Tailoring Artificial Solid Electrolyte Interphase via MoS2 Sacrificial Thin Film for Li-Free All-Solid-State Batteries
Corresponding Author: Sangbaek Park
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 224
Abstract
Anode-free all-solid-state batteries (AFASSBs) are potential candidates for next-generation electric mobility devices that offer superior energy density and stability by eliminating Li from the anode. However, despite its potential to stabilize the interface between sulfide solid electrolytes (SEs) and anode-free current collectors (CCs) efficiently, a controllable approach to incorporating MoS2 into AFASSBs has not yet been found. Herein, we propose a strategy for stabilizing the interface of Li-free all-solid-state batteries using controllable MoS2 sacrificial thin films. MoS2 was controllably grown on CCs by metal–organic chemical vapor deposition, and the MoS2 sacrificial layer in contact with the SEs formed an interlayer composed of Mo metal and Li2S through a conversion reaction. In the AFASSBs with MoS2, Mo significantly reduces the nucleation overpotential of Li, which results in uniform Li plating. In addition, MoS2-based Li2S facilitates the formation of a uniform and robust SE interface, thereby enhancing the stability of AFASSBs. Based on these advantages, cells fabricated with MoS2 exhibited better performance as both asymmetrical and full cells with LiNi0.6Co0.2Mn0.2O2 cathodes than did cells without MoS2. Moreover, the cell performance was affected by the MoS2 size, and full cells having an optimal MoS2 thickness demonstrated a 1.18-fold increase in the initial discharge capacity and a sevenfold improvement in capacity retention relative to SUS CCs. This study offers a promising path for exploiting the full potential of MoS2 for interface stabilization and efficient AFASSB applications.
Highlights:
1 We present the first-ever fabrication of the anode-free all-solid-state battery (AFASSB) structure using a MoS2 sacrificial layer.
2 The addition of an MoS2 sacrificial layer to AFASSBs could decrease the nucleation overpotential of Li and enable favorable Li formation at the interface owing to the formation of an interlayer comprising Li2S and Mo metal.
3 The AFASSB full cell assembled with LiNi0.6Co0.2Mn0.2O2 cathodes operated successfully, demonstrating superior cycling stability and enhanced capacity relative to the cells with SUS.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Kim, A. Song, J.-M. Park, J.-S. Park, S. Behera et al., Analogous design of a microlayered silicon oxide-based electrode to the general electrode structure for thin-film lithium-ion batteries. Adv. Mater. 36(14), 2470099 (2024). https://doi.org/10.1002/adma.202470099
- Y. Chen, K. Wen, T. Chen, X. Zhang, M. Armand et al., Recent progress in all-solid-state lithium batteries: the emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 31, 401–433 (2020). https://doi.org/10.1016/j.ensm.2020.05.019
- S. Behera, S. Ippili, V. Jella, N.-Y. Kim, S.C. Jang et al., Confluence of ZnO and PTFE binder for enhancing performance of thin-film lithium-ion batteries. Energy Environ. Mater. 7(5), e12734 (2024). https://doi.org/10.1002/eem2.12734
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- C.F. Xiao, J.H. Kim, S.H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state Li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
- M.J. Kim, J.-S. Park, J.W. Lee, S.E. Wang, D. Yoon et al., Half-covered ‘glitter-cake’ AM@SE composite: a novel electrode design for high energy density all-solid-state batteries. Nano-Micro Lett. 17(1), 119 (2025). https://doi.org/10.1007/s40820-024-01644-6
- J. Sung, J. Heo, D.-H. Kim, S. Jo, Y.-C. Ha et al., Recent advances in all-solid-state batteries for commercialization. Mater. Chem. Front. 8(8), 1861–1887 (2024). https://doi.org/10.1039/D3QM01171B
- J.H. Kim, K. Go, K.J. Lee, H.S. Kim, Improved performance of all-solid-state lithium metal batteries via physical and chemical interfacial control. Adv. Sci. 9(2), 2103433 (2022). https://doi.org/10.1002/advs.202103433
- B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
- C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li et al., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14(5), 2577–2619 (2021). https://doi.org/10.1039/D1EE00551K
- Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5(4), 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
- Z. Wu, X. Li, C. Zheng, Z. Fan, W. Zhang et al., Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: characterization, mechanism and strategy. Electrochem. Energy Rev. 6(1), 10 (2023). https://doi.org/10.1007/s41918-022-00176-0
- J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4(1), 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
- W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
- Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- Z. Tong, B. Bazri, S.-F. Hu, R.-S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies. J. Mater. Chem. A 9(12), 7396–7406 (2021). https://doi.org/10.1039/d1ta00419k
- R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4(8), 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
- J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson et al., Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26(39), 7094–7102 (2016). https://doi.org/10.1002/adfm.201602353
- C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
- Y. Wang, Y. Liu, M. Nguyen, J. Cho, N. Katyal et al., Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35(8), e2206762 (2023). https://doi.org/10.1002/adma.202206762
- J. Kim, S. Lee, J. Kim, Regulating Li electrodeposition by constructing Cu–Sn nanotube thin layer for reliable and robust anode-free all-solid-state batteries. Carbon Energy 6(12), e610 (2024). https://doi.org/10.1002/cey2.610
- B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2(5), 833–845 (2018). https://doi.org/10.1016/j.joule.2018.03.008
- C. Wang, A. Wang, L. Ren, X. Guan, D. Wang et al., Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes. Adv. Funct. Mater. 29(49), 1905940 (2019). https://doi.org/10.1002/adfm.201905940
- Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang et al., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J. Power Sources 450, 227589 (2020). https://doi.org/10.1016/j.jpowsour.2019.227589
- J. Oh, S.H. Choi, J.Y. Kim, J. Lee, T. Lee et al., Anode-less all-solid-state batteries operating at room temperature and low pressure. Adv. Energy Mater. 13(38), 2301508 (2023). https://doi.org/10.1002/aenm.202301508
- D. Jun, S.H. Park, J.E. Jung, S.G. Lee, K.S. Kim et al., Ultra-stable breathing anode for Li-free all-solid-state battery based on Li concentration gradient in magnesium ps. Adv. Funct. Mater. 34(8), 2310259 (2024). https://doi.org/10.1002/adfm.202310259
- J.H. Lee, S.-H. Oh, H. Yim, H.-J. Lee, E. Kwon et al., Interfacial stabilization strategy via in-doped Ag metal coating enables a high cycle life of anode-free solid-state Li batteries. Energy Storage Mater. 69, 103398 (2024). https://doi.org/10.1016/j.ensm.2024.103398
- S.H. Park, D. Jun, G.H. Lee, S.G. Lee, J.E. Jung et al., Designing 3D anode based on pore-size-dependent Li deposition behavior for reversible Li-free all-solid-state batteries. Adv. Sci. 9, 2203130 (2022). https://doi.org/10.1002/advs.202203130
- D. Gu, H. Kim, J.-H. Lee, S. Park, Surface-roughened current collectors for anode-free all-solid-state batteries. J. Energy Chem. 70, 248–257 (2022). https://doi.org/10.1016/j.jechem.2022.02.034
- D.H. Lee, V. Dongquoc, S. Hong, S.I. Kim, E. Kim et al., Surface passivation of layered MoSe2 via van der Waals stacking of amorphous hydrocarbon. Small 18, 2202912 (2022). https://doi.org/10.1002/smll.202202912
- M. Son, H. Jang, D.B. Seo, J.H. Lee, J. Kim et al., High-performance infrared photodetectors driven by interlayer exciton in a van der waals epitaxy grown HfS2/MoS2 vertical heterojunction. Adv. Funct. Mater. 34(7), 2308906 (2024). https://doi.org/10.1002/adfm.202308906
- D.-B. Seo, M.-S. Kim, T.N. Trung, E.-T. Kim, Controllable low-temperature growth and enhanced photoelectrochemical water splitting of vertical SnS2 nanosheets on graphene. Electrochim. Acta 364, 137164 (2020). https://doi.org/10.1016/j.electacta.2020.137164
- S.Y. Park, D.B. Seo, H. Choi, J.H. Lee, D.H. Lee et al., Structural instability stimulated heteroatoms co-doping of 2D quaternary semiconductor for optoelectronic applications. Adv. Funct. Mater. 34(13), 2310178 (2024). https://doi.org/10.1002/adfm.202310178
- D.-B. Seo, S. Yoo, V. Dongquoc, T.N. Trung, E.-T. Kim, Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3·0.33H2O phase. J. Alloys Compd. 888, 161587 (2021). https://doi.org/10.1016/j.jallcom.2021.161587
- L. Yu, Q. Su, B. Li, L. Huang, G. Du et al., Pre-lithiated Edge-enriched MoS2 nanoplates embedded into carbon nanofibers as protective layers to stabilize Li metal anodes. Chem. Eng. J. 429, 132479 (2022). https://doi.org/10.1016/j.cej.2021.132479
- J. Fu, P. Yu, N. Zhang, G. Ren, S. Zheng et al., In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019). https://doi.org/10.1039/C8EE03390K
- J. Wan, Y. Hao, Y. Shi, Y.-X. Song, H.-J. Yan et al., Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10(1), 3265 (2019). https://doi.org/10.1038/s41467-019-11197-7
- Z. Zhu, Y. Tang, W.R. Leow, H. Xia, Z. Lv et al., Approaching the lithiation limit of MoS2 while maintaining its layered crystalline structure to improve lithium storage. Angew. Chem. Int. Ed. 58(11), 3521–3526 (2019). https://doi.org/10.1002/anie.201813698
- H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/anie.202001989
- Y. Cui, S. Liu, D. Wang, X. Wang, X. Xia et al., A facile way to construct stable and ionic conductive lithium sulfide nanops composed solid electrolyte interphase on Li metal anode. Adv. Funct. Mater. 31(3), 2006380 (2021). https://doi.org/10.1002/adfm.202006380
- E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad et al., 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 13(4), 337–344 (2018). https://doi.org/10.1038/s41565-018-0061-y
- L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu et al., Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium. Energy Storage Mater. 16, 37–45 (2019). https://doi.org/10.1016/j.ensm.2018.04.025
- W.Z. Huang, C.Z. Zhao, P. Wu, H. Yuan, W.E. Feng et al., Anode-free solid-state lithium batteries: a review. Adv. Energy Mater. 12(26), 2201044 (2022). https://doi.org/10.1002/aenm.202201044
- S. Kim, C. Jung, H. Kim, K.E. Thomas-Alyea, G. Yoon et al., The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv. Energy Mater. 10(12), 1903993 (2020). https://doi.org/10.1002/aenm.201903993
- D.B. Seo, Y.M. Kwon, J. Kim, S. Kang, S. Yim et al., Edge-rich 3D structuring of metal chalcogenide/graphene with vertical nanosheets for efficient photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 16(22), 28613–28624 (2024). https://doi.org/10.1021/acsami.4c04329
- D.-B. Seo, V. Dongquoc, R.A. Jayarathna, S. Lee, J.-H. Lee et al., Rational heterojunction design of 1D WO3 nanorods decorated with vertical 2D MoS2 nanosheets for enhanced photoelectrochemical performance. J. Alloys Compd. 911, 165090 (2022). https://doi.org/10.1016/j.jallcom.2022.165090
- J. Ou, V. Tatagari, I. Senevirathna, S. Luitel, C. Segre et al., On the formation and properties of amorphous and crystalline Li3-yBay/2OCl electrolytes. J. Power Sources 609, 234685 (2024). https://doi.org/10.1016/j.jpowsour.2024.234685
- J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- D.-B. Seo, S. Kim, T.N. Trung, D. Kim, E.-T. Kim, Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J. Alloys Compd. 770, 686–691 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
- T.N. Trung, D.-B. Seo, N.D. Quang, D. Kim, E.-T. Kim, Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 260, 150–156 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
- D.-B. Seo, Y.M. Kwon, S. Kang, S. Yim, S.S. Lee et al., Tailoring phase transition of Mo-S-Te ternary system using heat-driven process for target functionalities. Chem. Eng. J. 496, 153936 (2024). https://doi.org/10.1016/j.cej.2024.153936
- D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12(1), 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
- G. Deysher, J.A.S. Oh, Y.-T. Chen, B. Sayahpour, S.-Y. Ham et al., Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 9, 1161–1172 (2024). https://doi.org/10.1038/s41560-024-01569-9
- C.J. Huang, B. Thirumalraj, H.C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12(1), 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
- M.J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020). https://doi.org/10.1038/s41467-020-19004-4
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- D. Cao, T. Ji, Z. Wei, W. Liang, R. Bai et al., Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure. Nano Lett. 23(20), 9392–9398 (2023). https://doi.org/10.1021/acs.nanolett.3c02713
- H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu et al., Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5(3), 833–843 (2020). https://doi.org/10.1021/acsenergylett.9b02660
- S. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin et al., High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 10(49), 42279–42285 (2018). https://doi.org/10.1021/acsami.8b15121
- D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple et al., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4(10), 2418–2427 (2019). https://doi.org/10.1021/acsenergylett.9b01693
- P. Wang, S. Sun, Y. Jiang, Q. Cai, Y.-H. Zhang et al., Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance. ACS Nano 14(11), 15577–15586 (2020). https://doi.org/10.1021/acsnano.0c06250
- X. Yang, X. Gao, S. Mukherjee, K. Doyle-Davis, J. Fu et al., Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries. Adv. Energy Mater. 10(37), 2001191 (2020). https://doi.org/10.1002/aenm.202001191
- Y. Chen, M. Sun, Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale 13(11), 5594–5619 (2021). https://doi.org/10.1039/d1nr00455g
- Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in. transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31(29), e1901405 (2019). https://doi.org/10.1002/adma.201901405
- W. Huang, P.M. Attia, H. Wang, S.E. Renfrew, N. Jin et al., Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19(8), 5140–5148 (2019). https://doi.org/10.1021/acs.nanolett.9b01515
- H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato et al., Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. Sci. Rep. 10(1), 9453 (2020). https://doi.org/10.1038/s41598-020-66410-1
- W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol 11(1), 1–13 (2020). https://doi.org/10.33961/jecst.2019.00528
- J.H. Kim, J.-S. Park, S.-H. Cho, J.-M. Park, J.S. Nam et al., Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries. J. Mater. Chem. A 10(47), 25009–25018 (2022). https://doi.org/10.1039/D2TA07322F
References
J.H. Kim, A. Song, J.-M. Park, J.-S. Park, S. Behera et al., Analogous design of a microlayered silicon oxide-based electrode to the general electrode structure for thin-film lithium-ion batteries. Adv. Mater. 36(14), 2470099 (2024). https://doi.org/10.1002/adma.202470099
Y. Chen, K. Wen, T. Chen, X. Zhang, M. Armand et al., Recent progress in all-solid-state lithium batteries: the emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 31, 401–433 (2020). https://doi.org/10.1016/j.ensm.2020.05.019
S. Behera, S. Ippili, V. Jella, N.-Y. Kim, S.C. Jang et al., Confluence of ZnO and PTFE binder for enhancing performance of thin-film lithium-ion batteries. Energy Environ. Mater. 7(5), e12734 (2024). https://doi.org/10.1002/eem2.12734
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
C.F. Xiao, J.H. Kim, S.H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state Li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
M.J. Kim, J.-S. Park, J.W. Lee, S.E. Wang, D. Yoon et al., Half-covered ‘glitter-cake’ AM@SE composite: a novel electrode design for high energy density all-solid-state batteries. Nano-Micro Lett. 17(1), 119 (2025). https://doi.org/10.1007/s40820-024-01644-6
J. Sung, J. Heo, D.-H. Kim, S. Jo, Y.-C. Ha et al., Recent advances in all-solid-state batteries for commercialization. Mater. Chem. Front. 8(8), 1861–1887 (2024). https://doi.org/10.1039/D3QM01171B
J.H. Kim, K. Go, K.J. Lee, H.S. Kim, Improved performance of all-solid-state lithium metal batteries via physical and chemical interfacial control. Adv. Sci. 9(2), 2103433 (2022). https://doi.org/10.1002/advs.202103433
B.B. Gicha, L.T. Tufa, N. Nwaji, X. Hu, J. Lee, Advances in all-solid-state lithium-sulfur batteries for commercialization. Nano-Micro Lett. 16(1), 172 (2024). https://doi.org/10.1007/s40820-024-01385-6
C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li et al., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14(5), 2577–2619 (2021). https://doi.org/10.1039/D1EE00551K
Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5(4), 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
Z. Wu, X. Li, C. Zheng, Z. Fan, W. Zhang et al., Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: characterization, mechanism and strategy. Electrochem. Energy Rev. 6(1), 10 (2023). https://doi.org/10.1007/s41918-022-00176-0
J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4(1), 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
W.-M. Qin, Z. Li, W.-X. Su, J.-M. Hu, H. Zou et al., Porous organic cage-based quasi-solid-state electrolyte with cavity-induced anion-trapping effect for long-life lithium metal batteries. Nano-Micro Lett. 17(1), 38 (2024). https://doi.org/10.1007/s40820-024-01499-x
Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
Z. Tong, B. Bazri, S.-F. Hu, R.-S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies. J. Mater. Chem. A 9(12), 7396–7406 (2021). https://doi.org/10.1039/d1ta00419k
R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4(8), 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson et al., Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26(39), 7094–7102 (2016). https://doi.org/10.1002/adfm.201602353
C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
Y. Wang, Y. Liu, M. Nguyen, J. Cho, N. Katyal et al., Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35(8), e2206762 (2023). https://doi.org/10.1002/adma.202206762
J. Kim, S. Lee, J. Kim, Regulating Li electrodeposition by constructing Cu–Sn nanotube thin layer for reliable and robust anode-free all-solid-state batteries. Carbon Energy 6(12), e610 (2024). https://doi.org/10.1002/cey2.610
B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2(5), 833–845 (2018). https://doi.org/10.1016/j.joule.2018.03.008
C. Wang, A. Wang, L. Ren, X. Guan, D. Wang et al., Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes. Adv. Funct. Mater. 29(49), 1905940 (2019). https://doi.org/10.1002/adfm.201905940
Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang et al., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J. Power Sources 450, 227589 (2020). https://doi.org/10.1016/j.jpowsour.2019.227589
J. Oh, S.H. Choi, J.Y. Kim, J. Lee, T. Lee et al., Anode-less all-solid-state batteries operating at room temperature and low pressure. Adv. Energy Mater. 13(38), 2301508 (2023). https://doi.org/10.1002/aenm.202301508
D. Jun, S.H. Park, J.E. Jung, S.G. Lee, K.S. Kim et al., Ultra-stable breathing anode for Li-free all-solid-state battery based on Li concentration gradient in magnesium ps. Adv. Funct. Mater. 34(8), 2310259 (2024). https://doi.org/10.1002/adfm.202310259
J.H. Lee, S.-H. Oh, H. Yim, H.-J. Lee, E. Kwon et al., Interfacial stabilization strategy via in-doped Ag metal coating enables a high cycle life of anode-free solid-state Li batteries. Energy Storage Mater. 69, 103398 (2024). https://doi.org/10.1016/j.ensm.2024.103398
S.H. Park, D. Jun, G.H. Lee, S.G. Lee, J.E. Jung et al., Designing 3D anode based on pore-size-dependent Li deposition behavior for reversible Li-free all-solid-state batteries. Adv. Sci. 9, 2203130 (2022). https://doi.org/10.1002/advs.202203130
D. Gu, H. Kim, J.-H. Lee, S. Park, Surface-roughened current collectors for anode-free all-solid-state batteries. J. Energy Chem. 70, 248–257 (2022). https://doi.org/10.1016/j.jechem.2022.02.034
D.H. Lee, V. Dongquoc, S. Hong, S.I. Kim, E. Kim et al., Surface passivation of layered MoSe2 via van der Waals stacking of amorphous hydrocarbon. Small 18, 2202912 (2022). https://doi.org/10.1002/smll.202202912
M. Son, H. Jang, D.B. Seo, J.H. Lee, J. Kim et al., High-performance infrared photodetectors driven by interlayer exciton in a van der waals epitaxy grown HfS2/MoS2 vertical heterojunction. Adv. Funct. Mater. 34(7), 2308906 (2024). https://doi.org/10.1002/adfm.202308906
D.-B. Seo, M.-S. Kim, T.N. Trung, E.-T. Kim, Controllable low-temperature growth and enhanced photoelectrochemical water splitting of vertical SnS2 nanosheets on graphene. Electrochim. Acta 364, 137164 (2020). https://doi.org/10.1016/j.electacta.2020.137164
S.Y. Park, D.B. Seo, H. Choi, J.H. Lee, D.H. Lee et al., Structural instability stimulated heteroatoms co-doping of 2D quaternary semiconductor for optoelectronic applications. Adv. Funct. Mater. 34(13), 2310178 (2024). https://doi.org/10.1002/adfm.202310178
D.-B. Seo, S. Yoo, V. Dongquoc, T.N. Trung, E.-T. Kim, Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3·0.33H2O phase. J. Alloys Compd. 888, 161587 (2021). https://doi.org/10.1016/j.jallcom.2021.161587
L. Yu, Q. Su, B. Li, L. Huang, G. Du et al., Pre-lithiated Edge-enriched MoS2 nanoplates embedded into carbon nanofibers as protective layers to stabilize Li metal anodes. Chem. Eng. J. 429, 132479 (2022). https://doi.org/10.1016/j.cej.2021.132479
J. Fu, P. Yu, N. Zhang, G. Ren, S. Zheng et al., In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019). https://doi.org/10.1039/C8EE03390K
J. Wan, Y. Hao, Y. Shi, Y.-X. Song, H.-J. Yan et al., Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10(1), 3265 (2019). https://doi.org/10.1038/s41467-019-11197-7
Z. Zhu, Y. Tang, W.R. Leow, H. Xia, Z. Lv et al., Approaching the lithiation limit of MoS2 while maintaining its layered crystalline structure to improve lithium storage. Angew. Chem. Int. Ed. 58(11), 3521–3526 (2019). https://doi.org/10.1002/anie.201813698
H. Yuan, J. Nai, Y. Fang, G. Lu, X. Tao et al., Double-shelled C@MoS2 structures preloaded with sulfur: an additive reservoir for stable lithium metal anodes. Angew. Chem. Int. Ed. 59(37), 15839–15843 (2020). https://doi.org/10.1002/anie.202001989
Y. Cui, S. Liu, D. Wang, X. Wang, X. Xia et al., A facile way to construct stable and ionic conductive lithium sulfide nanops composed solid electrolyte interphase on Li metal anode. Adv. Funct. Mater. 31(3), 2006380 (2021). https://doi.org/10.1002/adfm.202006380
E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad et al., 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 13(4), 337–344 (2018). https://doi.org/10.1038/s41565-018-0061-y
L. Wang, Q. Zhang, J. Zhu, X. Duan, Z. Xu et al., Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium. Energy Storage Mater. 16, 37–45 (2019). https://doi.org/10.1016/j.ensm.2018.04.025
W.Z. Huang, C.Z. Zhao, P. Wu, H. Yuan, W.E. Feng et al., Anode-free solid-state lithium batteries: a review. Adv. Energy Mater. 12(26), 2201044 (2022). https://doi.org/10.1002/aenm.202201044
S. Kim, C. Jung, H. Kim, K.E. Thomas-Alyea, G. Yoon et al., The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv. Energy Mater. 10(12), 1903993 (2020). https://doi.org/10.1002/aenm.201903993
D.B. Seo, Y.M. Kwon, J. Kim, S. Kang, S. Yim et al., Edge-rich 3D structuring of metal chalcogenide/graphene with vertical nanosheets for efficient photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 16(22), 28613–28624 (2024). https://doi.org/10.1021/acsami.4c04329
D.-B. Seo, V. Dongquoc, R.A. Jayarathna, S. Lee, J.-H. Lee et al., Rational heterojunction design of 1D WO3 nanorods decorated with vertical 2D MoS2 nanosheets for enhanced photoelectrochemical performance. J. Alloys Compd. 911, 165090 (2022). https://doi.org/10.1016/j.jallcom.2022.165090
J. Ou, V. Tatagari, I. Senevirathna, S. Luitel, C. Segre et al., On the formation and properties of amorphous and crystalline Li3-yBay/2OCl electrolytes. J. Power Sources 609, 234685 (2024). https://doi.org/10.1016/j.jpowsour.2024.234685
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
D.-B. Seo, S. Kim, T.N. Trung, D. Kim, E.-T. Kim, Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J. Alloys Compd. 770, 686–691 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
T.N. Trung, D.-B. Seo, N.D. Quang, D. Kim, E.-T. Kim, Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 260, 150–156 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
D.-B. Seo, Y.M. Kwon, S. Kang, S. Yim, S.S. Lee et al., Tailoring phase transition of Mo-S-Te ternary system using heat-driven process for target functionalities. Chem. Eng. J. 496, 153936 (2024). https://doi.org/10.1016/j.cej.2024.153936
D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12(1), 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
G. Deysher, J.A.S. Oh, Y.-T. Chen, B. Sayahpour, S.-Y. Ham et al., Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 9, 1161–1172 (2024). https://doi.org/10.1038/s41560-024-01569-9
C.J. Huang, B. Thirumalraj, H.C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12(1), 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
M.J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020). https://doi.org/10.1038/s41467-020-19004-4
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
D. Cao, T. Ji, Z. Wei, W. Liang, R. Bai et al., Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure. Nano Lett. 23(20), 9392–9398 (2023). https://doi.org/10.1021/acs.nanolett.3c02713
H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu et al., Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5(3), 833–843 (2020). https://doi.org/10.1021/acsenergylett.9b02660
S. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin et al., High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 10(49), 42279–42285 (2018). https://doi.org/10.1021/acsami.8b15121
D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple et al., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4(10), 2418–2427 (2019). https://doi.org/10.1021/acsenergylett.9b01693
P. Wang, S. Sun, Y. Jiang, Q. Cai, Y.-H. Zhang et al., Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance. ACS Nano 14(11), 15577–15586 (2020). https://doi.org/10.1021/acsnano.0c06250
X. Yang, X. Gao, S. Mukherjee, K. Doyle-Davis, J. Fu et al., Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries. Adv. Energy Mater. 10(37), 2001191 (2020). https://doi.org/10.1002/aenm.202001191
Y. Chen, M. Sun, Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale 13(11), 5594–5619 (2021). https://doi.org/10.1039/d1nr00455g
Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in. transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31(29), e1901405 (2019). https://doi.org/10.1002/adma.201901405
W. Huang, P.M. Attia, H. Wang, S.E. Renfrew, N. Jin et al., Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19(8), 5140–5148 (2019). https://doi.org/10.1021/acs.nanolett.9b01515
H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato et al., Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. Sci. Rep. 10(1), 9453 (2020). https://doi.org/10.1038/s41598-020-66410-1
W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol 11(1), 1–13 (2020). https://doi.org/10.33961/jecst.2019.00528
J.H. Kim, J.-S. Park, S.-H. Cho, J.-M. Park, J.S. Nam et al., Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries. J. Mater. Chem. A 10(47), 25009–25018 (2022). https://doi.org/10.1039/D2TA07322F