3c00381
Q.C. Peng, Y.B. Si, J.W. Yuan, Q. Yang, Z.Y. Gao et al., High performance dynamic X-ray flexible imaging realized using a copper iodide cluster-based MOF microcrystal scintillator. Angew. Chem. Int. Ed. 62, e202308194 (2023). https://doi.org/10.1002/anie.202308194
R.-W. Huang, X. Song, S. Chen, J. Yin, P. Maity et al., Radioluminescent Cu–Au metal nanoclusters: synthesis and self-assembly for efficient X-ray scintillation and imaging. J. Am. Chem. Soc. 145, 13816–13827 (2023). https://doi.org/10.1021/jacs.3c02612
S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh et al., Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016). https://doi.org/10.1038/nphoton.2016.139
A. Goldstein, P. Veres, E. Burns, M.S. Briggs, R. Hamburg et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41
K. Siegbahn, Alpha- Beta- and Gamma -ray Spectroscopy (Elsevier, The Netherlands, 2012)
F. Liu, R. Wu, J. Wei, W. Nie, A.D. Mohite et al., Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy. ACS Energy Lett. 7, 1066–1085 (2022). https://doi.org/10.1021/acsenergylett.2c00031
İ Akkurt, F. Waheed, H. Akyildirim, K. Gunoglu, Performance of NaI(Tl) detector for gamma-ray spectroscopy. Indian J. Phys. 96, 2941–2947 (2022). https://doi.org/10.1007/s12648-021-02210-1
A.E. Bolotnikov, K. Ackley, G.S. Camarda, Y. Cui, J.F. Eger et al., High-efficiency CdZnTe gamma-ray detectors. IEEE Trans. Nucl. Sci. 62, 3193–3198 (2015). https://doi.org/10.1109/tns.2015.2493444
Z. Liu, W. Xue, Z. Cai, G. Zhang, D. Zhang, A facile and convenient fluorescence detection of gamma-ray radiation based on the aggregation-induced emission. J. Mater. Chem. 21, 14487 (2011). https://doi.org/10.1039/c1jm12400e
M. Ottolenghi, G. Stein, The radiation chemistry of chloroform. Radiat. Res. 14, 281 (1961). https://doi.org/10.2307/3570922
H.R. Werner, R.F. Firestone, Kinetics of the γ-ray-induced decomposition of Chloroform1. J. Phys. Chem. 69, 840–849 (1965). https://doi.org/10.1021/j100887a023
M.M. Kondo, W.F. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst. Water Res. 25, 823–827 (1991). https://doi.org/10.1016/0043-1354(91)90162-J
C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Technol. 25, 494–500 (1991). https://doi.org/10.1021/es00015a018
H. Shirayama, Y. Tohezo, S. Taguchi, Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water. Water Res. 35, 1941–1950 (2001). https://doi.org/10.1016/S0043-1354(00)00480-2
J.-M. Han, M. Xu, B. Wang, N. Wu, X. Yang et al., Low dose detection of γ radiation via solvent assisted fluorescence quenching. J. Am. Chem. Soc. 136, 5090–5096 (2014). https://doi.org/10.1021/ja500262n
X. Dong, F. Hu, Z. Liu, G. Zhang, D. Zhang, A fluorescent turn-on low dose detection of gamma-radiation based on aggregation-induced emission. Chem. Commun. 51, 3892–3895 (2015). https://doi.org/10.1039/C4CC10133B
K.M. McCall, K. Sakhatskyi, E. Lehmann, B. Walfort, A.S. Losko et al., Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano 14, 14686–14697 (2020). https://doi.org/10.1021/acsnano.0c06381
M. Schulz, E. Lehmann, A. Losko, Nondestructive material characterization methods. Neutron Imaging. (Elsevier, The Netherlands, 2024)
M. Nallaperumal, G.N. Namboodiri, T. Roy, Neutron imaging for aerospace applications. Neutron Imaging (Springer, Singapore, 2022)
N. Cindro, A survey of fast-neutron reactions. Rev. Mod. Phys. 38, 391–446 (1966). https://doi.org/10.1103/revmodphys.38.391
C. Zeitlin, A.J. Castro, K.B. Beard, M. Abdelmelek, B.M. Hayes et al., Results from the radiation assessment detector on the international space station, part 2: the fast neutron detector. Life Sci. Space Res. 39, 76–85 (2023). https://doi.org/10.1016/j.lssr.2023.03.005
Q. Sun, Z. Hao, J. Li, Z. Liu, H. Wang et al., Dual discrimination of fast neutrons from strong γ noise using organic single-crystal scintillator. Matter 6, 274–284 (2023). https://doi.org/10.1016/j.matt.2022.10.010