Rewritable Triple-Mode Light-Emitting Display
Corresponding Author: Cheolmin Park
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 183
Abstract
Despite great progress in developing mode-selective light emission technologies based on self-emitting materials, few rewritable displays with mode-selective multiple light emissions have been demonstrated. Herein, we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence (FL), room-temperature phosphorescence (RTP), and electroluminescence (EL). The display comprises coplanar electrodes separated by a gap, a polymer composite with FL inorganic phosphors (EL/FL layer), and a polymer composite with solvent-responsive RTP additives (RTP layer). Upon 254 nm UV exposure, a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers, respectively. When a polar liquid, besides water, is applied on the display and an AC field is applied between the coplanar electrodes, EL from the EL/FL layer is triggered, and the display operates in a triple mode. Interestingly, when water is applied to the display, the RTP mode is deactivated, rendering the display to operate in a dual mode of FL and EL. By manipulating the evaporation of the applied polar liquids and water, the mode-selective light emission of FL, RTP, and EL is rewritable in the triple-mode display. Additionally, a high-security full-color information encryption display is demonstrated, wherein the information of digital numbers, letters, and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes. Thus, this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.
Highlights:
1 A rewritable triple-mode light-emitting display (RE-TriLED) was fabricated, enabled by stimuli-interactive fluorescence (FL), room-temperature phosphorescence (RTP), and electroluminescence (EL).
2 Mode-selective multiple light emission is achieved, in which the three emission modes of FL, RTP, and EL are readily manipulated through the controlled evaporation of polar liquids and water.
3 A high-security, full-color information encryption display is demonstrated, wherein optical information encoded in one mode is decipherable only when properly aligned with the other two modes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Arppe, T.J. Sørensen, Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 1, 31 (2017). https://doi.org/10.1038/s41570-017-0031
- H. Zhang, D. Hua, C. Huang, S.K. Samal, R. Xiong et al., Materials and technologies to combat counterfeiting of pharmaceuticals: current and future problem tackling. Adv. Mater. 32, 1905486 (2020). https://doi.org/10.1002/adma.201905486
- W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 32, 1901430 (2020). https://doi.org/10.1002/adma.201901430
- S. Xu, R. Chen, C. Zheng, W. Huang, Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28, 9920–9940 (2016). https://doi.org/10.1002/adma.201602604
- Y. Shen, X. Le, Y. Wu, T. Chen, Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem. Soc. Rev. 53, 606–623 (2024). https://doi.org/10.1039/D3CS00753G
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17, 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- P. She, Y. Ma, Y. Qin, M. Xie, F. Li et al., Dynamic luminescence manipulation for rewritable and multi-level security printing. Matter 1, 1644–1655 (2019). https://doi.org/10.1016/j.matt.2019.08.016
- J. Oh, D. Baek, T.K. Lee, D. Kang, H. Hwang et al., Dynamic multimodal holograms of conjugated organogels via dithering mask lithography. Nat. Mater. 20, 385–394 (2021). https://doi.org/10.1038/s41563-020-00866-4
- L. Qin, X. Liu, K. He, G. Yu, H. Yuan et al., Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat. Commun. 12, 699 (2021). https://doi.org/10.1038/s41467-021-20908-y
- Q. Wang, B. Lin, M. Chen, C. Zhao, H. Tian et al., A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security. Nat. Commun. 13, 4185 (2022). https://doi.org/10.1038/s41467-022-31978-x
- H. Han, J.W. Oh, H. Lee, S. Lee, S. Mun et al., Rewritable photoluminescence and structural color display for dual-responsive optical encryption. Adv. Mater. 36, 2310130 (2024). https://doi.org/10.1002/adma.202310130
- W. Zhao, Z. He, B.Z. Tang, Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020). https://doi.org/10.1038/s41578-020-0223-z
- Y. Wang, K. Jiang, J. Du, L. Zheng, Y. Li et al., Green and near-infrared dual-mode afterglow of carbon dots and their applications for confidential information readout. Nano-Micro Lett. 13, 198 (2021). https://doi.org/10.1007/s40820-021-00718-z
- L. Gu, H. Shi, L. Bian, M. Gu, K. Ling et al., Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photonics 13, 406–411 (2019). https://doi.org/10.1038/s41566-019-0408-4
- J.W. Oh, S. Lee, H. Han, O. Allam, J.I. Choi et al., Dual-light emitting 3D encryption with printable fluorescent-phosphorescent metal-organic frameworks. Light Sci. Appl. 12, 226 (2023). https://doi.org/10.1038/s41377-023-01274-4
- G. Lee, M. Kong, D. Park, J. Park, U. Jeong, Electro-photoluminescence color change for deformable visual encryption. Adv. Mater. 32, 1907477 (2020). https://doi.org/10.1002/adma.201907477
- B. Yang, Y. Zhao, M.U. Ali, J. Ji, H. Yan et al., Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv. Mater. 34, 2201342 (2022). https://doi.org/10.1002/adma.202201342
- S. Zhang, Y. Zhu, Y. Xia, K. Liu, S. Li et al., Wearable integrated self-powered electroluminescence display device based on all-in-one MXene electrode for information encryption. Adv. Funct. Mater. 33, 2307609 (2023). https://doi.org/10.1002/adfm.202307609
- Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
- D. Li, Y. Yang, J. Yang, M. Fang, B.Z. Tang et al., Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347 (2022). https://doi.org/10.1038/s41467-022-28011-6
- D. Li, J. Yang, M. Fang, B.Z. Tang, Z. Li, Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 8 eabl8392 (2022). https://doi.org/10.1126/sciadv.abl8392
- X. Xu, D. Hu, L. Yan, S. Fang, C. Shen et al., Polar-electrode-bridged electroluminescent displays: 2D sensors remotely communicating optically. Adv. Mater. 29, 1703552 (2017). https://doi.org/10.1002/adma.201703552
- L. Wang, L. Xiao, H. Gu, H. Sun, Advances in alternating current electroluminescent devices. Adv. Opt. Mater. 7, 1801154 (2019). https://doi.org/10.1002/adom.201801154
- J.S. Kim, E.H. Kim, C. Park, G. Kim, B. Jeong et al., Sensing and memorising liquids with polarity-interactive ferroelectric sound. Nat. Commun. 10, 3575 (2019). https://doi.org/10.1038/s41467-019-11478-1
- W. Jin, E.H. Kim, S. Lee, S. Yu, H. Han et al., Tandem interactive sensing display de-convoluting dynamic pressure and temperature. Adv. Funct. Mater. 31, 2010492 (2021). https://doi.org/10.1002/adfm.202010492
- E.H. Kim, H. Han, S. Yu, C. Park, G. Kim et al., Interactive skin display with epidermal stimuli electrode. Adv. Sci. 6, 1802351 (2019). https://doi.org/10.1002/advs.201802351
- J.Y. Kim, S. Lee, S. Lee, K. Lee, Y. Huh et al., Ferroelectric electroluminescent comb copolymer for single-material self-powered displays. Cell Rep. Phys. Sci. 3, 101006 (2022). https://doi.org/10.1016/j.xcrp.2022.101006
- Z. Wang, Y. Zhang, C. Wang, X. Zheng, Y. Zheng et al., Color-tunable polymeric long-persistent luminescence based on polyphosphazenes. Adv. Mater. 32, 1907355 (2020). https://doi.org/10.1002/adma.201907355
- H. Wu, L. Gu, G.V. Baryshnikov, H. Wang, B.F. Minaev et al., Molecular phosphorescence in polymer matrix with reversible sensitivity. ACS Appl. Mater. Interfaces 12, 20765–20774 (2020). https://doi.org/10.1021/acsami.0c04859
- S.W. Lee, S. Baek, S.-W. Park, M. Koo, E.H. Kim et al., 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat. Commun. 11, 6072 (2020). https://doi.org/10.1038/s41467-020-19523-0
- J. Jang, S.W. Lee, S. Lee, C.E. Lee, E.H. Kim et al., Wireless stand-alone trimodal interactive display enabled by direct capacitive coupling. Adv. Mater. 34, 2204760 (2022). https://doi.org/10.1002/adma.202204760
- J.S. Kim, S.H. Cho, K.L. Kim, G. Kim, S.W. Lee et al., Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. Nano Energy 59, 773–783 (2019). https://doi.org/10.1016/j.nanoen.2019.03.006
- S. Song, H. Shim, S.K. Lim, S.M. Jeong, Patternable and widely colour-tunable elastomer-based electroluminescent devices. Sci. Rep. 8, 3331 (2018). https://doi.org/10.1038/s41598-018-21726-x
- S. Kuila, S.J. George, Phosphorescence energy transfer: ambient afterglow fluorescence from water-processable and purely organic dyes via delayed sensitization. Angew. Chem. Int. Ed. 59, 9393–9397 (2020). https://doi.org/10.1002/anie.202002555
- X.-Y. Dai, M. Huo, Y. Liu, Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat. Rev. Chem. 7, 854–874 (2023). https://doi.org/10.1038/s41570-023-00555-1
References
R. Arppe, T.J. Sørensen, Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 1, 31 (2017). https://doi.org/10.1038/s41570-017-0031
H. Zhang, D. Hua, C. Huang, S.K. Samal, R. Xiong et al., Materials and technologies to combat counterfeiting of pharmaceuticals: current and future problem tackling. Adv. Mater. 32, 1905486 (2020). https://doi.org/10.1002/adma.201905486
W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 32, 1901430 (2020). https://doi.org/10.1002/adma.201901430
S. Xu, R. Chen, C. Zheng, W. Huang, Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28, 9920–9940 (2016). https://doi.org/10.1002/adma.201602604
Y. Shen, X. Le, Y. Wu, T. Chen, Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: recent advances and future challenges. Chem. Soc. Rev. 53, 606–623 (2024). https://doi.org/10.1039/D3CS00753G
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17, 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
P. She, Y. Ma, Y. Qin, M. Xie, F. Li et al., Dynamic luminescence manipulation for rewritable and multi-level security printing. Matter 1, 1644–1655 (2019). https://doi.org/10.1016/j.matt.2019.08.016
J. Oh, D. Baek, T.K. Lee, D. Kang, H. Hwang et al., Dynamic multimodal holograms of conjugated organogels via dithering mask lithography. Nat. Mater. 20, 385–394 (2021). https://doi.org/10.1038/s41563-020-00866-4
L. Qin, X. Liu, K. He, G. Yu, H. Yuan et al., Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat. Commun. 12, 699 (2021). https://doi.org/10.1038/s41467-021-20908-y
Q. Wang, B. Lin, M. Chen, C. Zhao, H. Tian et al., A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security. Nat. Commun. 13, 4185 (2022). https://doi.org/10.1038/s41467-022-31978-x
H. Han, J.W. Oh, H. Lee, S. Lee, S. Mun et al., Rewritable photoluminescence and structural color display for dual-responsive optical encryption. Adv. Mater. 36, 2310130 (2024). https://doi.org/10.1002/adma.202310130
W. Zhao, Z. He, B.Z. Tang, Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020). https://doi.org/10.1038/s41578-020-0223-z
Y. Wang, K. Jiang, J. Du, L. Zheng, Y. Li et al., Green and near-infrared dual-mode afterglow of carbon dots and their applications for confidential information readout. Nano-Micro Lett. 13, 198 (2021). https://doi.org/10.1007/s40820-021-00718-z
L. Gu, H. Shi, L. Bian, M. Gu, K. Ling et al., Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photonics 13, 406–411 (2019). https://doi.org/10.1038/s41566-019-0408-4
J.W. Oh, S. Lee, H. Han, O. Allam, J.I. Choi et al., Dual-light emitting 3D encryption with printable fluorescent-phosphorescent metal-organic frameworks. Light Sci. Appl. 12, 226 (2023). https://doi.org/10.1038/s41377-023-01274-4
G. Lee, M. Kong, D. Park, J. Park, U. Jeong, Electro-photoluminescence color change for deformable visual encryption. Adv. Mater. 32, 1907477 (2020). https://doi.org/10.1002/adma.201907477
B. Yang, Y. Zhao, M.U. Ali, J. Ji, H. Yan et al., Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv. Mater. 34, 2201342 (2022). https://doi.org/10.1002/adma.202201342
S. Zhang, Y. Zhu, Y. Xia, K. Liu, S. Li et al., Wearable integrated self-powered electroluminescence display device based on all-in-one MXene electrode for information encryption. Adv. Funct. Mater. 33, 2307609 (2023). https://doi.org/10.1002/adfm.202307609
Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15, 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
D. Li, Y. Yang, J. Yang, M. Fang, B.Z. Tang et al., Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347 (2022). https://doi.org/10.1038/s41467-022-28011-6
D. Li, J. Yang, M. Fang, B.Z. Tang, Z. Li, Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 8 eabl8392 (2022). https://doi.org/10.1126/sciadv.abl8392
X. Xu, D. Hu, L. Yan, S. Fang, C. Shen et al., Polar-electrode-bridged electroluminescent displays: 2D sensors remotely communicating optically. Adv. Mater. 29, 1703552 (2017). https://doi.org/10.1002/adma.201703552
L. Wang, L. Xiao, H. Gu, H. Sun, Advances in alternating current electroluminescent devices. Adv. Opt. Mater. 7, 1801154 (2019). https://doi.org/10.1002/adom.201801154
J.S. Kim, E.H. Kim, C. Park, G. Kim, B. Jeong et al., Sensing and memorising liquids with polarity-interactive ferroelectric sound. Nat. Commun. 10, 3575 (2019). https://doi.org/10.1038/s41467-019-11478-1
W. Jin, E.H. Kim, S. Lee, S. Yu, H. Han et al., Tandem interactive sensing display de-convoluting dynamic pressure and temperature. Adv. Funct. Mater. 31, 2010492 (2021). https://doi.org/10.1002/adfm.202010492
E.H. Kim, H. Han, S. Yu, C. Park, G. Kim et al., Interactive skin display with epidermal stimuli electrode. Adv. Sci. 6, 1802351 (2019). https://doi.org/10.1002/advs.201802351
J.Y. Kim, S. Lee, S. Lee, K. Lee, Y. Huh et al., Ferroelectric electroluminescent comb copolymer for single-material self-powered displays. Cell Rep. Phys. Sci. 3, 101006 (2022). https://doi.org/10.1016/j.xcrp.2022.101006
Z. Wang, Y. Zhang, C. Wang, X. Zheng, Y. Zheng et al., Color-tunable polymeric long-persistent luminescence based on polyphosphazenes. Adv. Mater. 32, 1907355 (2020). https://doi.org/10.1002/adma.201907355
H. Wu, L. Gu, G.V. Baryshnikov, H. Wang, B.F. Minaev et al., Molecular phosphorescence in polymer matrix with reversible sensitivity. ACS Appl. Mater. Interfaces 12, 20765–20774 (2020). https://doi.org/10.1021/acsami.0c04859
S.W. Lee, S. Baek, S.-W. Park, M. Koo, E.H. Kim et al., 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat. Commun. 11, 6072 (2020). https://doi.org/10.1038/s41467-020-19523-0
J. Jang, S.W. Lee, S. Lee, C.E. Lee, E.H. Kim et al., Wireless stand-alone trimodal interactive display enabled by direct capacitive coupling. Adv. Mater. 34, 2204760 (2022). https://doi.org/10.1002/adma.202204760
J.S. Kim, S.H. Cho, K.L. Kim, G. Kim, S.W. Lee et al., Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. Nano Energy 59, 773–783 (2019). https://doi.org/10.1016/j.nanoen.2019.03.006
S. Song, H. Shim, S.K. Lim, S.M. Jeong, Patternable and widely colour-tunable elastomer-based electroluminescent devices. Sci. Rep. 8, 3331 (2018). https://doi.org/10.1038/s41598-018-21726-x
S. Kuila, S.J. George, Phosphorescence energy transfer: ambient afterglow fluorescence from water-processable and purely organic dyes via delayed sensitization. Angew. Chem. Int. Ed. 59, 9393–9397 (2020). https://doi.org/10.1002/anie.202002555
X.-Y. Dai, M. Huo, Y. Liu, Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat. Rev. Chem. 7, 854–874 (2023). https://doi.org/10.1038/s41570-023-00555-1