Integrating Hard Silicon for High-Performance Soft Electronics via Geometry Engineering
Corresponding Author: Linwei Yu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 218
Abstract
Soft electronics, which are designed to function under mechanical deformation (such as bending, stretching, and folding), have become essential in applications like wearable electronics, artificial skin, and brain-machine interfaces. Crystalline silicon is one of the most mature and reliable materials for high-performance electronics; however, its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics. Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials, such as transforming them into thin nanomembranes or nanowires. This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics, from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates, and ultimately to shaping silicon nanowires using vapor–liquid–solid or in-plane solid–liquid–solid techniques. We explore the latest developments in Si-based soft electronic devices, with applications in sensors, nanoprobes, robotics, and brain-machine interfaces. Finally, the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics.
Highlights:
1 Crystalline silicon (c-Si) is one of the most mature and reliable materials for high-performance electronic devices and has garnered widespread attention in the field of flexible electronics.
2 This article examines the detailed transition enabled by geometry engineering from "3D bulk materials" to "2D thin films," and ultimately to "1D nanowires," highlighting the advancements and challenges in enhancing the flexibility and mechanical properties of c-Si.
3 We emphasize the forefront applications of silicon nanowires in wearable electronics and healthcare, aiming to accelerate the rapid development of c-Si within the realm of flexible electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer et al., A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), e1905279 (2020). https://doi.org/10.1002/adma.201905279
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- R.L. Crabb, F.C. Treble, Thin silicon solar cells for large flexible arrays. Nature 213(5082), 1223–1224 (1967). https://doi.org/10.1038/2131223a0
- S. Gupta, W.T. Navaraj, L. Lorenzelli, R. Dahiya, Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2, 8 (2018). https://doi.org/10.1038/s41528-018-0021-5
- Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17(1), 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
- Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14(1), 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
- M.S. Kim, A.S. Almuslem, W. Babatain, R.R. Bahabry, U.K. Das et al., Beyond flexible: unveiling the next era of flexible electronic systems. Adv. Mater. 36(51), e2406424 (2024). https://doi.org/10.1002/adma.202406424
- Y. Luo, M. Wang, C. Wan, P. Cai, X.J. Loh et al., Devising materials manufacturing toward lab-to-fab translation of flexible electronics. Adv. Mater. 32(37), e2001903 (2020). https://doi.org/10.1002/adma.202001903
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- S.K. Kim, G.H. Lee, C. Jeon, H.H. Han, S.J. Kim et al., Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv. Mater. 34(18), e2110536 (2022). https://doi.org/10.1002/adma.202110536
- A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
- K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
- K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. npj Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
- Y. Shi, J. Zhao, B. Zhang, J. Qin, X. Hu et al., Freestanding serpentine silicon strips with ultrahigh stretchability over 300% for wearable electronics. Adv. Mater. 36(24), 2313603 (2024). https://doi.org/10.1002/adma.202313603
- Y.S. Choi, H. Jeong, R.T. Yin, R. Avila, A. Pfenniger et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376(6596), 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
- Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
- Z. Hui, L. Zhang, G. Ren, G. Sun, H.-D. Yu et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. 35(28), e2211202 (2023). https://doi.org/10.1002/adma.202211202
- Y. Guo, K. Li, W. Yue, N.-Y. Kim, Y. Li et al., A rapid adaptation approach for dynamic air-writing recognition using wearable wristbands with self-supervised contrastive learning. Nano-Micro Lett. 17(1), 41 (2024). https://doi.org/10.1007/s40820-024-01545-8
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- Y. Jiang, Z. Zhang, Y.-X. Wang, D. Li, C.-T. Coen et al., Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375(6587), 1411–1417 (2022). https://doi.org/10.1126/science.abj7564
- J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- K.R. Pyun, J.A. Rogers, S.H. Ko, Materials and devices for immersive virtual reality. Nat. Rev. Mater. 7(11), 841–843 (2022). https://doi.org/10.1038/s41578-022-00501-5
- Y. Yao, W. Huang, J. Chen, X. Liu, L. Bai et al., Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 35(35), e2209906 (2023). https://doi.org/10.1002/adma.202209906
- M. Usman, S. Mendiratta, K.-L. Lu, Semiconductor metal-organic frameworks: future low-bandgap materials. Adv. Mater. 29(6), 1605071 (2017). https://doi.org/10.1002/adma.201605071
- W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
- R.W. Wimbadi, R. Djalante, From decarbonization to low carbon development and transition: a systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 256, 120307 (2020). https://doi.org/10.1016/j.jclepro.2020.120307
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124(2), 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
- A. Abbas, Y. Luo, W. Ahmad, M. Mustaqeem, L. Kong et al., Recent progress, challenges, and opportunities in 2D materials for flexible displays. Nano Today 56, 102256 (2024). https://doi.org/10.1016/j.nantod.2024.102256
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- S. Conti, G. Calabrese, K. Parvez, L. Pimpolari, F. Pieri et al., Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8(10), 651–667 (2023). https://doi.org/10.1038/s41578-023-00585-7
- C. Hou, S. Zhang, R. Liu, T. Gemming, A. Bachmatiuk et al., Boosting flexible electronics with integration of two-dimensional materials. InfoMat 6(7), e12555 (2024). https://doi.org/10.1002/inf2.12555
- A.M. Hussain, M.M. Hussain, CMOS-technology-enabled flexible and stretchable electronics for Internet of everything applications. Adv. Mater. 28(22), 4219–4249 (2016). https://doi.org/10.1002/adma.201504236
- J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extrem. Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
- A.J. Baca, M.A. Meitl, H.C. Ko, S. Mack, H.S. Kim et al., Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17(16), 3051–3062 (2007). https://doi.org/10.1002/adfm.200601161
- R. Deng, N.L. Chang, Z. Ouyang, C.M. Chong, A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 109, 532–550 (2019). https://doi.org/10.1016/j.rser.2019.04.020
- S.Y. Wang, X.P. Song, J. Xu, J.Z. Wang, L.W. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horizons 12, 1106–1132 (2025). https://doi.org/10.1039/d4mh01466a
- Q. Guo, Z. Di, M.G. Lagally, Y. Mei, Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Mater. Sci. Eng. R. Rep. 128, 1–31 (2018). https://doi.org/10.1016/j.mser.2018.02.002
- M.V. Fischetti, S.E. Laux, Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). https://doi.org/10.1063/1.363052
- M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97(1), 011101 (2004). https://doi.org/10.1063/1.1819976
- S.A. Scott, M.G. Lagally, Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys. J. Phys. D Appl. Phys. 40(4), R75–R92 (2007). https://doi.org/10.1088/0022-3727/40/4/r01
- C. Jacoboni, C. Canali, G. Ottaviani, A.A. Quaranta, A review of some charge transport properties of silicon. Solid-State Electron. 20(2), 77–89 (1977). https://doi.org/10.1016/0038-1101(77)90054-5
- J.C. Li, N.J. Dudney, X.C. Xiao, Y.T. Cheng, C.D. Liang et al., Asymmetric rate behavior of Si anodes for lithium-ion batteries: ultrafast de-lithiation versus sluggish lithiation at high current densities. Adv. Energy Mater. 5, 6 (2015). https://doi.org/10.1002/aenm.201401627
- S.-W. Hwang, G. Park, H. Cheng, J.-K. Song, S.-K. Kang et al., 25th anniversary : materials for high-performance biodegradable semiconductor devices. Adv. Mater. 26(13), 1992–2000 (2014). https://doi.org/10.1002/adma.201304821
- J. Lindroos, H. Savin, Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016). https://doi.org/10.1016/j.solmat.2015.11.047
- J.L. Benton, K. Halliburton, S. Libertino, D.J. Eaglesham, S. Coffa, Electrical signatures and thermal stability of interstitial clusters in ion implanted Si. J. Appl. Phys. 84, 4749–4756 (1998). https://doi.org/10.1063/1.368800
- T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22(20), 2228–2246 (2010). https://doi.org/10.1002/adma.200904054
- H. Abe, H. Kato, T. Baba, Specific heat capacity measurement of single-crystalline silicon as new reference material. Jpn. J. Appl. Phys. 50(11S), 11RG01 (2011). https://doi.org/10.1143/jjap.50.11rg01
- N. Yuca, T. Os, E. Arici, An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage 2(1), e94 (2020). https://doi.org/10.1002/est2.94
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34(4), e2105865 (2022). https://doi.org/10.1002/adma.202105865
- T.C. Chang, Y.C. Tsao, P.H. Chen, M.C. Tai, S.P. Huang et al., Flexible low-temperature polycrystalline silicon thin-film transistors. Mater. Today Adv. 5, 100040 (2020). https://doi.org/10.1016/j.mtadv.2019.100040
- Y. Guo, Y.-H. Li, Z. Guo, K. Kim, F.-K. Chang et al., Bio-inspired stretchable absolute pressure sensor network. Sensors 16(1), 55 (2016). https://doi.org/10.3390/s16010055
- H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008). https://doi.org/10.1038/nature07113
- Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
- J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
- J. Kim, D. Son, M. Lee, C. Song, J.K. Song et al., A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2(1), e1501101 (2016). https://doi.org/10.1126/sciadv.1501101
- Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9(2), 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
- Z. Liu, B. Wen, L. Cao, S. Zhang, Y. Lei et al., Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9(1), e1901342 (2020). https://doi.org/10.1002/adhm.201901342
- J. Yan, Y. Zhang, Z. Liu, J. Wang, J. Xu et al., Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations. Nat. Commun. 14(1), 3786 (2023). https://doi.org/10.1038/s41467-023-39524-z
- D. Li, J. Yan, Y. Zhang, J. Wang, L. Yu, Lorentz force-actuated bidirectional nanoelectromechanical switch with an ultralow operation voltage. Nano Lett. 24(37), 11403–11410 (2024). https://doi.org/10.1021/acs.nanolett.4c01999
- B.-C. Zhang, Y.-H. Shi, J. Mao, S.-Y. Huang, Z.-B. Shao et al., Single-crystalline silicon frameworks: a new platform for transparent flexible optoelectronics. Adv. Mater. 33(24), e2008171 (2021). https://doi.org/10.1002/adma.202008171
- C. Liu, B. Yao, T. Dong, H. Ma, S. Zhang et al., Highly stretchable graphene nanoribbon springs by programmable nanowire lithography. npj 2D Mater. Appl. 3, 23 (2019). https://doi.org/10.1038/s41699-019-0105-7
- R. Li, M. Li, Y. Su, J. Song, X. Ni, An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9(35), 8476–8482 (2013). https://doi.org/10.1039/C3SM51476E
- T. Takeshita, Y. Takei, T. Yamashita, A. Oouchi, T. Kobayashi, Flexible substrate with floating island structure for mounting ultra-thin silicon chips. Flex. Print. Electron. 5(2), 025001 (2020). https://doi.org/10.1088/2058-8585/ab7bc3
- J.C. Yang, S. Lee, B.S. Ma, J. Kim, M. Song et al., Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Sci. Adv. 8(22), eabn3863 (2022). https://doi.org/10.1126/sciadv.abn3863
- Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
- P.W. Barth, S.L. Bernard, J.B. Angell, Flexible circuit and sensor arrays fabricated by monolithic silicon technology. IEEE Trans. Electron Devices 32(7), 1202–1205 (1985). https://doi.org/10.1109/T-ED.1985.22101
- F. Jiang, G.-B. Lee, Y.-C. Tai, C.-M. Ho, A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens. Actuat. A Phys. 79(3), 194–203 (2000). https://doi.org/10.1016/S0924-4247(99)00277-0
- D.J. Beebe, D.D. Denton, A flexible polyimide-based package for silicon sensors. Sens. Actuat. A Phys. 44(1), 57–64 (1994). https://doi.org/10.1016/0924-4247(93)00775-Y
- A.C. Cavazos Sepulveda, M.S. Diaz Cordero, A.A.A. Carreño, J.M. Nassar, M.M. Hussain, Stretchable and foldable silicon-based electronics. Appl. Phys. Lett. 110, 4 (2017). https://doi.org/10.1063/1.4979545
- K.-L. Han, W.-B. Lee, Y.-D. Kim, J.-H. Kim, B.-D. Choi et al., Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl. Electron. Mater. 3(11), 5037–5047 (2021). https://doi.org/10.1021/acsaelm.1c00806
- C.A. Silva, J. Lv, L. Yin, I. Jeerapan, G. Innocenzi, F. Soto, Y.G. Ha, J. Wang, Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30(30), 2002041 (2020). https://doi.org/10.1002/adfm.202002041
- S.-W. Jung, J.-S. Choi, J.B. Koo, C.W. Park, B.S. Na et al., Stretchable organic thin-film transistors fabricated on elastomer substrates using polyimide stiff-island structures. ECS Solid State Lett. 4(1), P1–P3 (2015). https://doi.org/10.1149/2.0011501ssl
- H. Chang, S. Kim, T.-H. Kang, S.-W. Lee, G.-T. Yang et al., Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Appl. Mater. Interfaces 11(35), 32291–32300 (2019). https://doi.org/10.1021/acsami.9b10194
- M. Kang, R. Qu, X. Sun, Y. Yan, Z. Ma et al., Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-thermoelectric generator for distributed mini-region sensing. Adv. Mater. 35(52), e2309629 (2023). https://doi.org/10.1002/adma.202309629
- M. Miyakawa, H. Tsuji, M. Nakata, Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications. J. Soc. Inf. Disp. 30(9), 699–705 (2022). https://doi.org/10.1002/jsid.1168
- K.T. Kim, S. Moon, M. Kim, J.W. Jo, C.Y. Park et al., Highly scalable and robust mesa-island-structure metal-oxide thin-film transistors and integrated circuits enabled by stress-diffusive manipulation. Adv. Mater. 32(40), 2003276 (2020). https://doi.org/10.1002/adma.202003276
- K. Li, Y. Shuai, X. Cheng, H. Luan, S. Liu et al., Island effect in stretchable inorganic electronics. Small 18(17), e2107879 (2022). https://doi.org/10.1002/smll.202107879
- S.J. Kang, H. Hong, C. Jeong, J.S. Lee, H. Ryu et al., Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 14(9), 3253–3259 (2021). https://doi.org/10.1007/s12274-021-3400-5
- H. Wu, Y. Huang, Z. Yin, Flexible hybrid electronics: enabling integration techniques and applications. Sci. China Technol. Sci. 65(9), 1995–2006 (2022). https://doi.org/10.1007/s11431-022-2074-8
- B. Gupta, K.H. Min, Y. Lee, J. Tournet, B. Hoex et al., From rigid to flexible: progress, challenges and prospects of thin c-Si solar energy devices. Adv. Energy Mater. 14(27), 2400743 (2024). https://doi.org/10.1002/aenm.202400743
- M.J. Mirshojaeian Hosseini, R.A. Nawrocki, A review of the progress of thin-film transistors and their technologies for flexible electronics. Micromachines 12(6), 655 (2021). https://doi.org/10.3390/mi12060655
- L. Sun, G. Qin, J.-H. Seo, G.K. Celler, W. Zhou et al., 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6(22), 2553–2557 (2010). https://doi.org/10.1002/smll.201000522
- D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
- Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin et al., Flexible silicon solar cells with high power-to-weight ratios. Nature 626(7997), 105–110 (2024). https://doi.org/10.1038/s41586-023-06948-y
- J. Viventi, D.H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011). https://doi.org/10.1038/nn.2973
- G.-J. Ko, S.D. Han, J.-K. Kim, J. Zhu, W.B. Han et al., Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. npg Asia Mater. 12, 71 (2020). https://doi.org/10.1038/s41427-020-00253-0
- K.J. Yu, D. Kuzum, S.-W. Hwang, B.H. Kim, H. Juul et al., Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782–791 (2016). https://doi.org/10.1038/nmat4624
- J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), e2413404 (2025). https://doi.org/10.1002/adma.202413404
- J.P. Rojas, G.A. Torres Sevilla, M.T. Ghoneim, S.B. Inayat, S.M. Ahmed et al., Transformational silicon electronics. ACS Nano 8(2), 1468–1474 (2014). https://doi.org/10.1021/nn405475k
- S. Mack, M.A. Meitl, A.J. Baca, Z.T. Zhu, J.A. Rogers, Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88(21), 213101 (2006). https://doi.org/10.1063/1.2206688
- J. Yoon, A.J. Baca, S.-I. Park, P. Elvikis, J.B. Geddes 3rd. et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7(11), 907–915 (2008). https://doi.org/10.1038/nmat2287
- A.J. Baca, K.J. Yu, J. Xiao, S. Wang, J. Yoon et al., Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ. Sci. 3(2), 208–211 (2010). https://doi.org/10.1039/B920862C
- T.-I. Kim, Y.H. Jung, H.-J. Chung, K.J. Yu, N. Ahmed et al., Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. Appl. Phys. Lett. 102(18), 182104 (2013). https://doi.org/10.1063/1.4804139
- J.Y. Lee, J. Shin, K. Kim, J.E. Ju, A. Dutta et al., Ultrathin crystalline silicon nano and micro membranes with high areal density for low-cost flexible electronics. Small 19(39), e2302597 (2023). https://doi.org/10.1002/smll.202302597
- Y. Zhai, L. Mathew, R. Rao, D. Xu, S.K. Banerjee, High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12(11), 5609–5615 (2012). https://doi.org/10.1021/nl302735f
- S.W. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J.A. Ott et al., Layer transfer by controlled spalling. J. Phys. D Appl. Phys. 46(15), 152002 (2013). https://doi.org/10.1088/0022-3727/46/15/152002
- S. Saha, M.M. Hilali, E.U. Onyegam, D. Sarkar, D. Jawarani et al., Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates. Appl. Phys. Lett. 102(16), 163904 (2013). https://doi.org/10.1063/1.4803174
- S.W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P.A. Lauro et al., Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2(2), 141–147 (2012). https://doi.org/10.1109/JPHOTOV.2012.2184267
- R. Martini, M. Gonzalez, F. Dross, A. Masolin, J. Vaes et al. Epoxy-induced spalling of silicon. In: 2nd International Conference on Crystalline Silicon Photovoltaics (SiliconPV). 27: 567–572 (2012).
- S. Chen, Y. Dong, T.-L. Liu, J. Li, Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing. Biosens. Bioelectron. 195, 113683 (2022). https://doi.org/10.1016/j.bios.2021.113683
- C.-H. Chiang, S.M. Won, A.L. Orsborn, K.J. Yu, M. Trumpis et al., Development of a neural interface for high-definition, long-term recording in rodents and nonhuman Primates. Sci. Transl. Med. 12(538), eaay4682 (2020). https://doi.org/10.1126/scitranslmed.aay4682
- P.M. Martin, in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd edn (William Andrew Inc; Norwich, 2010).
- Y. Lin, Advanced Nano Deposition Methods (Wiley-V C H Verlag Gmbh; Weinheim, 2016).
- T. Ablekim, J.N. Duenow, X. Zheng, H. Moutinho, J. Moseley et al., Thin-film solar cells with 19% efficiency by thermal evaporation of CdSe and CdTe. ACS Energy Lett. 5(3), 892–896 (2020). https://doi.org/10.1021/acsenergylett.9b02836
- C.C. Tsai, G.B. Anderson, R. Thompson, Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma. J. Non Cryst. Solids 137–138, 673–676 (1991). https://doi.org/10.1016/s0022-3093(05)80210-8
- H. Matsumura, H. Umemoto, A. Masuda, Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon. J. Non Cryst. Solids 338, 19–26 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.02.014
- R.F. Yang, C.H. Lee, B. Cui, A. Sazonov, Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 229, 1–5 (2018). https://doi.org/10.1016/j.mseb.2017.12.005
- R. Cariou, W. Chen, I. Cosme-Bolanos, J.L. Maurice, M. Foldyna et al., Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process. Prog. Photovolt. Res. Appl. 24(8), 1075–1084 (2016). https://doi.org/10.1002/pip.2762
- P.C. van der Wilt, B.D. van Dijk, G.J. Bertens, R. Ishihara, C.I.M. Beenakker, Formation of location-controlled crystalline islands using substrate-embedded seeds in excimer-laser crystallization of silicon films. Appl. Phys. Lett. 79(12), 1819–1821 (2001). https://doi.org/10.1063/1.1402641
- L. Pereira, H. Águas, R.M.S. Martins, P. Vilarinho, E. Fortunato et al., Polycrystalline silicon obtained by metal induced crystallization using different metals. Thin Solid Films 451, 334–339 (2004). https://doi.org/10.1016/j.tsf.2003.10.124
- T.N. Nguyen, V.D. Nguyen, S. Jung, J. Yi, The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate. Microelectron. Eng. 87(11), 2163–2167 (2010). https://doi.org/10.1016/j.mee.2010.01.019
- Ö. Özmen, M. Karaman, R. Turan, Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique. Thin Solid Films 551, 181–187 (2014). https://doi.org/10.1016/j.tsf.2013.11.098
- A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi et al., Advances in top–down and Bottom–up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170(1–2), 2–27 (2012). https://doi.org/10.1016/j.cis.2011.11.001
- E. Menard, R.G. Nuzzo, J.A. Rogers, Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 86(9), 093507 (2005). https://doi.org/10.1063/1.1866637
- J.-H. Ahn, H.-S. Kim, K.J. Lee, Z. Zhu, E. Menard et al., High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett. 27(6), 460–462 (2006). https://doi.org/10.1109/LED.2006.874764
- Z.T. Zhu, E. Menard, K. Hurley, R.G. Nuzzo, J.A. Rogers, Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates. Appl. Phys. Lett. 86(13), 133507 (2005). https://doi.org/10.1063/1.1894611
- E. Menard, K.J. Lee, D.Y. Khang, R.G. Nuzzo, J.A. Rogers, A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84(26), 5398–5400 (2004). https://doi.org/10.1063/1.1767591
- H.-C. Yuan, G. Qin, G.K. Celler, Z. Ma, Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates. Appl. Phys. Lett. 95(4), 043109 (2009). https://doi.org/10.1063/1.3176407
- L. Sun, G. Qin, H. Huang, H. Zhou, N. Behdad et al., Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl. Phys. Lett. 96(1), 013509 (2010). https://doi.org/10.1063/1.3280040
- K.J. Yu, Z. Yan, M. Han, J.A. Rogers, Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 1, 4 (2017). https://doi.org/10.1038/s41528-017-0003-z
- H.-C. Yuan, Z. Ma, Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89(21), 212105 (2006). https://doi.org/10.1063/1.2397038
- H. Fang, K.J. Yu, C. Gloschat, Z. Yang, C.H. Chiang et al., Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017). https://doi.org/10.1038/s41551-017-0038
- D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006). https://doi.org/10.1126/science.1121401
- J.A. Rogers, M.G. Lagally, R.G. Nuzzo, Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477(7362), 45–53 (2011). https://doi.org/10.1038/nature10381
- M.M. Roberts, L.J. Klein, D.E. Savage, K.A. Slinker, M. Friesen et al., Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5(5), 388–393 (2006). https://doi.org/10.1038/nmat1606
- W.M. Choi, J. Song, D.Y. Khang, H. Jiang, Y.Y. Huang et al., Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
- X. Duan, T.-M. Fu, J. Liu, C.M. Lieber, Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4), 351–373 (2013). https://doi.org/10.1016/j.nantod.2013.05.001
- Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44(1), 161–192 (2015). https://doi.org/10.1039/c4cs00116h
- J.-L. Wang, M. Hassan, J.-W. Liu, S.-H. Yu, Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv. Mater. 30(48), e1803430 (2018). https://doi.org/10.1002/adma.201803430
- X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012). https://doi.org/10.1021/nn204848r
- T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube et al., Silicon nanowires–a versatile technology platform. Phys. Status Solidi RRL 7(10), 793–799 (2013). https://doi.org/10.1002/pssr.201307247
- H.D. Tong, S. Chen, W.G. van der Wiel, E.T. Carlen, A. van den Berg, Novel top–down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett. 9(3), 1015–1022 (2009). https://doi.org/10.1021/nl803181x
- J. Nakamura, K. Higuchi, K. Maenaka, Vertical Si nanowire with ultra-high-aspect-ratio by combined top–down processing technique. Microsyst. Technol. 19(3), 433–438 (2013). https://doi.org/10.1007/s00542-012-1662-2
- R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom–up and top–down paradigms. Chem. Mater. 24(11), 1975–1991 (2012). https://doi.org/10.1021/cm300570n
- N. Singh, K.D. Buddharaju, S.K. Manhas, A. Agarwal, S.C. Rustagi et al., Si, SiGe nanowire devices by top–down technology and their applications. IEEE Trans. Electron Devices 55(11), 3107–3118 (2008). https://doi.org/10.1109/TED.2008.2005154
- S. Chen, J.G. Bomer, W.G. van der Wiel, E.T. Carlen, A. van den Berg, Top–down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. ACS Nano 3(11), 3485–3492 (2009). https://doi.org/10.1021/nn901220g
- I. Park, Z. Li, A.P. Pisano, R. Stanley Williams, Top–down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 21(1), 015501 (2010). https://doi.org/10.1088/0957-4484/21/1/015501
- V.A. Sivakov, G. Brönstrup, B. Pecz, A. Berger, G.Z. Radnoczi et al., Realization of vertical and zigzag single crystalline silicon nanowire architectures. J. Phys. Chem. C 114(9), 3798–3803 (2010). https://doi.org/10.1021/jp909946x
- V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz et al., Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009). https://doi.org/10.1021/nl803641f
- L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov et al., Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res. Lett. 7(1), 524 (2012). https://doi.org/10.1186/1556-276X-7-524
- S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao et al., Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 9(1), 196 (2014). https://doi.org/10.1186/1556-276X-9-196
- W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11(12), 5252–5258 (2011). https://doi.org/10.1021/nl202674t
- C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119(15), 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
- P. Namdari, H. Daraee, A. Eatemadi, Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res. Lett. 11(1), 406 (2016). https://doi.org/10.1186/s11671-016-1618-z
- O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today 3(5–6), 12–22 (2008). https://doi.org/10.1016/S1748-0132(08)70061-6
- A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998). https://doi.org/10.1126/science.279.5348.208
- V. Schmidt, J.V. Wittemann, U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110(1), 361–388 (2010). https://doi.org/10.1021/cr900141g
- V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009). https://doi.org/10.1002/adma.200803754
- V. Schmidt, S. Senz, U. Gösele, Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5(5), 931–935 (2005). https://doi.org/10.1021/nl050462g
- Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001). https://doi.org/10.1063/1.1363692
- R.S. Wagner, W.C. Ellis, Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964). https://doi.org/10.1063/1.1753975
- J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006). https://doi.org/10.1038/nature04574
- W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387 (2006). https://doi.org/10.1088/0022-3727/39/21/R01
- S. Krylyuk, A.V. Davydov, I. Levin, Tapering control of Si nanowires grown from sicl4 at reduced pressure. ACS Nano 5, 656–664 (2011). https://doi.org/10.1021/nn102556s
- J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li et al., High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3(3), 168–173 (2008). https://doi.org/10.1038/nnano.2008.5
- Z.W. Wang, Z.Y. Li, Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett. 9(4), 1467–1471 (2009). https://doi.org/10.1021/nl803345u
- L. Yu, B. O’Donnell, P.-J. Alet, S. Conesa-Boj, F. Peiró et al., Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20(22), 225604 (2009). https://doi.org/10.1088/0957-4484/20/22/225604
- Y. Wang, V. Schmidt, S. Senz, U. Gösele, Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 1(3), 186–189 (2006). https://doi.org/10.1038/nnano.2006.133
- Y. Yao, S. Fan, Si nanowires synthesized with Cu catalyst. Mater. Lett. 61(1), 177–181 (2007). https://doi.org/10.1016/j.matlet.2006.04.045
- C.Y. Wen, M.C. Reuter, J. Tersoff, E.A. Stach, F.M. Ross, Structure, growth kinetics, and ledge flow during vapor–solid–solid growth of copper-catalyzed silicon nanowires. Nano Lett. 10, 514–519 (2010). https://doi.org/10.1021/nl903362y
- K.-I. Seo, S. Sharma, A.A. Yasseri, D.R. Stewart, T.I. Kamins, Surface charge density of unpassivated and passivated metal-catalyzed silicon nanowires. Electrochem. Solid-State Lett. 9(3), G69 (2006). https://doi.org/10.1149/1.2159295
- H. Haick, P.T. Hurley, A.I. Hochbaum, P. Yang, N.S. Lewis, Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J. Am. Chem. Soc. 128(28), 8990–8991 (2006). https://doi.org/10.1021/ja056785w
- B.S. Kim, T.W. Koo, J.H. Lee, D.S. Kim, Y.C. Jung et al., Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 9(2), 864–869 (2009). https://doi.org/10.1021/nl803752w
- Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012). https://doi.org/10.1021/nl300256r
- B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009). https://doi.org/10.1038/nnano.2009.304
- L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013). https://doi.org/10.1021/nl304435z
- S. Vlassov, S. Oras, B. Polyakov, E. Butanovs, A. Kyritsakis et al., Kinking in semiconductor nanowires: a review. Cryst. Growth Des. 22(1), 871–892 (2022). https://doi.org/10.1021/acs.cgd.1c00802
- Y. Zhao, J. Yao, L. Xu, M.N. Mankin, Y. Zhu et al., Shape-controlled deterministic assembly of nanowires. Nano Lett. 16(4), 2644–2650 (2016). https://doi.org/10.1021/acs.nanolett.6b00292
- Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14(8), 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
- S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
- F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5(1), 672–678 (2011). https://doi.org/10.1021/nn103189z
- L. Yu, P. Roca i Cabarrocas, Initial nucleation and growth of in-plane solid-liquid-solid silicon nanowires catalyzed by indium. Phys. Rev. B 80(8), 085313 (2009). https://doi.org/10.1103/physrevb.80.085313
- Y. Sun, T. Dong, L. Yu, J. Xu, K. Chen, Planar growth, integration, and applications of semiconducting nanowires. Adv. Mater. 32(27), e1903945 (2020). https://doi.org/10.1002/adma.201903945
- M. Xu, Z. Xue, L. Yu, S. Qian, Z. Fan et al., Operating principles of in-plane silicon nanowires at simple step-edges. Nanoscale 7(12), 5197–5202 (2015). https://doi.org/10.1039/c4nr06531j
- L. Yu, M. Oudwan, O. Moustapha, F. Fortuna, P. Roca I Cabarrocas, Guided growth of in-plane silicon nanowires Appl. Phys. Lett. 95(11), 113106 (2009). https://doi.org/10.1063/1.3227667
- R. Yuan, W. Qian, Z. Liu, J. Wang, J. Xu et al., Designable integration of silicide nanowire springs as ultra-compact and stretchable electronic interconnections. Small 18(6), e2104690 (2022). https://doi.org/10.1002/smll.202104690
- Z. Xue, M. Sun, T. Dong, Z. Tang, Y. Zhao et al., Deterministic line-shape programming of silicon nanowires for extremely stretchable springs and electronics. Nano Lett. 17(12), 7638–7646 (2017). https://doi.org/10.1021/acs.nanolett.7b03658
- H. Ma, R. Yuan, J. Wang, Y. Shi, J. Xu et al., Cylindrical line-feeding growth of free-standing silicon nanohelices as elastic springs and resonators. Nano Lett. 20(7), 5072–5080 (2020). https://doi.org/10.1021/acs.nanolett.0c01265
- K. Sim, Y. Li, J. Song, C. Yu, Biaxially stretchable ultrathin Si enabled by serpentine structures on prestrained elastomers. Adv. Mater. Technol. 4(1), 1800489 (2019). https://doi.org/10.1002/admt.201800489
- F.W. DelRio, R.F. Cook, B.L. Boyce, Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2(2), 021303 (2015). https://doi.org/10.1063/1.4919540
- H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang et al., Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2(8), e1501382 (2016). https://doi.org/10.1126/sciadv.1501382
- M.N. Esfahani, B.E. Alaca, A review on size-dependent mechanical properties of nanowires. Adv. Eng. Mater. 21(8), 1900192 (2019). https://doi.org/10.1002/adem.201900192
- Q. Liu, S. Shen, On the large-strain plasticity of silicon nanowires: effects of axial orientation and surface. Int. J. Plast. 38, 146–158 (2012). https://doi.org/10.1016/j.ijplas.2012.05.008
- K.W. Kang, W. Cai, Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int. J. Plast. 26, 1387–1401 (2010). https://doi.org/10.1016/j.ijplas.2010.02.001
- Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009). https://doi.org/10.1021/nl902132w
- B.N. Jaya, C. Kirchlechner, G. Dehm, Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J. Mater. Res. 30(5), 686–698 (2015). https://doi.org/10.1557/jmr.2015.2
- K. Zheng, X. Han, L. Wang, Y. Zhang, Y. Yue et al., Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9(6), 2471–2476 (2009). https://doi.org/10.1021/nl9012425
- T. Takahashi, K. Takei, J.C. Ho, Y.-L. Chueh, Z. Fan et al., Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 131(6), 2102–2103 (2009). https://doi.org/10.1021/ja8099954
- C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang et al., Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires. Small 7(20), 2899–2905 (2011). https://doi.org/10.1002/smll.201101157
- C.M. Hangarter, N.V. Myung, Magnetic alignment of nanowires. Chem. Mater. 17(6), 1320–1324 (2005). https://doi.org/10.1021/cm047955r
- Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001). https://doi.org/10.1126/science.291.5504.630
- G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007). https://doi.org/10.1038/nnano.2007.150
- D.L. Fan, F.Q. Zhu, R.C. Cammarata, C.L. Chien, Manipulation of nanowires in suspension by AC electric fields. Appl. Phys. Lett. 85(18), 4175–4177 (2004). https://doi.org/10.1063/1.1812364
- R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. Lieber et al., Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13(22), 8906–8912 (2005). https://doi.org/10.1364/opex.13.008906
- J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka et al., Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17(10), 2567–2573 (2006). https://doi.org/10.1088/0957-4484/17/10/021
- D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003). https://doi.org/10.1021/nl0345062
- J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013). https://doi.org/10.1038/nnano.2013.55
- Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley et al., Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008). https://doi.org/10.1021/nl071626r
- X. Song, T. Zhang, L. Wu, R. Hu, W. Qian et al., Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv. Sci. 9(9), e2105623 (2022). https://doi.org/10.1002/advs.202105623
- M. Sharma, P.R. Pudasaini, F. Ruiz-Zepeda, D. Elam, A.A. Ayon, Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 6(6), 4356–4363 (2014). https://doi.org/10.1021/am500063w
- K.-Q. Peng, S.-T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23(2), 198–215 (2011). https://doi.org/10.1002/adma.201002410
- P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish et al., Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11(6), 704–737 (2016). https://doi.org/10.1016/j.nantod.2016.10.001
- S.M. Lee, R. Biswas, W.G. Li, D. Kang, L. Chan et al., Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano 8, 10507–10516 (2014). https://doi.org/10.1021/nn503884z
- X. Sun, T. Zhang, J. Wang, F. Yang, L. Xu et al., Firmly standing three-dimensional radial junctions on soft aluminum foils enable extremely low cost flexible thin film solar cells with very high power-to-weight performance. Nano Energy 53, 83–90 (2018). https://doi.org/10.1016/j.nanoen.2018.08.038
- S. Zhang, T. Zhang, Z. Liu, J. Wang, L. Yu et al., Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio. Nano Energy 86, 106121 (2021). https://doi.org/10.1016/j.nanoen.2021.106121
- S. Wang, S. Zhang, Z. Liu, J. Wang, J. Xu et al., High-performance radial junction solar cells on ZnO coated stainless steel with excellent flexibility and durability. Nano Energy 122, 109262 (2024). https://doi.org/10.1016/j.nanoen.2024.109262
- B. Shao, Y. Wu, Z. Song, H. Yang, X. Chen et al., Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy 94, 106917 (2022). https://doi.org/10.1016/j.nanoen.2022.106917
- J. Choi, K. Cho, S. Kim, Flexible thermoelectric generators composed of n-and p-type silicon nanowires fabricated by top–down method. Adv. Energy Mater. 7(7), 1602138 (2017). https://doi.org/10.1002/aenm.201602138
- B. Sun, M. Shao, S. Lee, Nanostructured silicon used for flexible and mobile electricity generation. Adv. Mater. 28(47), 10539–10547 (2016). https://doi.org/10.1002/adma.201601012
- Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021). https://doi.org/10.3389/fmats.2021.611078
- A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg et al., Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133(51), 20914–20921 (2011). https://doi.org/10.1021/ja208232h
- D. Storan, S.A. Ahad, R. Forde, S. Kilian, T.E. Adegoke et al., Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Mater. Today Energy 27, 101030 (2022). https://doi.org/10.1016/j.mtener.2022.101030
- X. Wang, G. Li, M.H. Seo, G. Lui, F.M. Hassan et al., Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 9(11), 9551–9558 (2017). https://doi.org/10.1021/acsami.6b12080
- Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan et al., A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain. Energy Fuels 4(4), 1577–1594 (2020). https://doi.org/10.1039/C9SE01165J
- A. Vlad, A.L. Reddy, A. Ajayan, N. Singh, J.F. Gohy et al., Roll up nanowire battery from silicon chips. Proc. Natl. Acad. Sci. U.S.A. 109(38), 15168–15173 (2012). https://doi.org/10.1073/pnas.1208638109
- P. Su, Z. Zhang, L. Luo, Z. Zhang, C. Lan et al., Silicon nanowire array weaved by carbon chains for stretchable lithium-ion battery anode. Small 20(18), e2307716 (2024). https://doi.org/10.1002/smll.202307716
- T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose et al., Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008). https://doi.org/10.1088/0957-4484/19/29/295203
- S. Zhang, L. Yu, 3D radial junctions for robust and flexible optoelectronics. Adv. Opt. Mater. 12(9), 2302121 (2024). https://doi.org/10.1002/adom.202302121
- D.L. Staebler, C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31(4), 292–294 (1977). https://doi.org/10.1063/1.89674
- S. Misra, L. Yu, W. Chen, M. Foldyna, P.R.I. Cabarrocas, A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells. J. Phys. D Appl. Phys. 47(39), 393001 (2014). https://doi.org/10.1088/0022-3727/47/39/393001
- I. Hwang, H.-D. Um, B.-S. Kim, M. Wober, K. Seo, Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires. Energy Environ. Sci. 11(3), 641–647 (2018). https://doi.org/10.1039/C7EE03340K
- J. Zhu, T. Wang, F. Fan, L. Mei, B. Lu, Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10(9), 8243–8251 (2016). https://doi.org/10.1021/acsnano.6b04522
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- C.-B. Chang, C.-Y. Tsai, K.-T. Chen, H.-Y. Tuan, Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl. Energy Mater. 4(4), 3160–3168 (2021). https://doi.org/10.1021/acsaem.0c02932
- C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954). https://doi.org/10.1103/physrev.94.42
- R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
- B.-C. Zhang, H. Wang, Y. Zhao, F. Li, X.-M. Ou et al., Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 8(4), 2123–2128 (2016). https://doi.org/10.1039/c5nr07546g
- T. Dong, Y. Sun, Z. Zhu, X. Wu, J. Wang et al., Monolithic integration of silicon nanowire networks as a soft wafer for highly stretchable and transparent electronics. Nano Lett. 19(9), 6235–6243 (2019). https://doi.org/10.1021/acs.nanolett.9b02291
- P. Serre, C. Ternon, V. Stambouli, P. Periwal, T. Baron, Fabrication of silicon nanowire networks for biological sensing. Sens. Actuat. B Chem. 182, 390–395 (2013). https://doi.org/10.1016/j.snb.2013.03.022
- D. Karnaushenko, B. Ibarlucea, S. Lee, G. Lin, L. Baraban et al., Light weight and flexible high-performance diagnostic platform. Adv. Healthc. Mater. 4, 1517–1525 (2015). https://doi.org/10.1002/adhm.201500128
- S.K. Singh, Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv. 4(102), 58674–58698 (2014). https://doi.org/10.1039/C4RA08847F
- S. He, B. Song, D. Li, C. Zhu, W. Qi et al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20(3), 453–459 (2010). https://doi.org/10.1002/adfm.200901639
- N. Li, C. Chang, W. Pan, B. Tang, A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew. Chem. Int. Ed. 51(30), 7426–7430 (2012). https://doi.org/10.1002/anie.201203767
- C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller et al., A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett. 13(4), 1489–1494 (2013). https://doi.org/10.1021/nl304561g
- O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian et al., Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5(6), 1003–1008 (2005). https://doi.org/10.1021/nl0502569
- X.X. Cao, L.X. Mu, M. Chen, C.C. Bu, S. Liang et al., Single silicon nanowire-based fluorescent sensor for endogenous hypochlorite in an individual cell. Adv. Biosyst. 2(12), 1800213 (2018). https://doi.org/10.1002/adbi.201800213
- M. Chen, L. Mu, S. Wang, X. Cao, S. Liang et al., A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chem. Neurosci. 11(9), 1283–1290 (2020). https://doi.org/10.1021/acschemneuro.0c00041
- X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
- B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010). https://doi.org/10.1126/science.1192033
- L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14(6), 3602–3607 (2014). https://doi.org/10.1021/nl5012855
- Z. Liu, J. Yan, H. Ma, T. Hu, J. Wang et al., Ab initio design, shaping, and assembly of free-standing silicon nanoprobes. Nano Lett. 21(7), 2773–2779 (2021). https://doi.org/10.1021/acs.nanolett.0c04804
- R. Parameswaran, J.L. Carvalho-de-Souza, Y. Jiang, M.J. Burke, J.F. Zimmerman et al., Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13(3), 260–266 (2018). https://doi.org/10.1038/s41565-017-0041-7
- R. Parameswaran, K. Koehler, M.Y. Rotenberg, M.J. Burke, J. Kim et al., Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc. Natl. Acad. Sci. U.S.A. 116(2), 413–421 (2019). https://doi.org/10.1073/pnas.1816428115
- S. Zhang, T. Zhang, Z. Liu, J. Wang, J. Xu et al., Flexible and robust 3D a-SiGe radial junction near-infrared photodetectors for rapid sphygmic signal monitoring. Adv. Funct. Mater. 32(2), 2107040 (2022). https://doi.org/10.1002/adfm.202107040
- B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui et al., Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012). https://doi.org/10.1038/nmat3404
- Y. Jiang, X. Li, B. Liu, J. Yi, Y. Fang et al., Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2(7), 508–521 (2018). https://doi.org/10.1038/s41551-018-0230-1
- Y. Zhang, J. Yan, D. Li, W. Qian, Y. Qi, L. Wu, Z. Liu, J. Wang, J. Xu, L. Yu, Single-nanowire-morphed mechanical slingshot for directional shooting delivery of micro-payloads. Nanotechnology 34(41), 415604 (2023). https://doi.org/10.1088/1361-6528/ace5b5
- S.W. Lee, S.J. Park, E.E. Campbell, Y.W. Park, A fast and low-power microelectromechanical system-based non-volatile memory device. Nat. Commun. 2, 220 (2011). https://doi.org/10.1038/ncomms1227
- E. Jo, Y. Kang, S. Sim, H. Lee, J. Kim, High-temperature-operable electromechanical computing units enabled by aligned carbon nanotube arrays. ACS Nano 17(14), 13310–13318 (2023). https://doi.org/10.1021/acsnano.3c01304
- R. Yuan, W. Qian, Y. Zhang, Z. Liu, J. Wang et al., Orthogonal-stacking integration of highly conductive silicide nanowire network as flexible and transparent thin films. Adv. Electron. Mater. 9(7), 2201185 (2023). https://doi.org/10.1002/aelm.202201185
References
Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer et al., A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), e1905279 (2020). https://doi.org/10.1002/adma.201905279
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
R.L. Crabb, F.C. Treble, Thin silicon solar cells for large flexible arrays. Nature 213(5082), 1223–1224 (1967). https://doi.org/10.1038/2131223a0
S. Gupta, W.T. Navaraj, L. Lorenzelli, R. Dahiya, Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2, 8 (2018). https://doi.org/10.1038/s41528-018-0021-5
Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17(1), 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14(1), 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
M.S. Kim, A.S. Almuslem, W. Babatain, R.R. Bahabry, U.K. Das et al., Beyond flexible: unveiling the next era of flexible electronic systems. Adv. Mater. 36(51), e2406424 (2024). https://doi.org/10.1002/adma.202406424
Y. Luo, M. Wang, C. Wan, P. Cai, X.J. Loh et al., Devising materials manufacturing toward lab-to-fab translation of flexible electronics. Adv. Mater. 32(37), e2001903 (2020). https://doi.org/10.1002/adma.202001903
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
S.K. Kim, G.H. Lee, C. Jeon, H.H. Han, S.J. Kim et al., Bimetallic nanocatalysts immobilized in nanoporous hydrogels for long-term robust continuous glucose monitoring of smart contact lens. Adv. Mater. 34(18), e2110536 (2022). https://doi.org/10.1002/adma.202110536
A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. npj Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
Y. Shi, J. Zhao, B. Zhang, J. Qin, X. Hu et al., Freestanding serpentine silicon strips with ultrahigh stretchability over 300% for wearable electronics. Adv. Mater. 36(24), 2313603 (2024). https://doi.org/10.1002/adma.202313603
Y.S. Choi, H. Jeong, R.T. Yin, R. Avila, A. Pfenniger et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376(6596), 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
Z. Hui, L. Zhang, G. Ren, G. Sun, H.-D. Yu et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. 35(28), e2211202 (2023). https://doi.org/10.1002/adma.202211202
Y. Guo, K. Li, W. Yue, N.-Y. Kim, Y. Li et al., A rapid adaptation approach for dynamic air-writing recognition using wearable wristbands with self-supervised contrastive learning. Nano-Micro Lett. 17(1), 41 (2024). https://doi.org/10.1007/s40820-024-01545-8
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
Y. Jiang, Z. Zhang, Y.-X. Wang, D. Li, C.-T. Coen et al., Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375(6587), 1411–1417 (2022). https://doi.org/10.1126/science.abj7564
J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop et al., A tissue-like neurotransmitter sensor for the brain and gut. Nature 606(7912), 94–101 (2022). https://doi.org/10.1038/s41586-022-04615-2
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
K.R. Pyun, J.A. Rogers, S.H. Ko, Materials and devices for immersive virtual reality. Nat. Rev. Mater. 7(11), 841–843 (2022). https://doi.org/10.1038/s41578-022-00501-5
Y. Yao, W. Huang, J. Chen, X. Liu, L. Bai et al., Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 35(35), e2209906 (2023). https://doi.org/10.1002/adma.202209906
M. Usman, S. Mendiratta, K.-L. Lu, Semiconductor metal-organic frameworks: future low-bandgap materials. Adv. Mater. 29(6), 1605071 (2017). https://doi.org/10.1002/adma.201605071
W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
R.W. Wimbadi, R. Djalante, From decarbonization to low carbon development and transition: a systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 256, 120307 (2020). https://doi.org/10.1016/j.jclepro.2020.120307
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124(2), 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
A. Abbas, Y. Luo, W. Ahmad, M. Mustaqeem, L. Kong et al., Recent progress, challenges, and opportunities in 2D materials for flexible displays. Nano Today 56, 102256 (2024). https://doi.org/10.1016/j.nantod.2024.102256
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
S. Conti, G. Calabrese, K. Parvez, L. Pimpolari, F. Pieri et al., Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8(10), 651–667 (2023). https://doi.org/10.1038/s41578-023-00585-7
C. Hou, S. Zhang, R. Liu, T. Gemming, A. Bachmatiuk et al., Boosting flexible electronics with integration of two-dimensional materials. InfoMat 6(7), e12555 (2024). https://doi.org/10.1002/inf2.12555
A.M. Hussain, M.M. Hussain, CMOS-technology-enabled flexible and stretchable electronics for Internet of everything applications. Adv. Mater. 28(22), 4219–4249 (2016). https://doi.org/10.1002/adma.201504236
J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extrem. Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
A.J. Baca, M.A. Meitl, H.C. Ko, S. Mack, H.S. Kim et al., Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17(16), 3051–3062 (2007). https://doi.org/10.1002/adfm.200601161
R. Deng, N.L. Chang, Z. Ouyang, C.M. Chong, A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 109, 532–550 (2019). https://doi.org/10.1016/j.rser.2019.04.020
S.Y. Wang, X.P. Song, J. Xu, J.Z. Wang, L.W. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horizons 12, 1106–1132 (2025). https://doi.org/10.1039/d4mh01466a
Q. Guo, Z. Di, M.G. Lagally, Y. Mei, Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Mater. Sci. Eng. R. Rep. 128, 1–31 (2018). https://doi.org/10.1016/j.mser.2018.02.002
M.V. Fischetti, S.E. Laux, Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). https://doi.org/10.1063/1.363052
M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97(1), 011101 (2004). https://doi.org/10.1063/1.1819976
S.A. Scott, M.G. Lagally, Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys. J. Phys. D Appl. Phys. 40(4), R75–R92 (2007). https://doi.org/10.1088/0022-3727/40/4/r01
C. Jacoboni, C. Canali, G. Ottaviani, A.A. Quaranta, A review of some charge transport properties of silicon. Solid-State Electron. 20(2), 77–89 (1977). https://doi.org/10.1016/0038-1101(77)90054-5
J.C. Li, N.J. Dudney, X.C. Xiao, Y.T. Cheng, C.D. Liang et al., Asymmetric rate behavior of Si anodes for lithium-ion batteries: ultrafast de-lithiation versus sluggish lithiation at high current densities. Adv. Energy Mater. 5, 6 (2015). https://doi.org/10.1002/aenm.201401627
S.-W. Hwang, G. Park, H. Cheng, J.-K. Song, S.-K. Kang et al., 25th anniversary : materials for high-performance biodegradable semiconductor devices. Adv. Mater. 26(13), 1992–2000 (2014). https://doi.org/10.1002/adma.201304821
J. Lindroos, H. Savin, Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016). https://doi.org/10.1016/j.solmat.2015.11.047
J.L. Benton, K. Halliburton, S. Libertino, D.J. Eaglesham, S. Coffa, Electrical signatures and thermal stability of interstitial clusters in ion implanted Si. J. Appl. Phys. 84, 4749–4756 (1998). https://doi.org/10.1063/1.368800
T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22(20), 2228–2246 (2010). https://doi.org/10.1002/adma.200904054
H. Abe, H. Kato, T. Baba, Specific heat capacity measurement of single-crystalline silicon as new reference material. Jpn. J. Appl. Phys. 50(11S), 11RG01 (2011). https://doi.org/10.1143/jjap.50.11rg01
N. Yuca, T. Os, E. Arici, An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage 2(1), e94 (2020). https://doi.org/10.1002/est2.94
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34(4), e2105865 (2022). https://doi.org/10.1002/adma.202105865
T.C. Chang, Y.C. Tsao, P.H. Chen, M.C. Tai, S.P. Huang et al., Flexible low-temperature polycrystalline silicon thin-film transistors. Mater. Today Adv. 5, 100040 (2020). https://doi.org/10.1016/j.mtadv.2019.100040
Y. Guo, Y.-H. Li, Z. Guo, K. Kim, F.-K. Chang et al., Bio-inspired stretchable absolute pressure sensor network. Sensors 16(1), 55 (2016). https://doi.org/10.3390/s16010055
H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205), 748–753 (2008). https://doi.org/10.1038/nature07113
Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
J. Kim, D. Son, M. Lee, C. Song, J.K. Song et al., A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2(1), e1501101 (2016). https://doi.org/10.1126/sciadv.1501101
Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai et al., Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9(2), 142–147 (2014). https://doi.org/10.1038/nnano.2013.273
Z. Liu, B. Wen, L. Cao, S. Zhang, Y. Lei et al., Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9(1), e1901342 (2020). https://doi.org/10.1002/adhm.201901342
J. Yan, Y. Zhang, Z. Liu, J. Wang, J. Xu et al., Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations. Nat. Commun. 14(1), 3786 (2023). https://doi.org/10.1038/s41467-023-39524-z
D. Li, J. Yan, Y. Zhang, J. Wang, L. Yu, Lorentz force-actuated bidirectional nanoelectromechanical switch with an ultralow operation voltage. Nano Lett. 24(37), 11403–11410 (2024). https://doi.org/10.1021/acs.nanolett.4c01999
B.-C. Zhang, Y.-H. Shi, J. Mao, S.-Y. Huang, Z.-B. Shao et al., Single-crystalline silicon frameworks: a new platform for transparent flexible optoelectronics. Adv. Mater. 33(24), e2008171 (2021). https://doi.org/10.1002/adma.202008171
C. Liu, B. Yao, T. Dong, H. Ma, S. Zhang et al., Highly stretchable graphene nanoribbon springs by programmable nanowire lithography. npj 2D Mater. Appl. 3, 23 (2019). https://doi.org/10.1038/s41699-019-0105-7
R. Li, M. Li, Y. Su, J. Song, X. Ni, An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9(35), 8476–8482 (2013). https://doi.org/10.1039/C3SM51476E
T. Takeshita, Y. Takei, T. Yamashita, A. Oouchi, T. Kobayashi, Flexible substrate with floating island structure for mounting ultra-thin silicon chips. Flex. Print. Electron. 5(2), 025001 (2020). https://doi.org/10.1088/2058-8585/ab7bc3
J.C. Yang, S. Lee, B.S. Ma, J. Kim, M. Song et al., Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Sci. Adv. 8(22), eabn3863 (2022). https://doi.org/10.1126/sciadv.abn3863
Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
P.W. Barth, S.L. Bernard, J.B. Angell, Flexible circuit and sensor arrays fabricated by monolithic silicon technology. IEEE Trans. Electron Devices 32(7), 1202–1205 (1985). https://doi.org/10.1109/T-ED.1985.22101
F. Jiang, G.-B. Lee, Y.-C. Tai, C.-M. Ho, A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens. Actuat. A Phys. 79(3), 194–203 (2000). https://doi.org/10.1016/S0924-4247(99)00277-0
D.J. Beebe, D.D. Denton, A flexible polyimide-based package for silicon sensors. Sens. Actuat. A Phys. 44(1), 57–64 (1994). https://doi.org/10.1016/0924-4247(93)00775-Y
A.C. Cavazos Sepulveda, M.S. Diaz Cordero, A.A.A. Carreño, J.M. Nassar, M.M. Hussain, Stretchable and foldable silicon-based electronics. Appl. Phys. Lett. 110, 4 (2017). https://doi.org/10.1063/1.4979545
K.-L. Han, W.-B. Lee, Y.-D. Kim, J.-H. Kim, B.-D. Choi et al., Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl. Electron. Mater. 3(11), 5037–5047 (2021). https://doi.org/10.1021/acsaelm.1c00806
C.A. Silva, J. Lv, L. Yin, I. Jeerapan, G. Innocenzi, F. Soto, Y.G. Ha, J. Wang, Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30(30), 2002041 (2020). https://doi.org/10.1002/adfm.202002041
S.-W. Jung, J.-S. Choi, J.B. Koo, C.W. Park, B.S. Na et al., Stretchable organic thin-film transistors fabricated on elastomer substrates using polyimide stiff-island structures. ECS Solid State Lett. 4(1), P1–P3 (2015). https://doi.org/10.1149/2.0011501ssl
H. Chang, S. Kim, T.-H. Kang, S.-W. Lee, G.-T. Yang et al., Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Appl. Mater. Interfaces 11(35), 32291–32300 (2019). https://doi.org/10.1021/acsami.9b10194
M. Kang, R. Qu, X. Sun, Y. Yan, Z. Ma et al., Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-thermoelectric generator for distributed mini-region sensing. Adv. Mater. 35(52), e2309629 (2023). https://doi.org/10.1002/adma.202309629
M. Miyakawa, H. Tsuji, M. Nakata, Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications. J. Soc. Inf. Disp. 30(9), 699–705 (2022). https://doi.org/10.1002/jsid.1168
K.T. Kim, S. Moon, M. Kim, J.W. Jo, C.Y. Park et al., Highly scalable and robust mesa-island-structure metal-oxide thin-film transistors and integrated circuits enabled by stress-diffusive manipulation. Adv. Mater. 32(40), 2003276 (2020). https://doi.org/10.1002/adma.202003276
K. Li, Y. Shuai, X. Cheng, H. Luan, S. Liu et al., Island effect in stretchable inorganic electronics. Small 18(17), e2107879 (2022). https://doi.org/10.1002/smll.202107879
S.J. Kang, H. Hong, C. Jeong, J.S. Lee, H. Ryu et al., Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 14(9), 3253–3259 (2021). https://doi.org/10.1007/s12274-021-3400-5
H. Wu, Y. Huang, Z. Yin, Flexible hybrid electronics: enabling integration techniques and applications. Sci. China Technol. Sci. 65(9), 1995–2006 (2022). https://doi.org/10.1007/s11431-022-2074-8
B. Gupta, K.H. Min, Y. Lee, J. Tournet, B. Hoex et al., From rigid to flexible: progress, challenges and prospects of thin c-Si solar energy devices. Adv. Energy Mater. 14(27), 2400743 (2024). https://doi.org/10.1002/aenm.202400743
M.J. Mirshojaeian Hosseini, R.A. Nawrocki, A review of the progress of thin-film transistors and their technologies for flexible electronics. Micromachines 12(6), 655 (2021). https://doi.org/10.3390/mi12060655
L. Sun, G. Qin, J.-H. Seo, G.K. Celler, W. Zhou et al., 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6(22), 2553–2557 (2010). https://doi.org/10.1002/smll.201000522
D. Kumar, H. Li, D.D. Kumbhar, M.K. Rajbhar, U.K. Das et al., Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 16(1), 238 (2024). https://doi.org/10.1007/s40820-024-01456-8
Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin et al., Flexible silicon solar cells with high power-to-weight ratios. Nature 626(7997), 105–110 (2024). https://doi.org/10.1038/s41586-023-06948-y
J. Viventi, D.H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011). https://doi.org/10.1038/nn.2973
G.-J. Ko, S.D. Han, J.-K. Kim, J. Zhu, W.B. Han et al., Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. npg Asia Mater. 12, 71 (2020). https://doi.org/10.1038/s41427-020-00253-0
K.J. Yu, D. Kuzum, S.-W. Hwang, B.H. Kim, H. Juul et al., Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782–791 (2016). https://doi.org/10.1038/nmat4624
J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), e2413404 (2025). https://doi.org/10.1002/adma.202413404
J.P. Rojas, G.A. Torres Sevilla, M.T. Ghoneim, S.B. Inayat, S.M. Ahmed et al., Transformational silicon electronics. ACS Nano 8(2), 1468–1474 (2014). https://doi.org/10.1021/nn405475k
S. Mack, M.A. Meitl, A.J. Baca, Z.T. Zhu, J.A. Rogers, Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88(21), 213101 (2006). https://doi.org/10.1063/1.2206688
J. Yoon, A.J. Baca, S.-I. Park, P. Elvikis, J.B. Geddes 3rd. et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7(11), 907–915 (2008). https://doi.org/10.1038/nmat2287
A.J. Baca, K.J. Yu, J. Xiao, S. Wang, J. Yoon et al., Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ. Sci. 3(2), 208–211 (2010). https://doi.org/10.1039/B920862C
T.-I. Kim, Y.H. Jung, H.-J. Chung, K.J. Yu, N. Ahmed et al., Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. Appl. Phys. Lett. 102(18), 182104 (2013). https://doi.org/10.1063/1.4804139
J.Y. Lee, J. Shin, K. Kim, J.E. Ju, A. Dutta et al., Ultrathin crystalline silicon nano and micro membranes with high areal density for low-cost flexible electronics. Small 19(39), e2302597 (2023). https://doi.org/10.1002/smll.202302597
Y. Zhai, L. Mathew, R. Rao, D. Xu, S.K. Banerjee, High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12(11), 5609–5615 (2012). https://doi.org/10.1021/nl302735f
S.W. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J.A. Ott et al., Layer transfer by controlled spalling. J. Phys. D Appl. Phys. 46(15), 152002 (2013). https://doi.org/10.1088/0022-3727/46/15/152002
S. Saha, M.M. Hilali, E.U. Onyegam, D. Sarkar, D. Jawarani et al., Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates. Appl. Phys. Lett. 102(16), 163904 (2013). https://doi.org/10.1063/1.4803174
S.W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P.A. Lauro et al., Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovolt. 2(2), 141–147 (2012). https://doi.org/10.1109/JPHOTOV.2012.2184267
R. Martini, M. Gonzalez, F. Dross, A. Masolin, J. Vaes et al. Epoxy-induced spalling of silicon. In: 2nd International Conference on Crystalline Silicon Photovoltaics (SiliconPV). 27: 567–572 (2012).
S. Chen, Y. Dong, T.-L. Liu, J. Li, Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing. Biosens. Bioelectron. 195, 113683 (2022). https://doi.org/10.1016/j.bios.2021.113683
C.-H. Chiang, S.M. Won, A.L. Orsborn, K.J. Yu, M. Trumpis et al., Development of a neural interface for high-definition, long-term recording in rodents and nonhuman Primates. Sci. Transl. Med. 12(538), eaay4682 (2020). https://doi.org/10.1126/scitranslmed.aay4682
P.M. Martin, in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd edn (William Andrew Inc; Norwich, 2010).
Y. Lin, Advanced Nano Deposition Methods (Wiley-V C H Verlag Gmbh; Weinheim, 2016).
T. Ablekim, J.N. Duenow, X. Zheng, H. Moutinho, J. Moseley et al., Thin-film solar cells with 19% efficiency by thermal evaporation of CdSe and CdTe. ACS Energy Lett. 5(3), 892–896 (2020). https://doi.org/10.1021/acsenergylett.9b02836
C.C. Tsai, G.B. Anderson, R. Thompson, Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma. J. Non Cryst. Solids 137–138, 673–676 (1991). https://doi.org/10.1016/s0022-3093(05)80210-8
H. Matsumura, H. Umemoto, A. Masuda, Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon. J. Non Cryst. Solids 338, 19–26 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.02.014
R.F. Yang, C.H. Lee, B. Cui, A. Sazonov, Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 229, 1–5 (2018). https://doi.org/10.1016/j.mseb.2017.12.005
R. Cariou, W. Chen, I. Cosme-Bolanos, J.L. Maurice, M. Foldyna et al., Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process. Prog. Photovolt. Res. Appl. 24(8), 1075–1084 (2016). https://doi.org/10.1002/pip.2762
P.C. van der Wilt, B.D. van Dijk, G.J. Bertens, R. Ishihara, C.I.M. Beenakker, Formation of location-controlled crystalline islands using substrate-embedded seeds in excimer-laser crystallization of silicon films. Appl. Phys. Lett. 79(12), 1819–1821 (2001). https://doi.org/10.1063/1.1402641
L. Pereira, H. Águas, R.M.S. Martins, P. Vilarinho, E. Fortunato et al., Polycrystalline silicon obtained by metal induced crystallization using different metals. Thin Solid Films 451, 334–339 (2004). https://doi.org/10.1016/j.tsf.2003.10.124
T.N. Nguyen, V.D. Nguyen, S. Jung, J. Yi, The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate. Microelectron. Eng. 87(11), 2163–2167 (2010). https://doi.org/10.1016/j.mee.2010.01.019
Ö. Özmen, M. Karaman, R. Turan, Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique. Thin Solid Films 551, 181–187 (2014). https://doi.org/10.1016/j.tsf.2013.11.098
A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi et al., Advances in top–down and Bottom–up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170(1–2), 2–27 (2012). https://doi.org/10.1016/j.cis.2011.11.001
E. Menard, R.G. Nuzzo, J.A. Rogers, Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 86(9), 093507 (2005). https://doi.org/10.1063/1.1866637
J.-H. Ahn, H.-S. Kim, K.J. Lee, Z. Zhu, E. Menard et al., High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett. 27(6), 460–462 (2006). https://doi.org/10.1109/LED.2006.874764
Z.T. Zhu, E. Menard, K. Hurley, R.G. Nuzzo, J.A. Rogers, Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates. Appl. Phys. Lett. 86(13), 133507 (2005). https://doi.org/10.1063/1.1894611
E. Menard, K.J. Lee, D.Y. Khang, R.G. Nuzzo, J.A. Rogers, A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84(26), 5398–5400 (2004). https://doi.org/10.1063/1.1767591
H.-C. Yuan, G. Qin, G.K. Celler, Z. Ma, Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates. Appl. Phys. Lett. 95(4), 043109 (2009). https://doi.org/10.1063/1.3176407
L. Sun, G. Qin, H. Huang, H. Zhou, N. Behdad et al., Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl. Phys. Lett. 96(1), 013509 (2010). https://doi.org/10.1063/1.3280040
K.J. Yu, Z. Yan, M. Han, J.A. Rogers, Inorganic semiconducting materials for flexible and stretchable electronics. npj Flex. Electron. 1, 4 (2017). https://doi.org/10.1038/s41528-017-0003-z
H.-C. Yuan, Z. Ma, Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89(21), 212105 (2006). https://doi.org/10.1063/1.2397038
H. Fang, K.J. Yu, C. Gloschat, Z. Yang, C.H. Chiang et al., Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017). https://doi.org/10.1038/s41551-017-0038
D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006). https://doi.org/10.1126/science.1121401
J.A. Rogers, M.G. Lagally, R.G. Nuzzo, Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477(7362), 45–53 (2011). https://doi.org/10.1038/nature10381
M.M. Roberts, L.J. Klein, D.E. Savage, K.A. Slinker, M. Friesen et al., Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5(5), 388–393 (2006). https://doi.org/10.1038/nmat1606
W.M. Choi, J. Song, D.Y. Khang, H. Jiang, Y.Y. Huang et al., Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
X. Duan, T.-M. Fu, J. Liu, C.M. Lieber, Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8(4), 351–373 (2013). https://doi.org/10.1016/j.nantod.2013.05.001
Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44(1), 161–192 (2015). https://doi.org/10.1039/c4cs00116h
J.-L. Wang, M. Hassan, J.-W. Liu, S.-H. Yu, Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv. Mater. 30(48), e1803430 (2018). https://doi.org/10.1002/adma.201803430
X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012). https://doi.org/10.1021/nn204848r
T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube et al., Silicon nanowires–a versatile technology platform. Phys. Status Solidi RRL 7(10), 793–799 (2013). https://doi.org/10.1002/pssr.201307247
H.D. Tong, S. Chen, W.G. van der Wiel, E.T. Carlen, A. van den Berg, Novel top–down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett. 9(3), 1015–1022 (2009). https://doi.org/10.1021/nl803181x
J. Nakamura, K. Higuchi, K. Maenaka, Vertical Si nanowire with ultra-high-aspect-ratio by combined top–down processing technique. Microsyst. Technol. 19(3), 433–438 (2013). https://doi.org/10.1007/s00542-012-1662-2
R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom–up and top–down paradigms. Chem. Mater. 24(11), 1975–1991 (2012). https://doi.org/10.1021/cm300570n
N. Singh, K.D. Buddharaju, S.K. Manhas, A. Agarwal, S.C. Rustagi et al., Si, SiGe nanowire devices by top–down technology and their applications. IEEE Trans. Electron Devices 55(11), 3107–3118 (2008). https://doi.org/10.1109/TED.2008.2005154
S. Chen, J.G. Bomer, W.G. van der Wiel, E.T. Carlen, A. van den Berg, Top–down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. ACS Nano 3(11), 3485–3492 (2009). https://doi.org/10.1021/nn901220g
I. Park, Z. Li, A.P. Pisano, R. Stanley Williams, Top–down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 21(1), 015501 (2010). https://doi.org/10.1088/0957-4484/21/1/015501
V.A. Sivakov, G. Brönstrup, B. Pecz, A. Berger, G.Z. Radnoczi et al., Realization of vertical and zigzag single crystalline silicon nanowire architectures. J. Phys. Chem. C 114(9), 3798–3803 (2010). https://doi.org/10.1021/jp909946x
V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz et al., Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009). https://doi.org/10.1021/nl803641f
L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov et al., Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res. Lett. 7(1), 524 (2012). https://doi.org/10.1186/1556-276X-7-524
S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao et al., Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 9(1), 196 (2014). https://doi.org/10.1186/1556-276X-9-196
W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11(12), 5252–5258 (2011). https://doi.org/10.1021/nl202674t
C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119(15), 9074–9135 (2019). https://doi.org/10.1021/acs.chemrev.9b00164
P. Namdari, H. Daraee, A. Eatemadi, Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res. Lett. 11(1), 406 (2016). https://doi.org/10.1186/s11671-016-1618-z
O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today 3(5–6), 12–22 (2008). https://doi.org/10.1016/S1748-0132(08)70061-6
A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998). https://doi.org/10.1126/science.279.5348.208
V. Schmidt, J.V. Wittemann, U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110(1), 361–388 (2010). https://doi.org/10.1021/cr900141g
V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009). https://doi.org/10.1002/adma.200803754
V. Schmidt, S. Senz, U. Gösele, Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5(5), 931–935 (2005). https://doi.org/10.1021/nl050462g
Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001). https://doi.org/10.1063/1.1363692
R.S. Wagner, W.C. Ellis, Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964). https://doi.org/10.1063/1.1753975
J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006). https://doi.org/10.1038/nature04574
W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387 (2006). https://doi.org/10.1088/0022-3727/39/21/R01
S. Krylyuk, A.V. Davydov, I. Levin, Tapering control of Si nanowires grown from sicl4 at reduced pressure. ACS Nano 5, 656–664 (2011). https://doi.org/10.1021/nn102556s
J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li et al., High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3(3), 168–173 (2008). https://doi.org/10.1038/nnano.2008.5
Z.W. Wang, Z.Y. Li, Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett. 9(4), 1467–1471 (2009). https://doi.org/10.1021/nl803345u
L. Yu, B. O’Donnell, P.-J. Alet, S. Conesa-Boj, F. Peiró et al., Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20(22), 225604 (2009). https://doi.org/10.1088/0957-4484/20/22/225604
Y. Wang, V. Schmidt, S. Senz, U. Gösele, Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 1(3), 186–189 (2006). https://doi.org/10.1038/nnano.2006.133
Y. Yao, S. Fan, Si nanowires synthesized with Cu catalyst. Mater. Lett. 61(1), 177–181 (2007). https://doi.org/10.1016/j.matlet.2006.04.045
C.Y. Wen, M.C. Reuter, J. Tersoff, E.A. Stach, F.M. Ross, Structure, growth kinetics, and ledge flow during vapor–solid–solid growth of copper-catalyzed silicon nanowires. Nano Lett. 10, 514–519 (2010). https://doi.org/10.1021/nl903362y
K.-I. Seo, S. Sharma, A.A. Yasseri, D.R. Stewart, T.I. Kamins, Surface charge density of unpassivated and passivated metal-catalyzed silicon nanowires. Electrochem. Solid-State Lett. 9(3), G69 (2006). https://doi.org/10.1149/1.2159295
H. Haick, P.T. Hurley, A.I. Hochbaum, P. Yang, N.S. Lewis, Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J. Am. Chem. Soc. 128(28), 8990–8991 (2006). https://doi.org/10.1021/ja056785w
B.S. Kim, T.W. Koo, J.H. Lee, D.S. Kim, Y.C. Jung et al., Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 9(2), 864–869 (2009). https://doi.org/10.1021/nl803752w
Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012). https://doi.org/10.1021/nl300256r
B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009). https://doi.org/10.1038/nnano.2009.304
L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang et al., Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013). https://doi.org/10.1021/nl304435z
S. Vlassov, S. Oras, B. Polyakov, E. Butanovs, A. Kyritsakis et al., Kinking in semiconductor nanowires: a review. Cryst. Growth Des. 22(1), 871–892 (2022). https://doi.org/10.1021/acs.cgd.1c00802
Y. Zhao, J. Yao, L. Xu, M.N. Mankin, Y. Zhu et al., Shape-controlled deterministic assembly of nanowires. Nano Lett. 16(4), 2644–2650 (2016). https://doi.org/10.1021/acs.nanolett.6b00292
Y. Zhao, S.S. You, A. Zhang, J.H. Lee, J. Huang et al., Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14(8), 783–790 (2019). https://doi.org/10.1038/s41565-019-0478-y
S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
F. Xu, W. Lu, Y. Zhu, Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5(1), 672–678 (2011). https://doi.org/10.1021/nn103189z
L. Yu, P. Roca i Cabarrocas, Initial nucleation and growth of in-plane solid-liquid-solid silicon nanowires catalyzed by indium. Phys. Rev. B 80(8), 085313 (2009). https://doi.org/10.1103/physrevb.80.085313
Y. Sun, T. Dong, L. Yu, J. Xu, K. Chen, Planar growth, integration, and applications of semiconducting nanowires. Adv. Mater. 32(27), e1903945 (2020). https://doi.org/10.1002/adma.201903945
M. Xu, Z. Xue, L. Yu, S. Qian, Z. Fan et al., Operating principles of in-plane silicon nanowires at simple step-edges. Nanoscale 7(12), 5197–5202 (2015). https://doi.org/10.1039/c4nr06531j
L. Yu, M. Oudwan, O. Moustapha, F. Fortuna, P. Roca I Cabarrocas, Guided growth of in-plane silicon nanowires Appl. Phys. Lett. 95(11), 113106 (2009). https://doi.org/10.1063/1.3227667
R. Yuan, W. Qian, Z. Liu, J. Wang, J. Xu et al., Designable integration of silicide nanowire springs as ultra-compact and stretchable electronic interconnections. Small 18(6), e2104690 (2022). https://doi.org/10.1002/smll.202104690
Z. Xue, M. Sun, T. Dong, Z. Tang, Y. Zhao et al., Deterministic line-shape programming of silicon nanowires for extremely stretchable springs and electronics. Nano Lett. 17(12), 7638–7646 (2017). https://doi.org/10.1021/acs.nanolett.7b03658
H. Ma, R. Yuan, J. Wang, Y. Shi, J. Xu et al., Cylindrical line-feeding growth of free-standing silicon nanohelices as elastic springs and resonators. Nano Lett. 20(7), 5072–5080 (2020). https://doi.org/10.1021/acs.nanolett.0c01265
K. Sim, Y. Li, J. Song, C. Yu, Biaxially stretchable ultrathin Si enabled by serpentine structures on prestrained elastomers. Adv. Mater. Technol. 4(1), 1800489 (2019). https://doi.org/10.1002/admt.201800489
F.W. DelRio, R.F. Cook, B.L. Boyce, Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2(2), 021303 (2015). https://doi.org/10.1063/1.4919540
H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang et al., Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2(8), e1501382 (2016). https://doi.org/10.1126/sciadv.1501382
M.N. Esfahani, B.E. Alaca, A review on size-dependent mechanical properties of nanowires. Adv. Eng. Mater. 21(8), 1900192 (2019). https://doi.org/10.1002/adem.201900192
Q. Liu, S. Shen, On the large-strain plasticity of silicon nanowires: effects of axial orientation and surface. Int. J. Plast. 38, 146–158 (2012). https://doi.org/10.1016/j.ijplas.2012.05.008
K.W. Kang, W. Cai, Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int. J. Plast. 26, 1387–1401 (2010). https://doi.org/10.1016/j.ijplas.2010.02.001
Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, W. Lu, Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009). https://doi.org/10.1021/nl902132w
B.N. Jaya, C. Kirchlechner, G. Dehm, Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J. Mater. Res. 30(5), 686–698 (2015). https://doi.org/10.1557/jmr.2015.2
K. Zheng, X. Han, L. Wang, Y. Zhang, Y. Yue et al., Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9(6), 2471–2476 (2009). https://doi.org/10.1021/nl9012425
T. Takahashi, K. Takei, J.C. Ho, Y.-L. Chueh, Z. Fan et al., Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 131(6), 2102–2103 (2009). https://doi.org/10.1021/ja8099954
C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang et al., Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires. Small 7(20), 2899–2905 (2011). https://doi.org/10.1002/smll.201101157
C.M. Hangarter, N.V. Myung, Magnetic alignment of nanowires. Chem. Mater. 17(6), 1320–1324 (2005). https://doi.org/10.1021/cm047955r
Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001). https://doi.org/10.1126/science.291.5504.630
G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007). https://doi.org/10.1038/nnano.2007.150
D.L. Fan, F.Q. Zhu, R.C. Cammarata, C.L. Chien, Manipulation of nanowires in suspension by AC electric fields. Appl. Phys. Lett. 85(18), 4175–4177 (2004). https://doi.org/10.1063/1.1812364
R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. Lieber et al., Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13(22), 8906–8912 (2005). https://doi.org/10.1364/opex.13.008906
J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka et al., Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17(10), 2567–2573 (2006). https://doi.org/10.1088/0957-4484/17/10/021
D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003). https://doi.org/10.1021/nl0345062
J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013). https://doi.org/10.1038/nnano.2013.55
Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley et al., Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008). https://doi.org/10.1021/nl071626r
X. Song, T. Zhang, L. Wu, R. Hu, W. Qian et al., Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv. Sci. 9(9), e2105623 (2022). https://doi.org/10.1002/advs.202105623
M. Sharma, P.R. Pudasaini, F. Ruiz-Zepeda, D. Elam, A.A. Ayon, Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 6(6), 4356–4363 (2014). https://doi.org/10.1021/am500063w
K.-Q. Peng, S.-T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23(2), 198–215 (2011). https://doi.org/10.1002/adma.201002410
P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish et al., Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11(6), 704–737 (2016). https://doi.org/10.1016/j.nantod.2016.10.001
S.M. Lee, R. Biswas, W.G. Li, D. Kang, L. Chan et al., Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano 8, 10507–10516 (2014). https://doi.org/10.1021/nn503884z
X. Sun, T. Zhang, J. Wang, F. Yang, L. Xu et al., Firmly standing three-dimensional radial junctions on soft aluminum foils enable extremely low cost flexible thin film solar cells with very high power-to-weight performance. Nano Energy 53, 83–90 (2018). https://doi.org/10.1016/j.nanoen.2018.08.038
S. Zhang, T. Zhang, Z. Liu, J. Wang, L. Yu et al., Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio. Nano Energy 86, 106121 (2021). https://doi.org/10.1016/j.nanoen.2021.106121
S. Wang, S. Zhang, Z. Liu, J. Wang, J. Xu et al., High-performance radial junction solar cells on ZnO coated stainless steel with excellent flexibility and durability. Nano Energy 122, 109262 (2024). https://doi.org/10.1016/j.nanoen.2024.109262
B. Shao, Y. Wu, Z. Song, H. Yang, X. Chen et al., Freestanding silicon nanowires mesh for efficient electricity generation from evaporation-induced water capillary flow. Nano Energy 94, 106917 (2022). https://doi.org/10.1016/j.nanoen.2022.106917
J. Choi, K. Cho, S. Kim, Flexible thermoelectric generators composed of n-and p-type silicon nanowires fabricated by top–down method. Adv. Energy Mater. 7(7), 1602138 (2017). https://doi.org/10.1002/aenm.201602138
B. Sun, M. Shao, S. Lee, Nanostructured silicon used for flexible and mobile electricity generation. Adv. Mater. 28(47), 10539–10547 (2016). https://doi.org/10.1002/adma.201601012
Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021). https://doi.org/10.3389/fmats.2021.611078
A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg et al., Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133(51), 20914–20921 (2011). https://doi.org/10.1021/ja208232h
D. Storan, S.A. Ahad, R. Forde, S. Kilian, T.E. Adegoke et al., Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Mater. Today Energy 27, 101030 (2022). https://doi.org/10.1016/j.mtener.2022.101030
X. Wang, G. Li, M.H. Seo, G. Lui, F.M. Hassan et al., Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 9(11), 9551–9558 (2017). https://doi.org/10.1021/acsami.6b12080
Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan et al., A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain. Energy Fuels 4(4), 1577–1594 (2020). https://doi.org/10.1039/C9SE01165J
A. Vlad, A.L. Reddy, A. Ajayan, N. Singh, J.F. Gohy et al., Roll up nanowire battery from silicon chips. Proc. Natl. Acad. Sci. U.S.A. 109(38), 15168–15173 (2012). https://doi.org/10.1073/pnas.1208638109
P. Su, Z. Zhang, L. Luo, Z. Zhang, C. Lan et al., Silicon nanowire array weaved by carbon chains for stretchable lithium-ion battery anode. Small 20(18), e2307716 (2024). https://doi.org/10.1002/smll.202307716
T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose et al., Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008). https://doi.org/10.1088/0957-4484/19/29/295203
S. Zhang, L. Yu, 3D radial junctions for robust and flexible optoelectronics. Adv. Opt. Mater. 12(9), 2302121 (2024). https://doi.org/10.1002/adom.202302121
D.L. Staebler, C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31(4), 292–294 (1977). https://doi.org/10.1063/1.89674
S. Misra, L. Yu, W. Chen, M. Foldyna, P.R.I. Cabarrocas, A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells. J. Phys. D Appl. Phys. 47(39), 393001 (2014). https://doi.org/10.1088/0022-3727/47/39/393001
I. Hwang, H.-D. Um, B.-S. Kim, M. Wober, K. Seo, Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires. Energy Environ. Sci. 11(3), 641–647 (2018). https://doi.org/10.1039/C7EE03340K
J. Zhu, T. Wang, F. Fan, L. Mei, B. Lu, Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10(9), 8243–8251 (2016). https://doi.org/10.1021/acsnano.6b04522
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
C.-B. Chang, C.-Y. Tsai, K.-T. Chen, H.-Y. Tuan, Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl. Energy Mater. 4(4), 3160–3168 (2021). https://doi.org/10.1021/acsaem.0c02932
C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954). https://doi.org/10.1103/physrev.94.42
R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
B.-C. Zhang, H. Wang, Y. Zhao, F. Li, X.-M. Ou et al., Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale 8(4), 2123–2128 (2016). https://doi.org/10.1039/c5nr07546g
T. Dong, Y. Sun, Z. Zhu, X. Wu, J. Wang et al., Monolithic integration of silicon nanowire networks as a soft wafer for highly stretchable and transparent electronics. Nano Lett. 19(9), 6235–6243 (2019). https://doi.org/10.1021/acs.nanolett.9b02291
P. Serre, C. Ternon, V. Stambouli, P. Periwal, T. Baron, Fabrication of silicon nanowire networks for biological sensing. Sens. Actuat. B Chem. 182, 390–395 (2013). https://doi.org/10.1016/j.snb.2013.03.022
D. Karnaushenko, B. Ibarlucea, S. Lee, G. Lin, L. Baraban et al., Light weight and flexible high-performance diagnostic platform. Adv. Healthc. Mater. 4, 1517–1525 (2015). https://doi.org/10.1002/adhm.201500128
S.K. Singh, Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv. 4(102), 58674–58698 (2014). https://doi.org/10.1039/C4RA08847F
S. He, B. Song, D. Li, C. Zhu, W. Qi et al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20(3), 453–459 (2010). https://doi.org/10.1002/adfm.200901639
N. Li, C. Chang, W. Pan, B. Tang, A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew. Chem. Int. Ed. 51(30), 7426–7430 (2012). https://doi.org/10.1002/anie.201203767
C. Leduc, S. Si, J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller et al., A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett. 13(4), 1489–1494 (2013). https://doi.org/10.1021/nl304561g
O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian et al., Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5(6), 1003–1008 (2005). https://doi.org/10.1021/nl0502569
X.X. Cao, L.X. Mu, M. Chen, C.C. Bu, S. Liang et al., Single silicon nanowire-based fluorescent sensor for endogenous hypochlorite in an individual cell. Adv. Biosyst. 2(12), 1800213 (2018). https://doi.org/10.1002/adbi.201800213
M. Chen, L. Mu, S. Wang, X. Cao, S. Liang et al., A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chem. Neurosci. 11(9), 1283–1290 (2020). https://doi.org/10.1021/acschemneuro.0c00041
X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2011). https://doi.org/10.1038/nnano.2011.223
B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie et al., Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010). https://doi.org/10.1126/science.1192033
L. Xu, Z. Jiang, L. Mai, Q. Qing, Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: a general fabrication strategy. Nano Lett. 14(6), 3602–3607 (2014). https://doi.org/10.1021/nl5012855
Z. Liu, J. Yan, H. Ma, T. Hu, J. Wang et al., Ab initio design, shaping, and assembly of free-standing silicon nanoprobes. Nano Lett. 21(7), 2773–2779 (2021). https://doi.org/10.1021/acs.nanolett.0c04804
R. Parameswaran, J.L. Carvalho-de-Souza, Y. Jiang, M.J. Burke, J.F. Zimmerman et al., Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13(3), 260–266 (2018). https://doi.org/10.1038/s41565-017-0041-7
R. Parameswaran, K. Koehler, M.Y. Rotenberg, M.J. Burke, J. Kim et al., Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc. Natl. Acad. Sci. U.S.A. 116(2), 413–421 (2019). https://doi.org/10.1073/pnas.1816428115
S. Zhang, T. Zhang, Z. Liu, J. Wang, J. Xu et al., Flexible and robust 3D a-SiGe radial junction near-infrared photodetectors for rapid sphygmic signal monitoring. Adv. Funct. Mater. 32(2), 2107040 (2022). https://doi.org/10.1002/adfm.202107040
B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui et al., Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012). https://doi.org/10.1038/nmat3404
Y. Jiang, X. Li, B. Liu, J. Yi, Y. Fang et al., Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2(7), 508–521 (2018). https://doi.org/10.1038/s41551-018-0230-1
Y. Zhang, J. Yan, D. Li, W. Qian, Y. Qi, L. Wu, Z. Liu, J. Wang, J. Xu, L. Yu, Single-nanowire-morphed mechanical slingshot for directional shooting delivery of micro-payloads. Nanotechnology 34(41), 415604 (2023). https://doi.org/10.1088/1361-6528/ace5b5
S.W. Lee, S.J. Park, E.E. Campbell, Y.W. Park, A fast and low-power microelectromechanical system-based non-volatile memory device. Nat. Commun. 2, 220 (2011). https://doi.org/10.1038/ncomms1227
E. Jo, Y. Kang, S. Sim, H. Lee, J. Kim, High-temperature-operable electromechanical computing units enabled by aligned carbon nanotube arrays. ACS Nano 17(14), 13310–13318 (2023). https://doi.org/10.1021/acsnano.3c01304
R. Yuan, W. Qian, Y. Zhang, Z. Liu, J. Wang et al., Orthogonal-stacking integration of highly conductive silicide nanowire network as flexible and transparent thin films. Adv. Electron. Mater. 9(7), 2201185 (2023). https://doi.org/10.1002/aelm.202201185