Breaking Boundaries: Advancing Trisulfur Radical-Mediated Catalysis for High-Performance Lithium–Sulfur Batteries
Corresponding Author: Zhen Zhou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 213
Abstract
Lithium–sulfur batteries (LSBs) have attracted significant attention due to their high theoretical energy density and low-cost raw materials. However, LSBs still face various challenges in practical applications, particularly the shuttle effect, electrode passivation, and slow kinetics. In recent years, trisulfur radicals (TRs), important intermediates in LSBs, have emerged as a promising and beyond-traditional solution to these problems, which serves as a mediated catalyst to improve the electrochemical performance of LSBs. As a system that is inconsistent with the catalytic conversion process discussed in the traditional LSBs, this review focuses on the generation, detection, promotion, and catalytic roles of TRs, especially emphasizing the formation of TRs in solid-state lapis lazuli analogs and discussing the pros and cons of high donor number solvents and/or their co-solvents in stabilizing TRs. Strategies involving homogeneous/heterogeneous catalysts are discussed for increment of TRs and enhancing catalytic reactions in LSBs. Ultimately, given TRs’ significant potential as a key factor in enhancing the performance of LSBs, future perspectives and outlooks are provided to guide the further development of TRs in LSBs. This review provides valuable insights into the design of electrolytes and catalysts for increment of TRs, paving the new practical direction and way for advanced LSBs.
Highlights:
1 The review emphasizes the formation of trisulfur radicals in solid-state lapis lazuli analogs and the role of high donor number solvents and/or their co-solvents in stabilizing trisulfur radicals.
2 The detection techniques are also discussed for monitoring the generation of trisulfur radicals, which are critical for understanding their behavior and optimizing the design of lithium–sulfur batteries.
3 The strategies involving both homogeneous and heterogeneous catalysts are summarized to increase the generation of trisulfur radicals and enhance catalytic reactions in lithium–sulfur batteries for practical applications. The strategies involving both homogeneous and heterogeneous catalysts are summarized to increase the generation of trisulfur radicals and enhance catalytic reactions in lithium–sulfur batteries for practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
- Y. Guo, Q. Niu, F. Pei, Q. Wang, Y. Zhang et al., Interface engineering toward stable lithium–sulfur batteries. Energy Environ. Sci. 17(4), 1330–1367 (2024). https://doi.org/10.1039/d3ee04183b
- T. Wang, J. He, Z. Zhu, X.B. Cheng, J. Zhu et al., Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 35(47), 2303520 (2023). https://doi.org/10.1002/adma.202303520
- M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10%3c725::AID-ADMA725%3e3.0.CO;2-Z
- H. Irfan, A.M. Shanmugharaj, Organosilane based artificial solid electrolyte interface layer for stable metallic lithium anode. Appl. Surf. Sci. 586, 152806 (2022). https://doi.org/10.1016/j.apsusc.2022.152806
- S. Zhang, S.E. Saji, Z. Yin, H. Zhang, Y. Du et al., Rare-earth incorporated alloy catalysts: synthesis, properties, and applications. Adv. Mater. 33(16), e2005988 (2021). https://doi.org/10.1002/adma.202005988
- M. Zhao, H.-J. Peng, B.-Q. Li, J.-Q. Huang, Kinetic promoters for sulfur cathodes in lithium-sulfur batteries. Acc. Chem. Res. 57, 545–557 (2024). https://doi.org/10.1021/acs.accounts.3c00698
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- J. Liu, M. Xue, Y. Zhou, Z.-Y. Wang, B. Zhang et al., Capturing polysulfides with a functional anhydride compound for lithium–sulfur batteries. ACS Appl. Energy Mater. 5(6), 7719–7727 (2022). https://doi.org/10.1021/acsaem.2c01185
- J. Wu, B. Zhang, S. Liu, Y. Song, S. Ye et al., Grafting polysulfides into a functional N-halo compound for high-performance lithium: sulfur battery. Sci. China Mater. 63(10), 2002–2012 (2020). https://doi.org/10.1007/s40843-020-1345-3
- Y.-W. Xu, B.-H. Zhang, G.-R. Li, S. Liu, X.-P. Gao, Covalently bonded sulfur anchored with thiol-modified carbon nanotube as a cathode material for lithium–sulfur batteries. ACS Appl. Energy Mater. 3(1), 487–494 (2020). https://doi.org/10.1021/acsaem.9b01761
- J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/C8EE00893K
- Y. Pang, J. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702288 (2018). https://doi.org/10.1002/aenm.201702288
- Y.Y. Wang, J.K. Gu, B.H. Zhang, G.R. Li, S. Liu et al., Specific adsorption reinforced interface enabling stable lithium metal electrode. Adv. Funct. Mater. 32(18), 2112005 (2022). https://doi.org/10.1002/adfm.202112005
- J. Wu, B. Zhang, J. Liu, S. Liu, T. Yan et al., Grafting and depositing lithium polysulfides on cathodes for cycling stability of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(34), 40685–40694 (2021). https://doi.org/10.1021/acsami.1c11904
- M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Meth. 4(6), 1900344 (2020). https://doi.org/10.1002/smtd.201900344
- G. Li, Y. Gao, X. He, Q. Huang, S. Chen et al., Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nat. Commun. 8(1), 850 (2017). https://doi.org/10.1038/s41467-017-00974-x
- X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang et al., A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). https://doi.org/10.1038/nenergy.2017.119
- H. Li, R. Meng, C. Ye, A. Tadich, W. Hua et al., Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19(6), 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
- F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium-sulfur batteries. J. Energy Chem. 76, 127–145 (2023). https://doi.org/10.1016/j.jechem.2022.08.027
- J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16, 12 (2024). https://doi.org/10.1007/s40820-023-01223-1
- H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- W. Hua, H. Li, C. Pei, J. Xia, Y. Sun et al., Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 33(38), e2101006 (2021). https://doi.org/10.1002/adma.202101006
- P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li-S chemistry. Adv. Mater. 34(51), e2207689 (2022). https://doi.org/10.1002/adma.202207689
- L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries. MRS Bull. 39(5), 436–442 (2014). https://doi.org/10.1557/mrs.2014.86
- M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, M. Musameh et al., Lithium–sulfur batteries: the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7(12), 3902–3920 (2014). https://doi.org/10.1039/C4EE02192D
- A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
- Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33(8), e2003955 (2021). https://doi.org/10.1002/adma.202003955
- F.Y. Fan, Y.-M. Chiang, Electrodeposition kinetics in Li-S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164(4), A917–A922 (2017). https://doi.org/10.1149/2.0051706jes
- H. Shin, M. Baek, A. Gupta, K. Char, A. Manthiram et al., Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001456 (2020). https://doi.org/10.1002/aenm.202001456
- W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
- H. Pan, X. Wei, W.A. Henderson, Y. Shao, J. Chen et al., On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5(16), 1500113 (2015). https://doi.org/10.1002/aenm.201500113
- Q. Zou, Y.-C. Lu, Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study. J. Phys. Chem. Lett. 7(8), 1518–1525 (2016). https://doi.org/10.1021/acs.jpclett.6b00228
- V. Gutmann, Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18(2), 225–255 (1976). https://doi.org/10.1016/S0010-8545(00)82045-7
- Q. He, Y. Gorlin, M.U.M. Patel, H.A. Gasteiger, Y.-C. Lu, Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries. J. Electrochem. Soc. 165(16), A4027–A4033 (2018). https://doi.org/10.1149/2.0991816jes
- T. Chivers, Ubiquitous trisulphur radical ion S3–. Nature 252(5478), 32–33 (1974). https://doi.org/10.1038/252032a0
- R. Linguerri, N. Komiha, J. Fabian, P. Rosmus, Electronic states of the ultramarine chromophore S3-. Z. Für Phys. Chem. 222(1), 163–176 (2008). https://doi.org/10.1524/zpch.2008.222.1.163
- T. Chivers, P.J.W. Elder, Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. Chem. Soc. Rev. 42(14), 5996–6005 (2013). https://doi.org/10.1039/c3cs60119f
- R. Steudel, T. Chivers, The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 48(12), 3279–3319 (2019). https://doi.org/10.1039/c8cs00826d
- A. Gupta, A. Bhargav, A. Manthiram, Highly solvating electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 9(6), 1803096 (2019). https://doi.org/10.1002/aenm.201803096
- G. Zhang, H.-J. Peng, C.-Z. Zhao, X. Chen, L.-D. Zhao et al., The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16732–16736 (2018). https://doi.org/10.1002/anie.201810132
- C. Barchasz, F. Molton, C. Duboc, J.-C. Leprêtre, S. Patoux et al., Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84(9), 3973–3980 (2012). https://doi.org/10.1021/ac2032244
- M. Cuisinier, C. Hart, M. Balasubramanian, A. Garsuch, L.F. Nazar, Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5(16), 1401801 (2015). https://doi.org/10.1002/aenm.201401801
- B. Zhang, J. Wu, J. Gu, S. Li, T. Yan et al., The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 6(2), 537–546 (2021). https://doi.org/10.1021/acsenergylett.0c02527
- R. Bouchal, C. Pechberty, A. Boulaoued, N. Lindahl, P. Johansson, Tri-sulfur radical trapping in lithium–sulfur batteries. J. Power Sources Adv. 28, 100153 (2024). https://doi.org/10.1016/j.powera.2024.100153
- Q. Wang, J. Zheng, E. Walter, H. Pan, D. Lv et al., Direct observation of sulfur radicals as reaction media in lithium–sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015). https://doi.org/10.1149/2.0851503jes
- R. Dou, Q. Wang, X. Ren, L. Lu, In-situ UV-vis spectroscopy of trisulfur radicals in lithium-sulfur batteries. Chem. Res. Chin. Univ. 40(2), 279–286 (2024). https://doi.org/10.1007/s40242-024-4027-3
- R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
- W. Zhang, H. Pan, N. Han, S. Feng, X. Zhang et al., Balancing adsorption, catalysis, and desorption in cathode catalyst for Li–S batteries. Adv. Energy Mater. 13(43), 2301551 (2023). https://doi.org/10.1002/aenm.202301551
- M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
- H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 8(30), 1801868 (2018). https://doi.org/10.1002/aenm.201801868
- Y. Cui, W. Fang, J. Zhang, J. Li, H. Wu et al., Controllable sulfur redox multi-pathway reactions regulated by metal-free electrocatalysts anchored with LiS3* radicals. Nano Energy 122, 109343 (2024). https://doi.org/10.1016/j.nanoen.2024.109343
- X. Song, C. Wang, Z. Shen, K. Guo, J. Wu et al., Solvated metal complexes for balancing stability and activity of sulfur free radicals. eScience 4(4), 100225 (2024). https://doi.org/10.1016/j.esci.2023.100225
- R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 62(38), e202309046 (2023). https://doi.org/10.1002/anie.202309046
- S. Kowalak, A. Jankowska, Chapter 22 - Inorganic Sulphur Pigments Based on Nanoporous Materials, 1st edn. (Elsevier, Amsterdam, 2009), pp.591–620
- M. Matin, M. Pollard, Historical accounts of cobalt ore processing from the Kashan mine, Iran. Iran 53(1), 171–183 (2015). https://doi.org/10.1080/05786967.2015.11834755
- P. Rejmak, Structural, optical, and magnetic properties of ultramarine pigments: a DFT insight. J. Phys. Chem. C 122(51), 29338–29349 (2018). https://doi.org/10.1021/acs.jpcc.8b09856
- J. Wyart, P. Bariand, J. Filippi, C. Stockton, Lapis-lazuli from sar-E-Sang, badakhshan. Afghanistan. Gems Gemol. 17(4), 184–190 (1981). https://doi.org/10.5741/gems.17.4.184
- D. Reinen, G.-G. Lindner, The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 28(2), 75–84 (1999). https://doi.org/10.1039/a704920j
- IZA-SC. Database of zeolite structures. URL: https://www.iza-structure.org/databases
- N. Gobeltz-Hautecoeur, A. Demortier, B. Lede, J.P. Lelieur, C. Duhayon, Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg. Chem. 41(11), 2848–2854 (2002). https://doi.org/10.1021/ic010822c
- Q. Gao, Y. Xiu, G.-D. Li, J.-S. Chen, Sensor material based on occluded trisulfur anionic radicals for convenient detection of trace amounts of water molecules. J. Mater. Chem. 20(16), 3307–3312 (2010). https://doi.org/10.1039/B925233A
- Q. Zhang, S. Gao, J. Yu, Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 123(9), 6039–6106 (2023). https://doi.org/10.1021/acs.chemrev.2c00315
- S. Kowalak, A. Jankowska, S. Zeidler, A.B. Wie¸ckowski, Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. J. Solid State Chem. 180(3), 1119–1124 (2007). https://doi.org/10.1016/j.jssc.2007.01.004
- H. Song, K. Münch, X. Liu, K. Shen, R. Zhang et al., All-solid-state Li–S batteries with fast solid–solid sulfur reaction. Nature 637, 846–853 (2025). https://doi.org/10.1038/s41586-024-08298-9
- B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
- B. Qi, X. Hong, Y. Jiang, J. Shi, M. Zhang et al., A review on engineering design for enhancing interfacial contact in solid-state lithium–sulfur batteries. Nano-Micro Lett. 16(1), 71 (2024). https://doi.org/10.1007/s40820-023-01306-z
- X. Chi, M. Li, X. Chen, J. Xu, X. Yin et al., Enabling high-performance all-solid-state batteries via guest wrench in zeolite strategy. J. Am. Chem. Soc. 145(44), 24116–24125 (2023). https://doi.org/10.1021/jacs.3c07858
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
- G.S. Pokrovski, L.S. Dubrovinsky, The S3- ion is stable in geological fluids at elevated temperatures and pressures. Science 331(6020), 1052–1054 (2011). https://doi.org/10.1126/science.1199911
- G.S. Pokrovski, M.A. Kokh, D. Guillaume, A.Y. Borisova, P. Gisquet et al., Sulfur radical species form gold deposits on Earth. Proc. Natl. Acad. Sci. U.S.A. 112(44), 13484–13489 (2015). https://doi.org/10.1073/pnas.1506378112
- F. Gaillard, E. Levillain, J.P. Lelieur, Polysulfides in dimethylformamide: only the radical anions S3- and S4- are reducible. J. Electroanal. Chem. 432(1–2), 129–138 (1997). https://doi.org/10.1016/S0022-0728(97)00192-7
- R. Steudel, Y. Steudel, Polysulfide chemistry in sodium–sulfur batteries and related systems—a computational study by G3X (MP2) and PCM calculations. Chem. Eur. J. 19, 3162–3176 (2013). https://doi.org/10.1002/chem.201203397
- T. Fujinaga, T. Kuwamoto, S. Okazaki, M. Hojo, Electrochemical reduction of elemental sulfur in acetonitrile. Bull. Chem. Soc. Jpn 53(10), 2851–2855 (1980). https://doi.org/10.1246/bcsj.53.2851
- S. Dev, E. Ramli, T.B. Rauchfuss, S.R. Wilson, Synthesis and structure of [M(N-methylimidazole)6]S8 (M = manganese, iron, nickel, magnesium). Polysulfide salts prepared by the reaction N-methylimidazole + metal powder + sulfur. Inorg. Chem. 30(11), 2514–2519 (1991). https://doi.org/10.1021/ic00011a011
- B. Zhang, Z. Wang, H. Ji, H. Zhang, L. Li et al., Unveiling light effect on formation of trisulfur radicals in lithium-sulfur batteries. Chem. Commun. 59(28), 4237–4240 (2023). https://doi.org/10.1039/d3cc00120b
- X. Han, X. Xu, Mechanistic insights into trisulfur radical generation in lithium–sulfur batteries. J. Mater. Chem. A 11(35), 18922–18932 (2023). https://doi.org/10.1039/d3ta03366j
- F. Liu, G. Sun, H.B. Wu, G. Chen, D. Xu et al., Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nat. Commun. 11(1), 5215 (2020). https://doi.org/10.1038/s41467-020-19070-8
- J. Xiao, J.Z. Hu, H. Chen, M. Vijayakumar, J. Zheng et al., Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 15(5), 3309–3316 (2015). https://doi.org/10.1021/acs.nanolett.5b00521
- S. Babar, C. Lekakou, Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries. Ionics 27(2), 635–642 (2021). https://doi.org/10.1007/s11581-020-03860-7
- I. Gunasekara, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries. J. Electrochem. Soc. 162(6), A1055–A1066 (2015). https://doi.org/10.1149/2.0841506jes
- T. Chivers, R.T. Oakley, Structures and spectroscopic properties of polysulfide radical anions: a theoretical perspective. Molecules 28(15), 5654 (2023). https://doi.org/10.3390/molecules28155654
- K. Park, J.H. Cho, J.-H. Jang, B.-C. Yu, A.T. De La Hoz et al., Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 8(8), 2389–2395 (2015). https://doi.org/10.1039/C5EE01809A
- H. Li, S. Chiba, Synthesis of α-tertiary amines by polysulfide anions photocatalysis via single-electron transfer and hydrogen atom transfer in relays. Chem Catal. 2(5), 1128–1142 (2022). https://doi.org/10.1016/j.checat.2022.03.006
- M.K. Mondal, L. Zhang, Z. Feng, S. Tang, R. Feng et al., Tricoordinate nontrigonal pnictogen-centered radical anions: isolation, characterization, and reactivity. Angew. Chem. Int. Ed. 58, 15829–15833 (2019). https://doi.org/10.1002/ange.201910139
- P. Liebing, M. Kühling, C. Swanson, M. Feneberg, L. Hilfert et al., Catenated and spirocyclic polychalcogenides from potassium carbonate and elemental chalcogens. Chem. Commun. 55(99), 14965–14967 (2019). https://doi.org/10.1039/c9cc08347b
- K.H. Wujcik, T.A. Pascal, C.D. Pemmaraju, D. Devaux, W.C. Stolte et al., Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium–sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first-principles calculations. Adv. Energy Mater. 5(16), 1500285 (2015). https://doi.org/10.1002/aenm.201500285
- A. Kawase, S. Shirai, Y. Yamoto, R. Arakawa, T. Takata, Electrochemical reactions of lithium–sulfur batteries: an analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 16(20), 9344–9350 (2014). https://doi.org/10.1039/C4CP00958D
- G. Zhang, Z.W. Zhang, H.J. Peng, J.Q. Huang, Q. Zhang, A toolbox for lithium–sulfur battery research: methods and protocols. Small Meth. 1(7), 1700134 (2017). https://doi.org/10.1002/smtd.201700134
- K. Mahankali, L.M.R. Arava, Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM. J. Electrochem. Soc. 169(6), 060501 (2022). https://doi.org/10.1149/1945-7111/ac70ff
- M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck et al., Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4(19), 3227–3232 (2013). https://doi.org/10.1021/jz401763d
- H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12(22), 7656–7676 (2021). https://doi.org/10.1039/d1sc00716e
- H. Tian, H. Tian, S. Wang, S. Chen, F. Zhang et al., High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat. Commun. 11(1), 5025 (2020). https://doi.org/10.1038/s41467-020-18820-y
- B. Sheng, D. Cao, C. Liu, S. Chen, L. Song, Support effects in electrocatalysis and their synchrotron radiation-based characterizations. J. Phys. Chem. Lett. 12(47), 11543–11554 (2021). https://doi.org/10.1021/acs.jpclett.1c02805
- P. Song, W. Rao, T. Chivers, S.-Y. Wang, Applications of trisulfide radical anion S3˙– in organic synthesis. Org. Chem. Front. 10(13), 3378–3400 (2023). https://doi.org/10.1039/d3qo00496a
- Z.-Y. Gu, J.-J. Cao, S.-Y. Wang, S.-J. Ji, The involvement of the trisulfur radical anion in electron-catalyzed sulfur insertion reactions: facile synthesis of benzothiazine derivatives under transition metal-free conditions. Chem. Sci. 7(7), 4067–4072 (2016). https://doi.org/10.1039/C6SC00240D
- M. Baek, H. Shin, K. Char, J.W. Choi, New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 32(52), e2005022 (2020). https://doi.org/10.1002/adma.202005022
- N. Zhong, C. Lei, R. Meng, J. Li, X. He et al., Electrolyte solvation chemistry for the solution of high-donor-number solvent for stable Li-S batteries. Small 18(16), e2200046 (2022). https://doi.org/10.1002/smll.202200046
- H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee et al., Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10(1), 188 (2019). https://doi.org/10.1038/s41467-018-07975-4
- Z. Shen, Q. Gao, X. Zhu, Z. Guo, K. Guo et al., In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries. Energy Storage Mater. 57, 299–307 (2023). https://doi.org/10.1016/j.ensm.2023.02.023
- W. Zhang, F. Ma, Q. Wu, Z. Zeng, W. Zhong et al., Dual-functional organotelluride additive for highly efficient sulfur redox kinetics and lithium regulation in lithium–sulfur batteries. Energy Environ. Mater. 6(3), e12369 (2023). https://doi.org/10.1002/eem2.12369
- P. Zeng, Z. Zhou, B. Li, H. Yu, X. Zhou et al., Insight into the catalytic role of defect-enriched vanadium sulfide for regulating the adsorption-catalytic conversion behavior of polysulfides in Li-S batteries. ACS Appl. Mater. Interfaces 14(31), 35833–35843 (2022). https://doi.org/10.1021/acsami.2c09791
- R. Xu, H. Tang, Y. Zhou, F. Wang, H. Wang et al., Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem. Sci. 13(21), 6224–6232 (2022). https://doi.org/10.1039/d2sc01353c
- Z. Xiao, Z. Yang, Z. Li, P. Li, R. Wang, Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13(3), 3404–3412 (2019). https://doi.org/10.1021/acsnano.8b09296
- M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3–NaCl–KCl). J. Electroanal. Chem. 588(2), 190–196 (2006). https://doi.org/10.1016/j.jelechem.2005.12.028
- L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
- F.Y. Fan, W. Craig Carter, Y.-M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
- H. Chu, J. Jung, H. Noh, S. Yuk, J. Lee et al., Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 10(21), 2000493 (2020). https://doi.org/10.1002/aenm.202000493
- B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang et al., Recent advances in rare earth compounds for lithium–sulfur batteries. eScience 4(3), 100180 (2024). https://doi.org/10.1016/j.esci.2023.100180
- Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li et al., Multifunctional ZnCo2O4 quantum dots encapsulated in carbon carrier for anchoring/catalyzing polysulfides and self-repairing lithium metal anode in lithium–sulfur batteries. Adv. Funct. Mater. 32, 2109462 (2021). https://doi.org/10.1002/adfm.202109462
- C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2(4), 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
- H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 14(1), 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
- T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2(2), 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
- Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium–sulfur battery. Nano-Micro Lett. 16, 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
- S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- Y. Gong, J. Li, K. Yang, S. Li, M. Xu et al., Towards practical application of Li-S battery with high sulfur loading and lean electrolyte: will carbon-based hosts win this race? Nano-Micro Lett. 15(1), 150 (2023). https://doi.org/10.1007/s40820-023-01120-7
- W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
- J. Chen, D. Wu, E. Walter, M. Engelhard, P. Bhattacharya et al., Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy 13, 267–274 (2015). https://doi.org/10.1016/j.nanoen.2015.01.031
- S. Feng, Z.-H. Fu, X. Chen, B.-Q. Li, H.-J. Peng et al., An electrocatalytic model of the sulfur reduction reaction in lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(52), e202211448 (2022). https://doi.org/10.1002/anie.202211448
- Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
- A. Kumar, A. Ghosh, M. Forsyth, D.R. MacFarlane, S. Mitra, Free-radical catalysis and enhancement of the redox kinetics for room-temperature sodium–sulfur batteries. ACS Energy Lett. 5(6), 2112–2121 (2020). https://doi.org/10.1021/acsenergylett.0c00913
References
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
Y. Guo, Q. Niu, F. Pei, Q. Wang, Y. Zhang et al., Interface engineering toward stable lithium–sulfur batteries. Energy Environ. Sci. 17(4), 1330–1367 (2024). https://doi.org/10.1039/d3ee04183b
T. Wang, J. He, Z. Zhu, X.B. Cheng, J. Zhu et al., Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 35(47), 2303520 (2023). https://doi.org/10.1002/adma.202303520
M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10%3c725::AID-ADMA725%3e3.0.CO;2-Z
H. Irfan, A.M. Shanmugharaj, Organosilane based artificial solid electrolyte interface layer for stable metallic lithium anode. Appl. Surf. Sci. 586, 152806 (2022). https://doi.org/10.1016/j.apsusc.2022.152806
S. Zhang, S.E. Saji, Z. Yin, H. Zhang, Y. Du et al., Rare-earth incorporated alloy catalysts: synthesis, properties, and applications. Adv. Mater. 33(16), e2005988 (2021). https://doi.org/10.1002/adma.202005988
M. Zhao, H.-J. Peng, B.-Q. Li, J.-Q. Huang, Kinetic promoters for sulfur cathodes in lithium-sulfur batteries. Acc. Chem. Res. 57, 545–557 (2024). https://doi.org/10.1021/acs.accounts.3c00698
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
J. Liu, M. Xue, Y. Zhou, Z.-Y. Wang, B. Zhang et al., Capturing polysulfides with a functional anhydride compound for lithium–sulfur batteries. ACS Appl. Energy Mater. 5(6), 7719–7727 (2022). https://doi.org/10.1021/acsaem.2c01185
J. Wu, B. Zhang, S. Liu, Y. Song, S. Ye et al., Grafting polysulfides into a functional N-halo compound for high-performance lithium: sulfur battery. Sci. China Mater. 63(10), 2002–2012 (2020). https://doi.org/10.1007/s40843-020-1345-3
Y.-W. Xu, B.-H. Zhang, G.-R. Li, S. Liu, X.-P. Gao, Covalently bonded sulfur anchored with thiol-modified carbon nanotube as a cathode material for lithium–sulfur batteries. ACS Appl. Energy Mater. 3(1), 487–494 (2020). https://doi.org/10.1021/acsaem.9b01761
J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/C8EE00893K
Y. Pang, J. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702288 (2018). https://doi.org/10.1002/aenm.201702288
Y.Y. Wang, J.K. Gu, B.H. Zhang, G.R. Li, S. Liu et al., Specific adsorption reinforced interface enabling stable lithium metal electrode. Adv. Funct. Mater. 32(18), 2112005 (2022). https://doi.org/10.1002/adfm.202112005
J. Wu, B. Zhang, J. Liu, S. Liu, T. Yan et al., Grafting and depositing lithium polysulfides on cathodes for cycling stability of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(34), 40685–40694 (2021). https://doi.org/10.1021/acsami.1c11904
M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Meth. 4(6), 1900344 (2020). https://doi.org/10.1002/smtd.201900344
G. Li, Y. Gao, X. He, Q. Huang, S. Chen et al., Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nat. Commun. 8(1), 850 (2017). https://doi.org/10.1038/s41467-017-00974-x
X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang et al., A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). https://doi.org/10.1038/nenergy.2017.119
H. Li, R. Meng, C. Ye, A. Tadich, W. Hua et al., Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19(6), 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium-sulfur batteries. J. Energy Chem. 76, 127–145 (2023). https://doi.org/10.1016/j.jechem.2022.08.027
J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16, 12 (2024). https://doi.org/10.1007/s40820-023-01223-1
H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
W. Hua, H. Li, C. Pei, J. Xia, Y. Sun et al., Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 33(38), e2101006 (2021). https://doi.org/10.1002/adma.202101006
P. Wang, T. Xu, B. Xi, J. Yuan, N. Song et al., A Zn8 double-cavity metallacalix[8]arene as molecular sieve to realize self-cleaning intramolecular tandem transformation of Li-S chemistry. Adv. Mater. 34(51), e2207689 (2022). https://doi.org/10.1002/adma.202207689
L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries. MRS Bull. 39(5), 436–442 (2014). https://doi.org/10.1557/mrs.2014.86
M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, M. Musameh et al., Lithium–sulfur batteries: the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7(12), 3902–3920 (2014). https://doi.org/10.1039/C4EE02192D
A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33(8), e2003955 (2021). https://doi.org/10.1002/adma.202003955
F.Y. Fan, Y.-M. Chiang, Electrodeposition kinetics in Li-S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164(4), A917–A922 (2017). https://doi.org/10.1149/2.0051706jes
H. Shin, M. Baek, A. Gupta, K. Char, A. Manthiram et al., Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001456 (2020). https://doi.org/10.1002/aenm.202001456
W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
H. Pan, X. Wei, W.A. Henderson, Y. Shao, J. Chen et al., On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5(16), 1500113 (2015). https://doi.org/10.1002/aenm.201500113
Q. Zou, Y.-C. Lu, Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study. J. Phys. Chem. Lett. 7(8), 1518–1525 (2016). https://doi.org/10.1021/acs.jpclett.6b00228
V. Gutmann, Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18(2), 225–255 (1976). https://doi.org/10.1016/S0010-8545(00)82045-7
Q. He, Y. Gorlin, M.U.M. Patel, H.A. Gasteiger, Y.-C. Lu, Unraveling the correlation between solvent properties and sulfur redox behavior in lithium-sulfur batteries. J. Electrochem. Soc. 165(16), A4027–A4033 (2018). https://doi.org/10.1149/2.0991816jes
T. Chivers, Ubiquitous trisulphur radical ion S3–. Nature 252(5478), 32–33 (1974). https://doi.org/10.1038/252032a0
R. Linguerri, N. Komiha, J. Fabian, P. Rosmus, Electronic states of the ultramarine chromophore S3-. Z. Für Phys. Chem. 222(1), 163–176 (2008). https://doi.org/10.1524/zpch.2008.222.1.163
T. Chivers, P.J.W. Elder, Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry. Chem. Soc. Rev. 42(14), 5996–6005 (2013). https://doi.org/10.1039/c3cs60119f
R. Steudel, T. Chivers, The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 48(12), 3279–3319 (2019). https://doi.org/10.1039/c8cs00826d
A. Gupta, A. Bhargav, A. Manthiram, Highly solvating electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 9(6), 1803096 (2019). https://doi.org/10.1002/aenm.201803096
G. Zhang, H.-J. Peng, C.-Z. Zhao, X. Chen, L.-D. Zhao et al., The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16732–16736 (2018). https://doi.org/10.1002/anie.201810132
C. Barchasz, F. Molton, C. Duboc, J.-C. Leprêtre, S. Patoux et al., Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84(9), 3973–3980 (2012). https://doi.org/10.1021/ac2032244
M. Cuisinier, C. Hart, M. Balasubramanian, A. Garsuch, L.F. Nazar, Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5(16), 1401801 (2015). https://doi.org/10.1002/aenm.201401801
B. Zhang, J. Wu, J. Gu, S. Li, T. Yan et al., The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 6(2), 537–546 (2021). https://doi.org/10.1021/acsenergylett.0c02527
R. Bouchal, C. Pechberty, A. Boulaoued, N. Lindahl, P. Johansson, Tri-sulfur radical trapping in lithium–sulfur batteries. J. Power Sources Adv. 28, 100153 (2024). https://doi.org/10.1016/j.powera.2024.100153
Q. Wang, J. Zheng, E. Walter, H. Pan, D. Lv et al., Direct observation of sulfur radicals as reaction media in lithium–sulfur batteries. J. Electrochem. Soc. 162, A474–A478 (2015). https://doi.org/10.1149/2.0851503jes
R. Dou, Q. Wang, X. Ren, L. Lu, In-situ UV-vis spectroscopy of trisulfur radicals in lithium-sulfur batteries. Chem. Res. Chin. Univ. 40(2), 279–286 (2024). https://doi.org/10.1007/s40242-024-4027-3
R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
W. Zhang, H. Pan, N. Han, S. Feng, X. Zhang et al., Balancing adsorption, catalysis, and desorption in cathode catalyst for Li–S batteries. Adv. Energy Mater. 13(43), 2301551 (2023). https://doi.org/10.1002/aenm.202301551
M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 8(30), 1801868 (2018). https://doi.org/10.1002/aenm.201801868
Y. Cui, W. Fang, J. Zhang, J. Li, H. Wu et al., Controllable sulfur redox multi-pathway reactions regulated by metal-free electrocatalysts anchored with LiS3* radicals. Nano Energy 122, 109343 (2024). https://doi.org/10.1016/j.nanoen.2024.109343
X. Song, C. Wang, Z. Shen, K. Guo, J. Wu et al., Solvated metal complexes for balancing stability and activity of sulfur free radicals. eScience 4(4), 100225 (2024). https://doi.org/10.1016/j.esci.2023.100225
R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 62(38), e202309046 (2023). https://doi.org/10.1002/anie.202309046
S. Kowalak, A. Jankowska, Chapter 22 - Inorganic Sulphur Pigments Based on Nanoporous Materials, 1st edn. (Elsevier, Amsterdam, 2009), pp.591–620
M. Matin, M. Pollard, Historical accounts of cobalt ore processing from the Kashan mine, Iran. Iran 53(1), 171–183 (2015). https://doi.org/10.1080/05786967.2015.11834755
P. Rejmak, Structural, optical, and magnetic properties of ultramarine pigments: a DFT insight. J. Phys. Chem. C 122(51), 29338–29349 (2018). https://doi.org/10.1021/acs.jpcc.8b09856
J. Wyart, P. Bariand, J. Filippi, C. Stockton, Lapis-lazuli from sar-E-Sang, badakhshan. Afghanistan. Gems Gemol. 17(4), 184–190 (1981). https://doi.org/10.5741/gems.17.4.184
D. Reinen, G.-G. Lindner, The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 28(2), 75–84 (1999). https://doi.org/10.1039/a704920j
IZA-SC. Database of zeolite structures. URL: https://www.iza-structure.org/databases
N. Gobeltz-Hautecoeur, A. Demortier, B. Lede, J.P. Lelieur, C. Duhayon, Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg. Chem. 41(11), 2848–2854 (2002). https://doi.org/10.1021/ic010822c
Q. Gao, Y. Xiu, G.-D. Li, J.-S. Chen, Sensor material based on occluded trisulfur anionic radicals for convenient detection of trace amounts of water molecules. J. Mater. Chem. 20(16), 3307–3312 (2010). https://doi.org/10.1039/B925233A
Q. Zhang, S. Gao, J. Yu, Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 123(9), 6039–6106 (2023). https://doi.org/10.1021/acs.chemrev.2c00315
S. Kowalak, A. Jankowska, S. Zeidler, A.B. Wie¸ckowski, Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. J. Solid State Chem. 180(3), 1119–1124 (2007). https://doi.org/10.1016/j.jssc.2007.01.004
H. Song, K. Münch, X. Liu, K. Shen, R. Zhang et al., All-solid-state Li–S batteries with fast solid–solid sulfur reaction. Nature 637, 846–853 (2025). https://doi.org/10.1038/s41586-024-08298-9
B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
B. Qi, X. Hong, Y. Jiang, J. Shi, M. Zhang et al., A review on engineering design for enhancing interfacial contact in solid-state lithium–sulfur batteries. Nano-Micro Lett. 16(1), 71 (2024). https://doi.org/10.1007/s40820-023-01306-z
X. Chi, M. Li, X. Chen, J. Xu, X. Yin et al., Enabling high-performance all-solid-state batteries via guest wrench in zeolite strategy. J. Am. Chem. Soc. 145(44), 24116–24125 (2023). https://doi.org/10.1021/jacs.3c07858
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
G.S. Pokrovski, L.S. Dubrovinsky, The S3- ion is stable in geological fluids at elevated temperatures and pressures. Science 331(6020), 1052–1054 (2011). https://doi.org/10.1126/science.1199911
G.S. Pokrovski, M.A. Kokh, D. Guillaume, A.Y. Borisova, P. Gisquet et al., Sulfur radical species form gold deposits on Earth. Proc. Natl. Acad. Sci. U.S.A. 112(44), 13484–13489 (2015). https://doi.org/10.1073/pnas.1506378112
F. Gaillard, E. Levillain, J.P. Lelieur, Polysulfides in dimethylformamide: only the radical anions S3- and S4- are reducible. J. Electroanal. Chem. 432(1–2), 129–138 (1997). https://doi.org/10.1016/S0022-0728(97)00192-7
R. Steudel, Y. Steudel, Polysulfide chemistry in sodium–sulfur batteries and related systems—a computational study by G3X (MP2) and PCM calculations. Chem. Eur. J. 19, 3162–3176 (2013). https://doi.org/10.1002/chem.201203397
T. Fujinaga, T. Kuwamoto, S. Okazaki, M. Hojo, Electrochemical reduction of elemental sulfur in acetonitrile. Bull. Chem. Soc. Jpn 53(10), 2851–2855 (1980). https://doi.org/10.1246/bcsj.53.2851
S. Dev, E. Ramli, T.B. Rauchfuss, S.R. Wilson, Synthesis and structure of [M(N-methylimidazole)6]S8 (M = manganese, iron, nickel, magnesium). Polysulfide salts prepared by the reaction N-methylimidazole + metal powder + sulfur. Inorg. Chem. 30(11), 2514–2519 (1991). https://doi.org/10.1021/ic00011a011
B. Zhang, Z. Wang, H. Ji, H. Zhang, L. Li et al., Unveiling light effect on formation of trisulfur radicals in lithium-sulfur batteries. Chem. Commun. 59(28), 4237–4240 (2023). https://doi.org/10.1039/d3cc00120b
X. Han, X. Xu, Mechanistic insights into trisulfur radical generation in lithium–sulfur batteries. J. Mater. Chem. A 11(35), 18922–18932 (2023). https://doi.org/10.1039/d3ta03366j
F. Liu, G. Sun, H.B. Wu, G. Chen, D. Xu et al., Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nat. Commun. 11(1), 5215 (2020). https://doi.org/10.1038/s41467-020-19070-8
J. Xiao, J.Z. Hu, H. Chen, M. Vijayakumar, J. Zheng et al., Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 15(5), 3309–3316 (2015). https://doi.org/10.1021/acs.nanolett.5b00521
S. Babar, C. Lekakou, Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries. Ionics 27(2), 635–642 (2021). https://doi.org/10.1007/s11581-020-03860-7
I. Gunasekara, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries. J. Electrochem. Soc. 162(6), A1055–A1066 (2015). https://doi.org/10.1149/2.0841506jes
T. Chivers, R.T. Oakley, Structures and spectroscopic properties of polysulfide radical anions: a theoretical perspective. Molecules 28(15), 5654 (2023). https://doi.org/10.3390/molecules28155654
K. Park, J.H. Cho, J.-H. Jang, B.-C. Yu, A.T. De La Hoz et al., Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 8(8), 2389–2395 (2015). https://doi.org/10.1039/C5EE01809A
H. Li, S. Chiba, Synthesis of α-tertiary amines by polysulfide anions photocatalysis via single-electron transfer and hydrogen atom transfer in relays. Chem Catal. 2(5), 1128–1142 (2022). https://doi.org/10.1016/j.checat.2022.03.006
M.K. Mondal, L. Zhang, Z. Feng, S. Tang, R. Feng et al., Tricoordinate nontrigonal pnictogen-centered radical anions: isolation, characterization, and reactivity. Angew. Chem. Int. Ed. 58, 15829–15833 (2019). https://doi.org/10.1002/ange.201910139
P. Liebing, M. Kühling, C. Swanson, M. Feneberg, L. Hilfert et al., Catenated and spirocyclic polychalcogenides from potassium carbonate and elemental chalcogens. Chem. Commun. 55(99), 14965–14967 (2019). https://doi.org/10.1039/c9cc08347b
K.H. Wujcik, T.A. Pascal, C.D. Pemmaraju, D. Devaux, W.C. Stolte et al., Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium–sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first-principles calculations. Adv. Energy Mater. 5(16), 1500285 (2015). https://doi.org/10.1002/aenm.201500285
A. Kawase, S. Shirai, Y. Yamoto, R. Arakawa, T. Takata, Electrochemical reactions of lithium–sulfur batteries: an analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 16(20), 9344–9350 (2014). https://doi.org/10.1039/C4CP00958D
G. Zhang, Z.W. Zhang, H.J. Peng, J.Q. Huang, Q. Zhang, A toolbox for lithium–sulfur battery research: methods and protocols. Small Meth. 1(7), 1700134 (2017). https://doi.org/10.1002/smtd.201700134
K. Mahankali, L.M.R. Arava, Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM. J. Electrochem. Soc. 169(6), 060501 (2022). https://doi.org/10.1149/1945-7111/ac70ff
M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck et al., Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4(19), 3227–3232 (2013). https://doi.org/10.1021/jz401763d
H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12(22), 7656–7676 (2021). https://doi.org/10.1039/d1sc00716e
H. Tian, H. Tian, S. Wang, S. Chen, F. Zhang et al., High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat. Commun. 11(1), 5025 (2020). https://doi.org/10.1038/s41467-020-18820-y
B. Sheng, D. Cao, C. Liu, S. Chen, L. Song, Support effects in electrocatalysis and their synchrotron radiation-based characterizations. J. Phys. Chem. Lett. 12(47), 11543–11554 (2021). https://doi.org/10.1021/acs.jpclett.1c02805
P. Song, W. Rao, T. Chivers, S.-Y. Wang, Applications of trisulfide radical anion S3˙– in organic synthesis. Org. Chem. Front. 10(13), 3378–3400 (2023). https://doi.org/10.1039/d3qo00496a
Z.-Y. Gu, J.-J. Cao, S.-Y. Wang, S.-J. Ji, The involvement of the trisulfur radical anion in electron-catalyzed sulfur insertion reactions: facile synthesis of benzothiazine derivatives under transition metal-free conditions. Chem. Sci. 7(7), 4067–4072 (2016). https://doi.org/10.1039/C6SC00240D
M. Baek, H. Shin, K. Char, J.W. Choi, New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 32(52), e2005022 (2020). https://doi.org/10.1002/adma.202005022
N. Zhong, C. Lei, R. Meng, J. Li, X. He et al., Electrolyte solvation chemistry for the solution of high-donor-number solvent for stable Li-S batteries. Small 18(16), e2200046 (2022). https://doi.org/10.1002/smll.202200046
H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee et al., Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10(1), 188 (2019). https://doi.org/10.1038/s41467-018-07975-4
Z. Shen, Q. Gao, X. Zhu, Z. Guo, K. Guo et al., In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries. Energy Storage Mater. 57, 299–307 (2023). https://doi.org/10.1016/j.ensm.2023.02.023
W. Zhang, F. Ma, Q. Wu, Z. Zeng, W. Zhong et al., Dual-functional organotelluride additive for highly efficient sulfur redox kinetics and lithium regulation in lithium–sulfur batteries. Energy Environ. Mater. 6(3), e12369 (2023). https://doi.org/10.1002/eem2.12369
P. Zeng, Z. Zhou, B. Li, H. Yu, X. Zhou et al., Insight into the catalytic role of defect-enriched vanadium sulfide for regulating the adsorption-catalytic conversion behavior of polysulfides in Li-S batteries. ACS Appl. Mater. Interfaces 14(31), 35833–35843 (2022). https://doi.org/10.1021/acsami.2c09791
R. Xu, H. Tang, Y. Zhou, F. Wang, H. Wang et al., Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem. Sci. 13(21), 6224–6232 (2022). https://doi.org/10.1039/d2sc01353c
Z. Xiao, Z. Yang, Z. Li, P. Li, R. Wang, Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13(3), 3404–3412 (2019). https://doi.org/10.1021/acsnano.8b09296
M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3–NaCl–KCl). J. Electroanal. Chem. 588(2), 190–196 (2006). https://doi.org/10.1016/j.jelechem.2005.12.028
L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 16(1), 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
F.Y. Fan, W. Craig Carter, Y.-M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 27(35), 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
H. Chu, J. Jung, H. Noh, S. Yuk, J. Lee et al., Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 10(21), 2000493 (2020). https://doi.org/10.1002/aenm.202000493
B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang et al., Recent advances in rare earth compounds for lithium–sulfur batteries. eScience 4(3), 100180 (2024). https://doi.org/10.1016/j.esci.2023.100180
Y. Liu, Z. Ma, G. Yang, Z. Wu, Y. Li et al., Multifunctional ZnCo2O4 quantum dots encapsulated in carbon carrier for anchoring/catalyzing polysulfides and self-repairing lithium metal anode in lithium–sulfur batteries. Adv. Funct. Mater. 32, 2109462 (2021). https://doi.org/10.1002/adfm.202109462
C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2(4), 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 14(1), 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2(2), 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium–sulfur battery. Nano-Micro Lett. 16, 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
S. Deng, W. Sun, J. Tang, M. Jafarpour, F. Nüesch et al., Multifunctional SnO2 QDs/MXene heterostructures as laminar interlayers for improved polysulfide conversion and lithium plating behavior. Nano-Micro Lett. 16(1), 229 (2024). https://doi.org/10.1007/s40820-024-01446-w
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
Y. Gong, J. Li, K. Yang, S. Li, M. Xu et al., Towards practical application of Li-S battery with high sulfur loading and lean electrolyte: will carbon-based hosts win this race? Nano-Micro Lett. 15(1), 150 (2023). https://doi.org/10.1007/s40820-023-01120-7
W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
J. Chen, D. Wu, E. Walter, M. Engelhard, P. Bhattacharya et al., Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy 13, 267–274 (2015). https://doi.org/10.1016/j.nanoen.2015.01.031
S. Feng, Z.-H. Fu, X. Chen, B.-Q. Li, H.-J. Peng et al., An electrocatalytic model of the sulfur reduction reaction in lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(52), e202211448 (2022). https://doi.org/10.1002/anie.202211448
Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
A. Kumar, A. Ghosh, M. Forsyth, D.R. MacFarlane, S. Mitra, Free-radical catalysis and enhancement of the redox kinetics for room-temperature sodium–sulfur batteries. ACS Energy Lett. 5(6), 2112–2121 (2020). https://doi.org/10.1021/acsenergylett.0c00913