Physics of 2D Materials for Developing Smart Devices
Corresponding Author: Rahul Kumar
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 197
Abstract
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations. To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks. Two-dimensional (2D) materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices. Despite their ground-breaking progress over the last two decades, systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking. Therefore, in this review, we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics. Moreover, the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices. Hence, we discuss the physics of various 2D materials enabling them to fabricate smart devices. We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
Highlights:
1 Extensively discussed the physics of various two-dimensional materials enabling them to fabricate smart devices.
2 Statistical and quantum physics for understanding the functioning of smart electronic devices with strategies for improving their performance.
3 New advancement in device architectures for developing smart devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Kim, J. Kwon, H. Ryu, C. Kim, H. Kim et al., The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024). https://doi.org/10.1038/s41565-024-01695-1
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
- D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS2 electronics. Acc. Chem. Res. 48, 100–110 (2015). https://doi.org/10.1021/ar500274q
- M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015). https://doi.org/10.1039/C5CS90037A
- A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su et al., Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). https://doi.org/10.1038/natrevmats.2016.61
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
- J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, 2000919 (2021). https://doi.org/10.1002/smtd.202000919
- H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
- J. Jiang, Y. Wen, H. Wang, L. Yin, R. Cheng et al., Recent advances in 2D materials for photodetectors. Adv. Electron. Mater. 7, 2001125 (2021). https://doi.org/10.1002/aelm.202001125
- A. Kushwaha, N. Goel, Edge enriched MoS2 micro flowered structure for high performance NO2 sensor. Sensors Actuators B Chem. 393, 134190 (2023). https://doi.org/10.1016/j.snb.2023.134190
- Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang et al., Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30, e1706347 (2018). https://doi.org/10.1002/adma.201706347
- A.C. Berends, C. de Mello-Donega, Ultrathin one- and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J. Phys. Chem. Lett. 8, 4077–4090 (2017). https://doi.org/10.1021/acs.jpclett.7b01640
- Y. Chan, M.H. Naik, J.B. Haber, J.B. Neaton, S.G. Louie et al., Exciton–phonon coupling induces a new pathway for ultrafast intralayer-to-interlayer exciton transition and interlayer charge transfer in WS2–MoS2 heterostructure: a first-principles study. Nano Lett. 24, 7972 (2024). https://doi.org/10.1021/acs.nanolett.4c01508
- M.H. Miah, M.U. Khandaker, M.B. Rahman, M. Nur-E-Alam, M.A. Islam, Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv. 14, 15876 (2024). https://doi.org/10.1039/D4RA01640H
- S.J. Kim, H.-J. Lee, C.-H. Lee, H.W. Jang, 2D materials-based 3D integration for neuromorphic hardware. npj 2D Mater. Appl. 8, 70 (2024). https://doi.org/10.1038/s41699-024-00509-1
- Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- Q. Xie, C.-J. Lee, J. Xu, C. Wann, J.Y.-C. Sun et al., Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 60, 1814–1819 (2013). https://doi.org/10.1109/TED.2013.2255878
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
- D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov et al., Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011). https://doi.org/10.1038/nphys2049
- G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
- J. Wu, C. Tan, Z. Tan, Y. Liu, J. Yin et al., Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021 (2017). https://doi.org/10.1021/acs.nanolett.7b00335
- F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
- R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
- C.-H. Liu, Y.-C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273 (2014). https://doi.org/10.1038/nnano.2014.31
- T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40
- R. Pandey, N. Singhal, P. Kumar, K. Choudhary, S. Kumar, Graphene and its immense contribution in defense and security: a review. Anal. Chem. Lett. 12, 1–12 (2022). https://doi.org/10.1080/22297928.2021.1980099
- N. Chauhan, T. Maekawa, D.N.S. Kumar, Graphene based biosensors—accelerating medical diagnostics to new-dimensions. J. Mater. Res. 32, 2860–2882 (2017). https://doi.org/10.1557/jmr.2017.91
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
- A.A. Basheer, Advances in the smart materials applications in the aerospace industries. Aircr. Eng. Aerosp. Technol. 92, 1027 (2020). https://doi.org/10.1108/AEAT-02-2020-0040
- M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
- T. Chu, H. Ilatikhameneh, G. Klimeck, R. Rahman, Z. Chen, Electrically tunable bandgaps in bilayer MoS2. Nano Lett. 15, 8000 (2015). https://doi.org/10.1021/acs.nanolett.5b03218
- E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017). https://doi.org/10.1021/acsami.6b13582
- S. Aftab, H.H. Hegazy, Emerging trends in 2D TMDs photodetectors and piezo-phototronic devices. Small 19, 2205778 (2023). https://doi.org/10.1002/smll.202205778
- E.C. Ahn, 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020). https://doi.org/10.1038/s41699-020-0152-0
- H. Tian, C. Ren, S. Wang, Valleytronics in two-dimensional materials with line defect. Nanotechnology 33, 212001 (2022). https://doi.org/10.1088/1361-6528/ac50f2
- A. Mondal, A. Vomiero, 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2208994 (2022). https://doi.org/10.1002/adfm.202208994
- Z. Zhang, X. Yang, K. Liu, R. Wang, Epitaxy of 2D materials toward single crystals. Adv. Sci. 9, 2105201 (2022). https://doi.org/10.1002/advs.202105201
- J. Wang, F. Ma, W. Liang, M. Sun, Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride. Mater. Today Phys. 2, 6 (2017). https://doi.org/10.1016/j.mtphys.2017.10.003
- X. Li, Y. Long, L. Ma, J. Li, J. Yin et al., Coating performance of hexagonal boron nitride and graphene layers. 2D Mater. 8, 034002 (2021). https://doi.org/10.1088/2053-1583/abe777
- Y. Sasama, K. Komatsu, S. Moriyama, M. Imura, T. Teraji et al., High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Mater. 6, 111105 (2018). https://doi.org/10.1063/1.5055812
- S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, 2101589 (2021). https://doi.org/10.1002/adma.202101589
- W. Hu, L. Lin, C. Yang, J. Dai, J. Yang, Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Nano Lett. 16, 1675–1682 (2016). https://doi.org/10.1021/acs.nanolett.5b04593
- X.-Q. Lu, C.-K. Wang, X.-X. Fu, Modulating the electronic structures of blue phosphorene towards spintronics. Phys. Chem. Chem. Phys. 21, 11755–11763 (2019). https://doi.org/10.1039/C9CP01684H
- C. Guo, L. Wang, H. Xing, X. Chen, The study of ambipolar behavior in phosphorene field-effect transistors. J. Appl. Phys. 120, 215701 (2016). https://doi.org/10.1063/1.4970851
- J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu et al., Light–matter interactions in phosphorene. Acc. Chem. Res. 49, 1806–1815 (2016). https://doi.org/10.1021/acs.accounts.6b00266
- Z. Nourbakhsh, R. Asgari, Phosphorene as a nanoelectromechanical material. Phys. Rev. B 98, 125427 (2018). https://doi.org/10.1103/PhysRevB.98.125427
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
- S. Mazumder, Boltzmann transport equation based modeling of phonon heat conduction: progress and challenges. Annu. Rev. Heat Transf. 24, 71 (2022). https://doi.org/10.1615/AnnualRevHeatTransfer.2022041316
- D.-T. Nguyen, M. Hofmann, Y.-P. Hsieh, Graphene-Rubber Nanocomposites (CRC Press, Boca Raton, 2022), pp.19–51
- B. Illing, S. Fritschi, H. Kaiser, C.L. Klix, G. Maret et al., Mermin-Wagner fluctuations in 2D amorphous solids. Proc. Natl. Acad. Sci. U.S.A. 114, 1856–1861 (2017). https://doi.org/10.1073/pnas.1612964114
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
- A.F. Young, Y. Zhang, P. Kim, Experimental Manifestation of Berry Phase in Graphene, eds by H. S. Aoki, M. Dresselhaus. Physics of Graphene. NanoScience and Technology. (Springer, Cham, 2014). https://doi.org/10.1007/978-3-319-02633-6_1
- C. Popovici, O. Oliveira, W. de Paula, T. Frederico, Charge confinement and Klein tunnelling from doping graphene. Phys. Rev. B 85, 235424 (2012). https://doi.org/10.1103/PhysRevB.85.235424
- W. Li, X. Qian, J. Li, Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021). https://doi.org/10.1038/s41578-021-00304-0
- Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019). https://doi.org/10.1002/adma.201970222
- H. Ryu, Y. Lee, J.H. Jeong, Y. Lee, Y. Cheon et al., Laser-induced phase transition and patterning of hBN-encapsulated MoTe2. Small 19, 2205224 (2023). https://doi.org/10.1002/smll.202205224
- F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
- Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487 (2017). https://doi.org/10.1038/nature24043
- Q. Huang, X. Li, M. Sun, L. Zhang, C. Song et al., The mechanistic insights into the 2H–1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater. Interfaces 4, 1700171 (2017). https://doi.org/10.1002/admi.201700171
- D.H. Keum, S. Cho, J.H. Kim, D.-H. Choe, H.-J. Sung et al., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015). https://doi.org/10.1038/nphys3314
- K.-A.N. Duerloo, E.J. Reed, Structural phase transitions by design in monolayer alloys. ACS Nano 10, 289–297 (2016). https://doi.org/10.1021/acsnano.5b04359
- S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625 (2015). https://doi.org/10.1126/science.aab3175
- Z. Yang, D. Zhang, J. Cai, C. Gong, Q. He et al., Joule heating induced non-melting phase transition and multi-level conductance in MoTe2 based phase change memory. Appl. Phys. Lett. 121, 203508 (2022). https://doi.org/10.1063/5.0127160
- Y. Shuang, Q. Chen, M. Kim, Y. Wang, Y. Saito et al., NbTe4 phase-change material: breaking the phase-change temperature balance in 2D Van der Waals transition-metal binary chalcogenide. Adv. Mater. 35, 2303646 (2023). https://doi.org/10.1002/adma.202303646
- L. Zhu, S.-S. Wang, S. Guan, Y. Liu, T. Zhang et al., Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2D emergent fermions. Nano Lett. 16, 6548 (2016). https://doi.org/10.1021/acs.nanolett.6b03208
- S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
- A.N. Morozovska, E.A. Eliseev, K.D. Stubbs, R. Vasudevan, Y. Kim et al., Phase diagrams of single-layer two-dimensional transition metal dichalcogenides: landau theory. Phys. Rev. B 101, 195424 (2020). https://doi.org/10.1103/PhysRevB.101.195424
- L. Ju, L. Wang, X. Li, S. Moon, M. Ozerov et al., Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene. Nat. Commun. 11, 2941 (2020). https://doi.org/10.1038/s41467-020-16844-y
- Z.-G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai et al., Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014). https://doi.org/10.1038/ncomms5461
- H. Yoo, S. Hong, S. On, H. Ahn, H.-K. Lee et al., Chemical doping effects in multilayer MoS2 and its application in complementary inverter. ACS Appl. Mater. Interfaces 10, 23270–23276 (2018). https://doi.org/10.1021/acsami.8b08773
- A. Tarasov, S. Zhang, M. Tsai, P.M. Campbell, S. Graham et al., Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 27, 1175–1181 (2015). https://doi.org/10.1002/adma.201404578
- H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011). https://doi.org/10.1039/C0JM02922J
- D.-H. Kang, J. Shim, S.K. Jang, J. Jeon, M.H. Jeon et al., Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 9, 1099–1107 (2015). https://doi.org/10.1021/nn5074435
- J. Jiang, W. Feng, Y. Wen, L. Yin, H. Wang et al., Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv. Mater. 35, 2301668 (2023). https://doi.org/10.1002/adma.202301668
- J. Dong, L. Zhang, X. Dai, F. Ding, The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020). https://doi.org/10.1038/s41467-020-19752-3
- X. Wang, M. Hossain, Z. Wei, L. Xie, Growth of two-dimensional materials on hexagonal boron nitride (h-BN). Nanotechnology 30, 034003 (2019). https://doi.org/10.1088/1361-6528/aaeb70
- K. Momeni, N. Sakib, D.E.C. Figueroa, S. Paul, C.Y. Chen et al., Combined experimental and computational insight into the role of substrate in the synthesis of two-dimensional WSe2. ACS Appl. Mater. Interfaces 16, 6644 (2024). https://doi.org/10.1021/acsami.3c16761
- Q. Wang, N. Li, J. Tang, J. Zhu, Q. Zhang et al., Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020). https://doi.org/10.1021/acs.nanolett.0c02531
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- J. Jung, A.M. DaSilva, A.H. MacDonald, S. Adam, Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015). https://doi.org/10.1038/ncomms7308
- B.H. Kim, J.Y. Kim, S.-J. Jeong, J.O. Hwang, D.H. Lee et al., Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4, 5464–5470 (2010). https://doi.org/10.1021/nn101491g
- H. Su, Z. Xu, X. He, Y. Yao, X. Zheng et al., Surface energy engineering of buried interface for highly stable perovskite solar cells with efficiency over 25%. Adv. Mater. 36, 2306724 (2024). https://doi.org/10.1002/adma.202306724
- L. Cai, J. He, Q. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622–2627 (2015). https://doi.org/10.1021/ja5120908
- S. Wang, G.-D. Lee, S. Lee, E. Yoon, J.H. Warner, Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 10, 5419–5430 (2016). https://doi.org/10.1021/acsnano.6b01673
- A. Artaud, E. Mazaleyrat, G.D. Förster, C. Tonnoir, B. Gilles et al., Depressions by stacking faults in nanorippled graphene on metals. 2D Mater. 7, 025016 (2020). https://doi.org/10.1088/2053-1583/ab6a5e
- M. Schleberger, J. Kotakoski, 2D material science: defect engineering by p irradiation. Materials Basel 11, 1885 (2018). https://doi.org/10.3390/ma11101885
- M. Telkhozhayeva, O. Girshevitz, Roadmap toward controlled ion beam-induced defects in 2D materials. Adv. Funct. Mater. 34, 2404615 (2024). https://doi.org/10.1002/adfm.202404615
- Y. Chen, D. Lu, L. Kong, Q. Tao, L. Ma et al., Mobility enhancement of strained MoS2 transistor on flat substrate. ACS Nano 17, 14954–14962 (2023). https://doi.org/10.1021/acsnano.3c03626
- P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016). https://doi.org/10.1063/PT.3.3297
- D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
- J. Miao, X. Liu, K. Jo, K. He, R. Saxena et al., Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces. Nano Lett. 20, 2907–2915 (2020). https://doi.org/10.1021/acs.nanolett.0c00741
- A. Varghese, A.H. Pandey, P. Sharma, Y. Yin, N.V. Medhekar et al., Electrically controlled high sensitivity strain modulation in MoS2 field-effect transistors via a piezoelectric thin film on silicon substrates. Nano Lett. 24, 8472–8480 (2024). https://doi.org/10.1021/acs.nanolett.4c00357
- A. Shekaari, M.R. Abolhassani, First-principles investigation of the thermodynamic properties of two-dimensional MoS2. Chin. J. Phys. 55, 105–114 (2017). https://doi.org/10.1016/j.cjph.2016.09.008
- M. Ashton, K. ew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phys. Chem. C 120, 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
- P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- N. Goel, N. Utkarsha, A. Kushwaha, M. Kwoka, R. Kumar et al., Mixed-dimensional van der Waals heterostructure enabled gas sensors: fundamentals and applications. J. Mater. Chem. A 12, 5642–5667 (2024). https://doi.org/10.1039/D3TA07949J
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science (2016). https://doi.org/10.1126/science.aac9439
- S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
- D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
- S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
- L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18, 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
- C. Fan, J. Yang, W. Ni, J. Wu, X. Liu et al., Real-time and wireless transmission of a nitrogen-doped Ti3C2Tx wearable gas sensor for efficient detection of food spoilage and ammonia leakage. ACS Sensors 9, 4870–4878 (2024). https://doi.org/10.1021/acssensors.4c01394
- P. Fathi-Hafshejani, N. Azam, L. Wang, M.A. Kuroda, M.C. Hamilton et al., Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 Virus (SARS-CoV-2). ACS Nano 15, 11461 (2021). https://doi.org/10.1021/acsnano.1c01188
- P. Ji, S. Yang, Y. Wang, K. Li, Y. Wang et al., High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsyst. Nanoeng. 8, 9 (2022). https://doi.org/10.1038/s41378-021-00332-4
- L. Kong, G. Li, Q. Su, X. Tan, X. Zhang et al., Polarization-sensitive, self-powered, and broadband semimetal MoTe2/MoS2 van der Waals heterojunction for photodetection and imaging. ACS Appl. Mater. Interfaces 15, 43135 (2023). https://doi.org/10.1021/acsami.3c07709
- A. Patra, S. Hegde, V. Mahamiya, B. Chakraborty, S.M. Jeong et al., Phase-engineered tin sulfides and their heterostructure with Ti3C2Tx MXene for all-solid-state flexible asymmetric supercapacitors. ACS Appl. Nano Mater. 7, 11666–11679 (2024). https://doi.org/10.1021/acsanm.4c01279
- W. Jin, G. Zhang, H. Wu, L. Yang, W. Zhang et al., Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale 15, 5371 (2023). https://doi.org/10.1039/D2NR06886A
- N. Kumar, P.K. Sachdeva, R. Gupta, C. Bera, Theoretical design of highly efficient 2D thermoelectric device based on Janus MoSSe and graphene heterostructure. ACS Appl. Energy Mater. 5, 9581–9586 (2022). https://doi.org/10.1021/acsaem.2c01204
- S.S. Yarajena, R. Biswas, V. Raghunathan, A.K. Naik, Quantitative probe for in-plane piezoelectric coupling in 2D materials. Sci. Rep. 11, 7066 (2021). https://doi.org/10.1038/s41598-021-86252-9
- D. Sharma, R. Kumar, A. Pal, N. Sakhuja, N. Bhat, Development of a smart and ultrafast flexible humidity sensor using the 0D/2D Au/GeS heterostructure for human respiration rate monitoring. ACS Appl. Electron. Mater. 5, 3162–3171 (2023). https://doi.org/10.1021/acsaelm.3c00236
- C. Gilardi, R.K.A. Bennett, Y. Yoon, E. Pop, H.S.P. Wong et al., Extended scale length theory for low-dimensional field-effect transistors. IEEE Trans. Electron Devices 69, 5302–5309 (2022). https://doi.org/10.1109/TED.2022.3190464
- I. Aberg, J.L. Hoyt, Hole transport in UTB MOSFETs in strained-Si directly on insulator with strained-Si thickness less than 5 nm. IEEE Electron Device Lett. 26, 661–663 (2005). https://doi.org/10.1109/LED.2005.853648
- C.D. English, K.K.H. Smithe, R.L. Xu, E. Pop, Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, in 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 5.6.1–5.6.4. https://doi.org/10.1109/IEDM.2016.7838355
- L. Yang, A. Charnas, G. Qiu, Y.M. Lin, C.C. Lu et al., How important is the metal–semiconductor contact for Schottky barrier transistors: a case study on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017). https://doi.org/10.1021/acsomega.7b00634
- W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
- L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11, 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
- M. Yu, C. Tan, Y. Yin, J. Tang, X. Gao et al., Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024). https://doi.org/10.1038/s41467-024-47974-2
- M.T. Bohr, I.A. Young, CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017). https://doi.org/10.1109/MM.2017.4241347
- P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkarc et al., Device-, circuit- & block-level evaluation of CFET in a 4 track library, 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T204–T205. https://doi.org/10.23919/VLSIT.2019.8776513
- P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7, 22333 (2015). https://doi.org/10.1021/acsami.5b06027
- M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9, 2200722 (2023). https://doi.org/10.1002/aelm.202200722
- H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13, 8692 (2021). https://doi.org/10.1021/acsami.0c17739
- J. Jiang, K. Parto, W. Cao, K. Banerjee, Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019). https://doi.org/10.1109/JEDS.2019.2925150
- J. Jiang, J. Kang, W. Cao, X. Xie, H. Zhang et al., Graphene-based tunable superconducting microwave resonators. Nano Lett. 17, 1482 (2017). https://doi.org/10.1021/acs.nanolett.6b04516
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366 (2017). https://doi.org/10.1038/nphoton.2017.75
- B. Yao, S.W. Huang, Y. Liu, A.K. Vinod, C. Choi et al., Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558, 410–414 (2018). https://doi.org/10.1038/s41586-018-0216-x
- C. Qin, K. Jia, Q. Li, T. Tan, X. Wang et al., Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9, 185 (2020). https://doi.org/10.1038/s41377-020-00419-z
- H. Zhou, S. Li, K.W. Ang, Y.W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
- B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
- M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019). https://doi.org/10.1038/s41467-019-13176-4
- L. Zhu, C.K. Nuo Peh, T. Zhu, Y.-F. Lim, G.W. Ho, Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage. J. Mater. Chem. A 5, 8343–8351 (2017). https://doi.org/10.1039/C7TA01858D
- N. Choudhary, C. Li, H.-S. Chung, J. Moore, J. Thomas et al., High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10, 10726 (2016). https://doi.org/10.1021/acsnano.6b06111
- Q. Mahmood, M.G. Kim, S. Yun, S.-M. Bak, X.-Q. Yang et al., Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures. Nano Lett. 15, 2269 (2015). https://doi.org/10.1021/nl504200y
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
- N. Sakhuja, R. Kumar, P. Katare, N. Bhat, Structure-driven, flexible, multilayered, paper-based pressure sensor for human–machine interfacing. ACS Sustain. Chem. Eng. 10, 9697–9706 (2022). https://doi.org/10.1021/acssuschemeng.1c08491
- E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, A. John-Hart, High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015). https://doi.org/10.1038/srep10257
- H. Medina, J.G. Li, T.Y. Su, Y.W. Lan, S.H. Lee et al., Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx Gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 29, 1587–1598 (2017). https://doi.org/10.1021/acs.chemmater.6b04467
- M. Derakhshi, S. Daemi, P. Shahini, A. Habibzadeh, E. Mostafavi et al., Two-dimensional nanomaterials beyond graphene for biomedical applications. J. Funct. Biomater. 13, 27 (2022). https://doi.org/10.3390/jfb13010027
- N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008). https://doi.org/10.1021/nl802412n
- L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotech. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
- J. Kim, M.S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 (2016). https://doi.org/10.1038/srep31276
- P. Li, Z. Zhang, Self-powered 2D material-based pH sensor and photodetector driven by monolayer MoSe2 piezoelectric nanogenerator. ACS Appl. Mater. Interfaces 12, 58132–58139 (2020). https://doi.org/10.1021/acsami.0c18028
- Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L1 expression in circulating tumor cells increases during radio(chemo)therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 (2019). https://doi.org/10.1038/s41598-018-36096-7
- C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
- X. Chen, Y.J. Park, M. Kang, S.K. Kang, J. Koo et al., CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 9, 1690 (2018). https://doi.org/10.1038/s41467-018-03956-9
- J. Lim, S. Lee, J. Kim, J. Hong, S. Lim et al., Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. npg Asia Mater 15, 7 (2023). https://doi.org/10.1038/s41427-023-00464-1
- P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014). https://doi.org/10.1126/science.1254642
- M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao et al., Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359
- S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102, 652–665 (2014). https://doi.org/10.1109/JPROC.2014.2304638
- I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31 (2000). https://doi.org/10.1016/S0167-7012(00)00201-3
- L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019). https://doi.org/10.1002/adfm.201901106
- A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
- L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Interfaces 13, 30797–30805 (2021). https://doi.org/10.1021/acsami.1c03202
- Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 (2021). https://doi.org/10.1038/s41467-021-23719-3
- S. Das, A. Dodda, S. Das, biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10, 3450 (2019). https://doi.org/10.1038/s41467-019-11381-9
- S. Das, A. Wali, S. Kundu, A.J. Arnold, G. Zhao et al., Satisfiability attack-resistant camouflaged two-dimensional heterostructure devices. ACS Nano 15, 3453–3467 (2021). https://doi.org/10.1021/acsnano.0c10651
- X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019). https://doi.org/10.1038/s41578-019-0136-x
- A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
- B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007). https://doi.org/10.1038/nphys544
- A. Kormányos, V. Zólyomi, V.I. Fal’ko, G. Burkard, Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B 98, 035408 (2018). https://doi.org/10.1103/PhysRevB.98.035408
- D.M. Kennes, M. Claassen, L. Xian, A. Georges, A.J. Millis et al., Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). https://doi.org/10.1038/s41567-020-01154-3
- K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
- A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
- N. ur, A. Mukherjee, X. Gao, J. Luo, B.A. McCullian et al., Excited-state spin-resonance spectroscopy of V defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022). https://doi.org/10.1038/s41467-022-30772-z
- M.R. Islam, S. Afroj, N. Karim, Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano 17, 18481–18493 (2023). https://doi.org/10.1021/acsnano.3c06181
- P. Raghavan, J.H. Ahn, M. Shelke, The role of 2D material families in energy harvesting: an editorial overview. J. Mater. Res. 37, 3857–3864 (2022). https://doi.org/10.1557/s43578-022-00721-z
- J. Wang, V. Malgras, Y. Sugahara, Y. Yamauchi, Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 12, 3563 (2021). https://doi.org/10.1038/s41467-021-23819-0
- J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
- J. Yun, I. Echols, P. Flouda, Y. Chen, S. Wang et al., Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl. Mater. Interfaces 13, 14068–14076 (2021). https://doi.org/10.1021/acsami.0c19619
- H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011). https://doi.org/10.1021/nl202675f
- X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
- R. Kumar, N. Goel, D.K. Jarwal, Y. Hu, J. Zhang et al., Strategic review on chemical vapor deposition technology-derived 2D material nanostructures for room-temperature gas sensors. J. Mater. Chem. C 11, 774–801 (2022). https://doi.org/10.1039/D2TC04188J
- R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
- S.M. Mortazavi Zanjani, M. Holt, M.M. Sadeghi, S. Rahimi, D. Akinwande, 3D integrated monolayer graphene–Si CMOS RF gas sensor platform. NPJ 2D Mater. Appl. 1, 36 (2017). https://doi.org/10.1038/s41699-017-0036-0
- B.R. Goldsmith, L. Locascio, Y. Gao, M. Lerner, A. Walker et al., Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019). https://doi.org/10.1038/s41598-019-38700-w
- N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan et al., Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20, 6473–6480 (2020). https://doi.org/10.1021/acs.nanolett.0c02174
- T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou et al., Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12, 6716 (2021). https://doi.org/10.1038/s41467-021-26740-8
- Y. Guo, Z. Li, N. An, Y. Guo, Y. Wang et al., A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34, 2207777 (2022). https://doi.org/10.1002/adma.202207777
- J. Mao, Y. Yu, L. Wang, X. Zhang, Y. Wang et al., Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 3, 1600018 (2016). https://doi.org/10.1002/advs.201600018
- M. Long, E. Liu, P. Wang, A. Gao, H. Xia et al., Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
- Q. Qiu, Z. Huang, Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 33, 2008126 (2021). https://doi.org/10.1002/adma.202008126
- T.F. Schranghamer, S.P. Stepanoff, N. Trainor, J.M. Redwing, D.E. Wolfe et al., Ultra-scaled phototransistors based on monolayer MoS2. Device 1, 100102 (2023). https://doi.org/10.1016/j.device.2023.100102
- W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16, 12922–12929 (2022). https://doi.org/10.1021/acsnano.2c05278
References
K.S. Kim, J. Kwon, H. Ryu, C. Kim, H. Kim et al., The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024). https://doi.org/10.1038/s41565-024-01695-1
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS2 electronics. Acc. Chem. Res. 48, 100–110 (2015). https://doi.org/10.1021/ar500274q
M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015). https://doi.org/10.1039/C5CS90037A
A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su et al., Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). https://doi.org/10.1038/natrevmats.2016.61
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, 2000919 (2021). https://doi.org/10.1002/smtd.202000919
H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
J. Jiang, Y. Wen, H. Wang, L. Yin, R. Cheng et al., Recent advances in 2D materials for photodetectors. Adv. Electron. Mater. 7, 2001125 (2021). https://doi.org/10.1002/aelm.202001125
A. Kushwaha, N. Goel, Edge enriched MoS2 micro flowered structure for high performance NO2 sensor. Sensors Actuators B Chem. 393, 134190 (2023). https://doi.org/10.1016/j.snb.2023.134190
Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang et al., Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30, e1706347 (2018). https://doi.org/10.1002/adma.201706347
A.C. Berends, C. de Mello-Donega, Ultrathin one- and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J. Phys. Chem. Lett. 8, 4077–4090 (2017). https://doi.org/10.1021/acs.jpclett.7b01640
Y. Chan, M.H. Naik, J.B. Haber, J.B. Neaton, S.G. Louie et al., Exciton–phonon coupling induces a new pathway for ultrafast intralayer-to-interlayer exciton transition and interlayer charge transfer in WS2–MoS2 heterostructure: a first-principles study. Nano Lett. 24, 7972 (2024). https://doi.org/10.1021/acs.nanolett.4c01508
M.H. Miah, M.U. Khandaker, M.B. Rahman, M. Nur-E-Alam, M.A. Islam, Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv. 14, 15876 (2024). https://doi.org/10.1039/D4RA01640H
S.J. Kim, H.-J. Lee, C.-H. Lee, H.W. Jang, 2D materials-based 3D integration for neuromorphic hardware. npj 2D Mater. Appl. 8, 70 (2024). https://doi.org/10.1038/s41699-024-00509-1
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
Q. Xie, C.-J. Lee, J. Xu, C. Wann, J.Y.-C. Sun et al., Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 60, 1814–1819 (2013). https://doi.org/10.1109/TED.2013.2255878
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov et al., Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011). https://doi.org/10.1038/nphys2049
G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou et al., Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016). https://doi.org/10.1021/acs.nanolett.6b03951
J. Wu, C. Tan, Z. Tan, Y. Liu, J. Yin et al., Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021 (2017). https://doi.org/10.1021/acs.nanolett.7b00335
F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
C.-H. Liu, Y.-C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273 (2014). https://doi.org/10.1038/nnano.2014.31
T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40
R. Pandey, N. Singhal, P. Kumar, K. Choudhary, S. Kumar, Graphene and its immense contribution in defense and security: a review. Anal. Chem. Lett. 12, 1–12 (2022). https://doi.org/10.1080/22297928.2021.1980099
N. Chauhan, T. Maekawa, D.N.S. Kumar, Graphene based biosensors—accelerating medical diagnostics to new-dimensions. J. Mater. Res. 32, 2860–2882 (2017). https://doi.org/10.1557/jmr.2017.91
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
A.A. Basheer, Advances in the smart materials applications in the aerospace industries. Aircr. Eng. Aerosp. Technol. 92, 1027 (2020). https://doi.org/10.1108/AEAT-02-2020-0040
M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
T. Chu, H. Ilatikhameneh, G. Klimeck, R. Rahman, Z. Chen, Electrically tunable bandgaps in bilayer MoS2. Nano Lett. 15, 8000 (2015). https://doi.org/10.1021/acs.nanolett.5b03218
E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017). https://doi.org/10.1021/acsami.6b13582
S. Aftab, H.H. Hegazy, Emerging trends in 2D TMDs photodetectors and piezo-phototronic devices. Small 19, 2205778 (2023). https://doi.org/10.1002/smll.202205778
E.C. Ahn, 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020). https://doi.org/10.1038/s41699-020-0152-0
H. Tian, C. Ren, S. Wang, Valleytronics in two-dimensional materials with line defect. Nanotechnology 33, 212001 (2022). https://doi.org/10.1088/1361-6528/ac50f2
A. Mondal, A. Vomiero, 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2208994 (2022). https://doi.org/10.1002/adfm.202208994
Z. Zhang, X. Yang, K. Liu, R. Wang, Epitaxy of 2D materials toward single crystals. Adv. Sci. 9, 2105201 (2022). https://doi.org/10.1002/advs.202105201
J. Wang, F. Ma, W. Liang, M. Sun, Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride. Mater. Today Phys. 2, 6 (2017). https://doi.org/10.1016/j.mtphys.2017.10.003
X. Li, Y. Long, L. Ma, J. Li, J. Yin et al., Coating performance of hexagonal boron nitride and graphene layers. 2D Mater. 8, 034002 (2021). https://doi.org/10.1088/2053-1583/abe777
Y. Sasama, K. Komatsu, S. Moriyama, M. Imura, T. Teraji et al., High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Mater. 6, 111105 (2018). https://doi.org/10.1063/1.5055812
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, 2101589 (2021). https://doi.org/10.1002/adma.202101589
W. Hu, L. Lin, C. Yang, J. Dai, J. Yang, Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Nano Lett. 16, 1675–1682 (2016). https://doi.org/10.1021/acs.nanolett.5b04593
X.-Q. Lu, C.-K. Wang, X.-X. Fu, Modulating the electronic structures of blue phosphorene towards spintronics. Phys. Chem. Chem. Phys. 21, 11755–11763 (2019). https://doi.org/10.1039/C9CP01684H
C. Guo, L. Wang, H. Xing, X. Chen, The study of ambipolar behavior in phosphorene field-effect transistors. J. Appl. Phys. 120, 215701 (2016). https://doi.org/10.1063/1.4970851
J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu et al., Light–matter interactions in phosphorene. Acc. Chem. Res. 49, 1806–1815 (2016). https://doi.org/10.1021/acs.accounts.6b00266
Z. Nourbakhsh, R. Asgari, Phosphorene as a nanoelectromechanical material. Phys. Rev. B 98, 125427 (2018). https://doi.org/10.1103/PhysRevB.98.125427
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
S. Mazumder, Boltzmann transport equation based modeling of phonon heat conduction: progress and challenges. Annu. Rev. Heat Transf. 24, 71 (2022). https://doi.org/10.1615/AnnualRevHeatTransfer.2022041316
D.-T. Nguyen, M. Hofmann, Y.-P. Hsieh, Graphene-Rubber Nanocomposites (CRC Press, Boca Raton, 2022), pp.19–51
B. Illing, S. Fritschi, H. Kaiser, C.L. Klix, G. Maret et al., Mermin-Wagner fluctuations in 2D amorphous solids. Proc. Natl. Acad. Sci. U.S.A. 114, 1856–1861 (2017). https://doi.org/10.1073/pnas.1612964114
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
A.F. Young, Y. Zhang, P. Kim, Experimental Manifestation of Berry Phase in Graphene, eds by H. S. Aoki, M. Dresselhaus. Physics of Graphene. NanoScience and Technology. (Springer, Cham, 2014). https://doi.org/10.1007/978-3-319-02633-6_1
C. Popovici, O. Oliveira, W. de Paula, T. Frederico, Charge confinement and Klein tunnelling from doping graphene. Phys. Rev. B 85, 235424 (2012). https://doi.org/10.1103/PhysRevB.85.235424
W. Li, X. Qian, J. Li, Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021). https://doi.org/10.1038/s41578-021-00304-0
Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019). https://doi.org/10.1002/adma.201970222
H. Ryu, Y. Lee, J.H. Jeong, Y. Lee, Y. Cheon et al., Laser-induced phase transition and patterning of hBN-encapsulated MoTe2. Small 19, 2205224 (2023). https://doi.org/10.1002/smll.202205224
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487 (2017). https://doi.org/10.1038/nature24043
Q. Huang, X. Li, M. Sun, L. Zhang, C. Song et al., The mechanistic insights into the 2H–1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater. Interfaces 4, 1700171 (2017). https://doi.org/10.1002/admi.201700171
D.H. Keum, S. Cho, J.H. Kim, D.-H. Choe, H.-J. Sung et al., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015). https://doi.org/10.1038/nphys3314
K.-A.N. Duerloo, E.J. Reed, Structural phase transitions by design in monolayer alloys. ACS Nano 10, 289–297 (2016). https://doi.org/10.1021/acsnano.5b04359
S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625 (2015). https://doi.org/10.1126/science.aab3175
Z. Yang, D. Zhang, J. Cai, C. Gong, Q. He et al., Joule heating induced non-melting phase transition and multi-level conductance in MoTe2 based phase change memory. Appl. Phys. Lett. 121, 203508 (2022). https://doi.org/10.1063/5.0127160
Y. Shuang, Q. Chen, M. Kim, Y. Wang, Y. Saito et al., NbTe4 phase-change material: breaking the phase-change temperature balance in 2D Van der Waals transition-metal binary chalcogenide. Adv. Mater. 35, 2303646 (2023). https://doi.org/10.1002/adma.202303646
L. Zhu, S.-S. Wang, S. Guan, Y. Liu, T. Zhang et al., Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2D emergent fermions. Nano Lett. 16, 6548 (2016). https://doi.org/10.1021/acs.nanolett.6b03208
S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim et al., Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
A.N. Morozovska, E.A. Eliseev, K.D. Stubbs, R. Vasudevan, Y. Kim et al., Phase diagrams of single-layer two-dimensional transition metal dichalcogenides: landau theory. Phys. Rev. B 101, 195424 (2020). https://doi.org/10.1103/PhysRevB.101.195424
L. Ju, L. Wang, X. Li, S. Moon, M. Ozerov et al., Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene. Nat. Commun. 11, 2941 (2020). https://doi.org/10.1038/s41467-020-16844-y
Z.-G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai et al., Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014). https://doi.org/10.1038/ncomms5461
H. Yoo, S. Hong, S. On, H. Ahn, H.-K. Lee et al., Chemical doping effects in multilayer MoS2 and its application in complementary inverter. ACS Appl. Mater. Interfaces 10, 23270–23276 (2018). https://doi.org/10.1021/acsami.8b08773
A. Tarasov, S. Zhang, M. Tsai, P.M. Campbell, S. Graham et al., Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 27, 1175–1181 (2015). https://doi.org/10.1002/adma.201404578
H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011). https://doi.org/10.1039/C0JM02922J
D.-H. Kang, J. Shim, S.K. Jang, J. Jeon, M.H. Jeon et al., Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 9, 1099–1107 (2015). https://doi.org/10.1021/nn5074435
J. Jiang, W. Feng, Y. Wen, L. Yin, H. Wang et al., Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv. Mater. 35, 2301668 (2023). https://doi.org/10.1002/adma.202301668
J. Dong, L. Zhang, X. Dai, F. Ding, The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020). https://doi.org/10.1038/s41467-020-19752-3
X. Wang, M. Hossain, Z. Wei, L. Xie, Growth of two-dimensional materials on hexagonal boron nitride (h-BN). Nanotechnology 30, 034003 (2019). https://doi.org/10.1088/1361-6528/aaeb70
K. Momeni, N. Sakib, D.E.C. Figueroa, S. Paul, C.Y. Chen et al., Combined experimental and computational insight into the role of substrate in the synthesis of two-dimensional WSe2. ACS Appl. Mater. Interfaces 16, 6644 (2024). https://doi.org/10.1021/acsami.3c16761
Q. Wang, N. Li, J. Tang, J. Zhu, Q. Zhang et al., Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020). https://doi.org/10.1021/acs.nanolett.0c02531
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
J. Jung, A.M. DaSilva, A.H. MacDonald, S. Adam, Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015). https://doi.org/10.1038/ncomms7308
B.H. Kim, J.Y. Kim, S.-J. Jeong, J.O. Hwang, D.H. Lee et al., Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4, 5464–5470 (2010). https://doi.org/10.1021/nn101491g
H. Su, Z. Xu, X. He, Y. Yao, X. Zheng et al., Surface energy engineering of buried interface for highly stable perovskite solar cells with efficiency over 25%. Adv. Mater. 36, 2306724 (2024). https://doi.org/10.1002/adma.202306724
L. Cai, J. He, Q. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622–2627 (2015). https://doi.org/10.1021/ja5120908
S. Wang, G.-D. Lee, S. Lee, E. Yoon, J.H. Warner, Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 10, 5419–5430 (2016). https://doi.org/10.1021/acsnano.6b01673
A. Artaud, E. Mazaleyrat, G.D. Förster, C. Tonnoir, B. Gilles et al., Depressions by stacking faults in nanorippled graphene on metals. 2D Mater. 7, 025016 (2020). https://doi.org/10.1088/2053-1583/ab6a5e
M. Schleberger, J. Kotakoski, 2D material science: defect engineering by p irradiation. Materials Basel 11, 1885 (2018). https://doi.org/10.3390/ma11101885
M. Telkhozhayeva, O. Girshevitz, Roadmap toward controlled ion beam-induced defects in 2D materials. Adv. Funct. Mater. 34, 2404615 (2024). https://doi.org/10.1002/adfm.202404615
Y. Chen, D. Lu, L. Kong, Q. Tao, L. Ma et al., Mobility enhancement of strained MoS2 transistor on flat substrate. ACS Nano 17, 14954–14962 (2023). https://doi.org/10.1021/acsnano.3c03626
P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016). https://doi.org/10.1063/PT.3.3297
D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
J. Miao, X. Liu, K. Jo, K. He, R. Saxena et al., Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces. Nano Lett. 20, 2907–2915 (2020). https://doi.org/10.1021/acs.nanolett.0c00741
A. Varghese, A.H. Pandey, P. Sharma, Y. Yin, N.V. Medhekar et al., Electrically controlled high sensitivity strain modulation in MoS2 field-effect transistors via a piezoelectric thin film on silicon substrates. Nano Lett. 24, 8472–8480 (2024). https://doi.org/10.1021/acs.nanolett.4c00357
A. Shekaari, M.R. Abolhassani, First-principles investigation of the thermodynamic properties of two-dimensional MoS2. Chin. J. Phys. 55, 105–114 (2017). https://doi.org/10.1016/j.cjph.2016.09.008
M. Ashton, K. ew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phys. Chem. C 120, 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
N. Goel, N. Utkarsha, A. Kushwaha, M. Kwoka, R. Kumar et al., Mixed-dimensional van der Waals heterostructure enabled gas sensors: fundamentals and applications. J. Mater. Chem. A 12, 5642–5667 (2024). https://doi.org/10.1039/D3TA07949J
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science (2016). https://doi.org/10.1126/science.aac9439
S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
D. Akinwande, C. Huyghebaert, C.H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18, 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
C. Fan, J. Yang, W. Ni, J. Wu, X. Liu et al., Real-time and wireless transmission of a nitrogen-doped Ti3C2Tx wearable gas sensor for efficient detection of food spoilage and ammonia leakage. ACS Sensors 9, 4870–4878 (2024). https://doi.org/10.1021/acssensors.4c01394
P. Fathi-Hafshejani, N. Azam, L. Wang, M.A. Kuroda, M.C. Hamilton et al., Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 Virus (SARS-CoV-2). ACS Nano 15, 11461 (2021). https://doi.org/10.1021/acsnano.1c01188
P. Ji, S. Yang, Y. Wang, K. Li, Y. Wang et al., High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction. Microsyst. Nanoeng. 8, 9 (2022). https://doi.org/10.1038/s41378-021-00332-4
L. Kong, G. Li, Q. Su, X. Tan, X. Zhang et al., Polarization-sensitive, self-powered, and broadband semimetal MoTe2/MoS2 van der Waals heterojunction for photodetection and imaging. ACS Appl. Mater. Interfaces 15, 43135 (2023). https://doi.org/10.1021/acsami.3c07709
A. Patra, S. Hegde, V. Mahamiya, B. Chakraborty, S.M. Jeong et al., Phase-engineered tin sulfides and their heterostructure with Ti3C2Tx MXene for all-solid-state flexible asymmetric supercapacitors. ACS Appl. Nano Mater. 7, 11666–11679 (2024). https://doi.org/10.1021/acsanm.4c01279
W. Jin, G. Zhang, H. Wu, L. Yang, W. Zhang et al., Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale 15, 5371 (2023). https://doi.org/10.1039/D2NR06886A
N. Kumar, P.K. Sachdeva, R. Gupta, C. Bera, Theoretical design of highly efficient 2D thermoelectric device based on Janus MoSSe and graphene heterostructure. ACS Appl. Energy Mater. 5, 9581–9586 (2022). https://doi.org/10.1021/acsaem.2c01204
S.S. Yarajena, R. Biswas, V. Raghunathan, A.K. Naik, Quantitative probe for in-plane piezoelectric coupling in 2D materials. Sci. Rep. 11, 7066 (2021). https://doi.org/10.1038/s41598-021-86252-9
D. Sharma, R. Kumar, A. Pal, N. Sakhuja, N. Bhat, Development of a smart and ultrafast flexible humidity sensor using the 0D/2D Au/GeS heterostructure for human respiration rate monitoring. ACS Appl. Electron. Mater. 5, 3162–3171 (2023). https://doi.org/10.1021/acsaelm.3c00236
C. Gilardi, R.K.A. Bennett, Y. Yoon, E. Pop, H.S.P. Wong et al., Extended scale length theory for low-dimensional field-effect transistors. IEEE Trans. Electron Devices 69, 5302–5309 (2022). https://doi.org/10.1109/TED.2022.3190464
I. Aberg, J.L. Hoyt, Hole transport in UTB MOSFETs in strained-Si directly on insulator with strained-Si thickness less than 5 nm. IEEE Electron Device Lett. 26, 661–663 (2005). https://doi.org/10.1109/LED.2005.853648
C.D. English, K.K.H. Smithe, R.L. Xu, E. Pop, Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, in 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 5.6.1–5.6.4. https://doi.org/10.1109/IEDM.2016.7838355
L. Yang, A. Charnas, G. Qiu, Y.M. Lin, C.C. Lu et al., How important is the metal–semiconductor contact for Schottky barrier transistors: a case study on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017). https://doi.org/10.1021/acsomega.7b00634
W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11, 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
M. Yu, C. Tan, Y. Yin, J. Tang, X. Gao et al., Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024). https://doi.org/10.1038/s41467-024-47974-2
M.T. Bohr, I.A. Young, CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017). https://doi.org/10.1109/MM.2017.4241347
P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkarc et al., Device-, circuit- & block-level evaluation of CFET in a 4 track library, 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T204–T205. https://doi.org/10.23919/VLSIT.2019.8776513
P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7, 22333 (2015). https://doi.org/10.1021/acsami.5b06027
M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9, 2200722 (2023). https://doi.org/10.1002/aelm.202200722
H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13, 8692 (2021). https://doi.org/10.1021/acsami.0c17739
J. Jiang, K. Parto, W. Cao, K. Banerjee, Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019). https://doi.org/10.1109/JEDS.2019.2925150
J. Jiang, J. Kang, W. Cao, X. Xie, H. Zhang et al., Graphene-based tunable superconducting microwave resonators. Nano Lett. 17, 1482 (2017). https://doi.org/10.1021/acs.nanolett.6b04516
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366 (2017). https://doi.org/10.1038/nphoton.2017.75
B. Yao, S.W. Huang, Y. Liu, A.K. Vinod, C. Choi et al., Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558, 410–414 (2018). https://doi.org/10.1038/s41586-018-0216-x
C. Qin, K. Jia, Q. Li, T. Tan, X. Wang et al., Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9, 185 (2020). https://doi.org/10.1038/s41377-020-00419-z
H. Zhou, S. Li, K.W. Ang, Y.W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16, 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang et al., All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019). https://doi.org/10.1038/s41467-019-13176-4
L. Zhu, C.K. Nuo Peh, T. Zhu, Y.-F. Lim, G.W. Ho, Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage. J. Mater. Chem. A 5, 8343–8351 (2017). https://doi.org/10.1039/C7TA01858D
N. Choudhary, C. Li, H.-S. Chung, J. Moore, J. Thomas et al., High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10, 10726 (2016). https://doi.org/10.1021/acsnano.6b06111
Q. Mahmood, M.G. Kim, S. Yun, S.-M. Bak, X.-Q. Yang et al., Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures. Nano Lett. 15, 2269 (2015). https://doi.org/10.1021/nl504200y
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
N. Sakhuja, R. Kumar, P. Katare, N. Bhat, Structure-driven, flexible, multilayered, paper-based pressure sensor for human–machine interfacing. ACS Sustain. Chem. Eng. 10, 9697–9706 (2022). https://doi.org/10.1021/acssuschemeng.1c08491
E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, A. John-Hart, High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015). https://doi.org/10.1038/srep10257
H. Medina, J.G. Li, T.Y. Su, Y.W. Lan, S.H. Lee et al., Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx Gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 29, 1587–1598 (2017). https://doi.org/10.1021/acs.chemmater.6b04467
M. Derakhshi, S. Daemi, P. Shahini, A. Habibzadeh, E. Mostafavi et al., Two-dimensional nanomaterials beyond graphene for biomedical applications. J. Funct. Biomater. 13, 27 (2022). https://doi.org/10.3390/jfb13010027
N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008). https://doi.org/10.1021/nl802412n
L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotech. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
J. Kim, M.S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 (2016). https://doi.org/10.1038/srep31276
P. Li, Z. Zhang, Self-powered 2D material-based pH sensor and photodetector driven by monolayer MoSe2 piezoelectric nanogenerator. ACS Appl. Mater. Interfaces 12, 58132–58139 (2020). https://doi.org/10.1021/acsami.0c18028
Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L1 expression in circulating tumor cells increases during radio(chemo)therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 (2019). https://doi.org/10.1038/s41598-018-36096-7
C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
X. Chen, Y.J. Park, M. Kang, S.K. Kang, J. Koo et al., CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 9, 1690 (2018). https://doi.org/10.1038/s41467-018-03956-9
J. Lim, S. Lee, J. Kim, J. Hong, S. Lim et al., Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. npg Asia Mater 15, 7 (2023). https://doi.org/10.1038/s41427-023-00464-1
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014). https://doi.org/10.1126/science.1254642
M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao et al., Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359
S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102, 652–665 (2014). https://doi.org/10.1109/JPROC.2014.2304638
I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31 (2000). https://doi.org/10.1016/S0167-7012(00)00201-3
L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019). https://doi.org/10.1002/adfm.201901106
A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Interfaces 13, 30797–30805 (2021). https://doi.org/10.1021/acsami.1c03202
Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 (2021). https://doi.org/10.1038/s41467-021-23719-3
S. Das, A. Dodda, S. Das, biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10, 3450 (2019). https://doi.org/10.1038/s41467-019-11381-9
S. Das, A. Wali, S. Kundu, A.J. Arnold, G. Zhao et al., Satisfiability attack-resistant camouflaged two-dimensional heterostructure devices. ACS Nano 15, 3453–3467 (2021). https://doi.org/10.1021/acsnano.0c10651
X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019). https://doi.org/10.1038/s41578-019-0136-x
A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007). https://doi.org/10.1038/nphys544
A. Kormányos, V. Zólyomi, V.I. Fal’ko, G. Burkard, Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B 98, 035408 (2018). https://doi.org/10.1103/PhysRevB.98.035408
D.M. Kennes, M. Claassen, L. Xian, A. Georges, A.J. Millis et al., Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). https://doi.org/10.1038/s41567-020-01154-3
K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021). https://doi.org/10.1038/s41467-021-23709-5
N. ur, A. Mukherjee, X. Gao, J. Luo, B.A. McCullian et al., Excited-state spin-resonance spectroscopy of V defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022). https://doi.org/10.1038/s41467-022-30772-z
M.R. Islam, S. Afroj, N. Karim, Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano 17, 18481–18493 (2023). https://doi.org/10.1021/acsnano.3c06181
P. Raghavan, J.H. Ahn, M. Shelke, The role of 2D material families in energy harvesting: an editorial overview. J. Mater. Res. 37, 3857–3864 (2022). https://doi.org/10.1557/s43578-022-00721-z
J. Wang, V. Malgras, Y. Sugahara, Y. Yamauchi, Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 12, 3563 (2021). https://doi.org/10.1038/s41467-021-23819-0
J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
J. Yun, I. Echols, P. Flouda, Y. Chen, S. Wang et al., Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl. Mater. Interfaces 13, 14068–14076 (2021). https://doi.org/10.1021/acsami.0c19619
H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011). https://doi.org/10.1021/nl202675f
X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
R. Kumar, N. Goel, D.K. Jarwal, Y. Hu, J. Zhang et al., Strategic review on chemical vapor deposition technology-derived 2D material nanostructures for room-temperature gas sensors. J. Mater. Chem. C 11, 774–801 (2022). https://doi.org/10.1039/D2TC04188J
R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
S.M. Mortazavi Zanjani, M. Holt, M.M. Sadeghi, S. Rahimi, D. Akinwande, 3D integrated monolayer graphene–Si CMOS RF gas sensor platform. NPJ 2D Mater. Appl. 1, 36 (2017). https://doi.org/10.1038/s41699-017-0036-0
B.R. Goldsmith, L. Locascio, Y. Gao, M. Lerner, A. Walker et al., Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019). https://doi.org/10.1038/s41598-019-38700-w
N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan et al., Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20, 6473–6480 (2020). https://doi.org/10.1021/acs.nanolett.0c02174
T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou et al., Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12, 6716 (2021). https://doi.org/10.1038/s41467-021-26740-8
Y. Guo, Z. Li, N. An, Y. Guo, Y. Wang et al., A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34, 2207777 (2022). https://doi.org/10.1002/adma.202207777
J. Mao, Y. Yu, L. Wang, X. Zhang, Y. Wang et al., Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 3, 1600018 (2016). https://doi.org/10.1002/advs.201600018
M. Long, E. Liu, P. Wang, A. Gao, H. Xia et al., Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
Q. Qiu, Z. Huang, Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 33, 2008126 (2021). https://doi.org/10.1002/adma.202008126
T.F. Schranghamer, S.P. Stepanoff, N. Trainor, J.M. Redwing, D.E. Wolfe et al., Ultra-scaled phototransistors based on monolayer MoS2. Device 1, 100102 (2023). https://doi.org/10.1016/j.device.2023.100102
W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16, 12922–12929 (2022). https://doi.org/10.1021/acsnano.2c05278