Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis
Corresponding Author: Junliang Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 225
Abstract
Urgent requirements of the renewable energy boost the development of stable and clean hydrogen, which could effectively displace fossil fuels in mitigating climate changes. The efficient interconversion of hydrogen and electronic is highly based on polymer electrolyte membrane fuel cells (PEMFCs) and water electrolysis (PEMWEs). However, the high cost continues to impede large-scale commercialization of both PEMFC and PEMWE technologies, with the expense primarily attributed to noble catalysts serving as a major bottleneck. The reduction of Pt loading in PEMFCs is essential but limited by the oxygen transport resistance in the cathode catalyst layers (CCLs), while the oxygen transport in anode catalyst layers (ACLs) in PEMWEs also being focused as the Ir/IrOx catalyst reduced. The pore structure and the catalyst–ionomer agglomerates play important roles in the oxygen transport process of both PEMFCs and PEMWEs due to the similarity of membrane electrode assembly (MEA). Herein, the oxygen transport mechanism of PEMFCs in pore structure and ionomer thin films in CCLs is systematically reviewed, while state-of-the-art strategies are presented for enhancing oxygen transport and performance through materials and structural design. The deeply research opens avenues for exploring similar key scientific problems in oxygen transport process of PEMWEs and their further development.
Highlights:
1 Mechanisms of the bulk and local oxygen transport in cathode catalyst layers (CCLs) in proton exchange membrane fuel cells (PEMFCs) are presented.
2 State-of-the-art strategies to mitigate the oxygen transport resistance in CCLs in PEMFCs are reviewed, including the novel structure design, carbon supports design, and ionomer design.
3 New directions for oxygen transport development in anode catalyst layers (ACLs) in proton exchange membrane water electrolysis (PEMWEs) are inspired by the PEMFCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.L. Bondarenko, D.N. Ilyinskaya, A.A. Kazakova, P.S. Kozlovtsev, N.A. Lavrov et al., Introduction to hydrogen energy. Chem. Petrol. Eng. 57(11), 1008–1014 (2022). https://doi.org/10.1007/s10556-022-01038-8
- R. Rath, P. Kumar, S. Mohanty, N. Sk, Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res. 43(15), 8931–8955 (2019). https://doi.org/10.1002/er.4795
- A. Sajid, E. Pervaiz, H. Ali, T. Noor, B. Mm, A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 46(6), 6953–6988 (2022). https://doi.org/10.1002/er.7635
- L. Fan, H. Deng, Y. Zhang, Q. Du, D.Y.C. Leung et al., Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ. Sci. 16(4), 1466–1479 (2023). https://doi.org/10.1039/D2EE03169H
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–a review. Energy Environ. Sci. 15(6), 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
- H. Lee, Recent developments in fuel cells and water electrolyzers. JACS Au 4(5), 1673–1675 (2024). https://doi.org/10.1021/jacsau.4c00387
- X. Peng, Z. Taie, J. Liu, Y. Zhang, X. Peng et al., Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy Environ. Sci. 13(12), 4872–4881 (2020). https://doi.org/10.1039/D0EE03244A
- USDOE, Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: 2025 FUEL CELLS SECTION [Online]. (2025), https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office
- P. Rao, Y. Yu, S. Wang, Y. Zhou, X. Wu et al., Understanding the improvement mechanism of plasma etching treatment on oxygen reduction reaction catalysts. Exploration 4(1), 20230034 (2023). https://doi.org/10.1002/EXP.20230034
- Z. Li, W. Niu, Z. Yang, N. Zaman, W. Samarakoon et al., Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy Environ. Sci. 13(3), 884–895 (2020). https://doi.org/10.1039/C9EE02657F
- D. Wu, X. Shen, Y. Pan, L. Yao, Z. Peng, Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives. ChemNanoMat 6(1), 32–41 (2020). https://doi.org/10.1002/cnma.201900319
- J.P. Masnica, S. Sibt-e-Hassan, S. Potgieter-Vermaak, Y.N. Regmi, L.A. King et al., ZIF-8-derived Fe-C catalysts: relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 1(2), 160–169 (2023). https://doi.org/10.1016/j.greenca.2023.11.001
- J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow et al., Hard-magnet L10-CoPt nanops advance fuel cell catalysis. Joule 3(1), 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
- X. Zhao, H. Cheng, L. Song, L. Han, R. Zhang et al., Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 11(1), 184–192 (2021). https://doi.org/10.1021/acscatal.0c04021
- E. Lee, K.A. Kuttiyiel, K.-H. Kim, J. Jang, H.J. Lee et al., High pressure nitrogen-infused ultrastable fuel cell catalyst for oxygen reduction reaction. ACS Catal. 11(9), 5525–5531 (2021). https://doi.org/10.1021/acscatal.1c00395
- X. Zhao, K. Sasaki, Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Acc. Chem. Res. 55(9), 1226–1236 (2022). https://doi.org/10.1021/acs.accounts.2c00057
- USDOE. Multi-Year Research, Development, and Demonstration Plan: 2016 FUEL CELLS SECTION [Online]. (2016), https://www.energy
- J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye et al., Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6(5), 475–486 (2021). https://doi.org/10.1038/s41560-021-00824-7
- S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
- R. Kucernak, E. Toyoda, Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions. Electrochem. Commun. 10(11), 1728–1731 (2008). https://doi.org/10.1016/j.elecom.2008.09.001
- A.Z. Weber, A. Kusoglu, Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2(41), 17207–17211 (2014). https://doi.org/10.1039/C4TA02952F
- A. Kongkanand, M.F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7(7), 1127–1137 (2016). https://doi.org/10.1021/acs.jpclett.6b00216
- J. Durst, C. Simon, F. Hasché, H.A. Gasteiger, Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162(1), F190–F203 (2015). https://doi.org/10.1149/2.0981501jes
- K.E. Ayers, J.N. Renner, N. Danilovic, J.X. Wang, Y. Zhang et al., Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal. Today 262, 121–132 (2016). https://doi.org/10.1016/j.cattod.2015.10.019
- L. Peng, Z. Wei, Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering 6(6), 653–679 (2020). https://doi.org/10.1016/j.eng.2019.07.028
- M. Bernt, A. Hartig-Weiß, M.F. Tovini, H.A. El-Sayed, C. Schramm et al., Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 92(1–2), 31–39 (2020). https://doi.org/10.1002/cite.201900101
- K. Ehelebe, J. Knöppel, M. Bierling, B. Mayerhöfer, T. Böhm et al., Platinum dissolution in realistic fuel cell catalyst layers. Angew. Chem. Int. Ed. 60(16), 8882–8888 (2021). https://doi.org/10.1002/anie.202014711
- L. Qu, Z. Wang, X. Guo, W. Song, F. Xie et al., Effect of electrode Pt-loading and cathode flow-field plate type on the degradation of PEMFC. J. Energy Chem. 35, 95–103 (2019). https://doi.org/10.1016/j.jechem.2018.09.004
- S. Shahgaldi, I. Alaefour, X. Li, The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability. Appl. Energy 217, 295–302 (2018). https://doi.org/10.1016/j.apenergy.2018.02.154
- S.M. Alia, B. Rasimick, C. Ngo, K.C. Neyerlin, S.S. Kocha et al., Activity and durability of iridium nanops in the oxygen evolution reaction. J. Electrochem. Soc. 163(11), F3105–F3112 (2016). https://doi.org/10.1149/2.0151611jes
- Y. Fukuyama, T. Shiomi, T. Kotaka, Y. Tabuchi, The impact of platinum reduction on oxygen transport in proton exchange membrane fuel cells. Electrochim. Acta 117, 367–378 (2014). https://doi.org/10.1016/j.electacta.2013.11.179
- T.A. Greszler, D. Caulk, P. Sinha, The impact of platinum loading on oxygen transport resistance. J. Electrochem. Soc. 159(12), F831–F840 (2012). https://doi.org/10.1149/2.061212jes
- C. Wang, X. Cheng, J. Lu, S. Shen, X. Yan et al., The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J. Phys. Chem. Lett. 8(23), 5848–5852 (2017). https://doi.org/10.1021/acs.jpclett.7b02580
- Y. Ono, A. Ohma, K. Shinohara, K. Fushinobu, Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J. Electrochem. Soc. 160(8), F779–F787 (2013). https://doi.org/10.1149/2.040308jes
- D.R. Baker, C. Wieser, K.C. Neyerlin, M.W. Murphy, The use of limiting current to determine transport resistance in PEM fuel cells. ECS Trans. 3(1), 989–999 (2006). https://doi.org/10.1149/1.2356218
- D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 156(9), B991 (2009). https://doi.org/10.1149/1.3152226
- T. Mashio, A. Ohma, S. Yamamoto, K. Shinohara, Analysis of reactant gas transport in a catalyst layer. ECS Trans. 11(1), 529–540 (2007). https://doi.org/10.1149/1.2780966
- Z. Yu, R.N. Carter, J. Zhang, Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12(4), 557–565 (2012). https://doi.org/10.1002/fuce.201200017
- N. Nonoyama, S. Okazaki, A.Z. Weber, Y. Ikogi, T. Yoshida, Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158(4), B416 (2011). https://doi.org/10.1149/1.3546038
- S. Ott, A. Orfanidi, H. Schmies, B. Anke, H.N. Nong et al., Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19(1), 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0
- C. Lee, W.J.M. Kort-Kamp, H. Yu, D.A. Cullen, B.M. Patterson et al., Grooved electrodes for high-power-density fuel cells. Nat. Energy 8(7), 685–694 (2023). https://doi.org/10.1038/s41560-023-01263-2
- C. Li, K. Yu, A. Bird, F. Guo, J. Ilavsky et al., Unraveling the core of fuel cell performance: engineering the ionomer/catalyst interface. Energy Environ. Sci. 16(7), 2977–2990 (2023). https://doi.org/10.1039/D2EE03553G
- T. Lazaridis, H.A. Gasteiger, Pt-catalyzed oxidation of PEMFC carbon supports: a path to highly accessible carbon morphologies and implications for start-up/shut-down degradation. J. Electrochem. Soc. 168(11), 114517 (2021). https://doi.org/10.1149/1945-7111/ac35ff
- S. Salari, M. Tam, C. McCague, J. Stumper, M. Bahrami, The ex-situ and in situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance. J. Power Sources 449, 227479 (2020). https://doi.org/10.1016/j.jpowsour.2019.227479
- C. Schlumberger, M. Thommes, Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry: a tutorial review. Adv. Mater. Interfaces 8(4), 2002181 (2021). https://doi.org/10.1002/admi.202002181
- S. Ghosh, H. Ohashi, H. Tabata, Y. Hashimasa, T. Yamaguchi, In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles. J. Power Sources 362, 291–298 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.017
- S. Ghosh, H. Ohashi, H. Tabata, Y. Hashimasa, T. Yamaguchi, Microstructural pore analysis of the catalyst layer in a polymer electrolyte membrane fuel cell: a combination of resin pore-filling and FIB/SEM. Int. J. Hydrog. Energy 40(45), 15663–15671 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.080
- F.C. Cetinbas, R.K. Ahluwalia, N.N. Kariuki, V. De Andrade, D.J. Myers, Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J. Electrochem. Soc. 167(1), 013508 (2020). https://doi.org/10.1149/2.0082001jes
- C.Y. Jung, S.K. Kim, S.J. Lee, S.C. Yi, Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells. Electrochim. Acta 211, 142–147 (2016). https://doi.org/10.1016/j.electacta.2016.06.040
- M. Sabharwal, L.M. Pant, A. Putz, D. Susac, J. Jankovic et al., Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells 16(6), 734–753 (2016). https://doi.org/10.1002/fuce.201600008
- M. Lopez-Haro, L. Guétaz, T. Printemps, A. Morin, S. Escribano et al., Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 5, 5229 (2014). https://doi.org/10.1038/ncomms6229
- R. Sun, Z. Xia, X. Xu, R. Deng, S. Wang et al., Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells. Nano Energy 75, 104919 (2020). https://doi.org/10.1016/j.nanoen.2020.104919
- R. Girod, T. Lazaridis, H.A. Gasteiger, V. Tileli, Three-dimensional nanoimaging of fuel cell catalyst layers. Nat. Catal. 6(5), 383–391 (2023). https://doi.org/10.1038/s41929-023-00947-y
- M. Turk, W. Baumeister, The promise and the challenges of cryo-electron tomography. FEBS Lett. 594(20), 3243–3261 (2020). https://doi.org/10.1002/1873-3468.13948
- E. Padgett, N. Andrejevic, Z. Liu, A. Kongkanand, W. Gu et al., Editors’ choice: connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165(3), F173–F180 (2018). https://doi.org/10.1149/2.0541803jes
- S. Takahashi, J. Shimanuki, T. Mashio, A. Ohma, H. Tohma et al., Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy. Electrochim. Acta 224, 178–185 (2017). https://doi.org/10.1016/j.electacta.2016.12.068
- T. Morawietz, M. Handl, C. Oldani, K. Andreas Friedrich, R. Hiesgen, Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Appl. Mater. Interfaces 8(40), 27044–27054 (2016). https://doi.org/10.1021/acsami.6b07188
- X. Cheng, J. You, S. Shen, G. Wei, X. Yan et al., An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs. Chem. Eng. J. 439, 135387 (2022). https://doi.org/10.1016/j.cej.2022.135387
- Y. Su, X. Cheng, Y. Feng, H. Li, C. Yan et al., Hierarchical catalyst layer structure for enhancing local oxygen transport in low Pt proton exchange membrane fuel cells. J. Power Sources 603, 234453 (2024). https://doi.org/10.1016/j.jpowsour.2024.234453
- H. Li, J. You, X. Cheng, L. Luo, X. Yan et al., Unraveling the effects of carbon corrosion on oxygen transport resistance in low Pt loading proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 16(1), 540–554 (2024). https://doi.org/10.1021/acsami.3c13450
- S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Probing ionomer interactions with electrocatalyst ps in solution. ACS Energy Lett. 6(6), 2275–2282 (2021). https://doi.org/10.1021/acsenergylett.1c00866
- T. Masuda, F. Sonsudin, P.R. Singh, H. Naohara, K. Uosaki, Potential-dependent adsorption and desorption of perfluorosulfonated ionomer on a platinum electrode surface probed by electrochemical quartz crystal microbalance and atomic force microscopy. J. Phys. Chem. C 117(30), 15704–15709 (2013). https://doi.org/10.1021/jp404376t
- M. Osawa, T. Nakane, K. Ito, W. Suëtaka, In situ characterization of platinum ps dispersed in nafion films on gold electrodes by infrared spectroscopy. J. Electroanal. Chem. Interfacial Electrochem. 270(1–2), 459–464 (1989). https://doi.org/10.1016/0022-0728(89)85060-0
- H. Hanawa, K. Kunimatsu, M. Watanabe, H. Uchida, In situ ATR-FTIR analysis of the structure of Nafion–Pt/C and Nafion–Pt3Co/C interfaces in fuel cell. J. Phys. Chem. C 116(40), 21401–21406 (2012). https://doi.org/10.1021/jp306955q
- Y. Ayato, K. Kunimatsu, M. Osawa, T. Okada, Study of Pt electrode/nafion ionomer interface in HClO4 by in situ surface-enhanced FTIR spectroscopy. J. Electrochem. Soc. 153(2), A203 (2006). https://doi.org/10.1149/1.2137648
- A. Kusoglu, T.J. Dursch, A.Z. Weber, Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv. Funct. Mater. 26(27), 4961–4975 (2016). https://doi.org/10.1002/adfm.201600861
- C. Welch, A. Labouriau, R. Hjelm, B. Orler, C. Johnston et al., Nafion in dilute solvent systems: dispersion or solution? ACS Macro Lett. 1(12), 1403–1407 (2012). https://doi.org/10.1021/mz3005204
- A. Malekian, S. Salari, J. Stumper, N. Djilali, M. Bahrami, Effect of compression on pore size distribution and porosity of PEM fuel cell catalyst layers. Int. J. Hydrog. Energy 44(41), 23396–23405 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.036
- S. Guan, F. Zhou, J. Tan, M. Pan, Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs. Prog. Nat. Sci. Mater. Int. 30(6), 839–845 (2020). https://doi.org/10.1016/j.pnsc.2020.08.017
- X. Cheng, C. Wang, G. Wei, X. Yan, S. Shen et al., Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J. Electrochem. Soc. 166(14), F1055–F1061 (2019). https://doi.org/10.1149/2.0501914jes
- A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells: With a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 74, 50–102 (2019). https://doi.org/10.1016/j.pecs.2019.05.002
- X. Wang, H. Zhang, J. Zhang, H. Xu, X. Zhu et al., A bi-functional micro-porous layer with composite carbon black for PEM fuel cells. J. Power Sources 162(1), 474–479 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.064
- B. Tjaden, S.J. Cooper, D.J. Brett, D. Kramer, P.R. Shearing, On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr. Opin. Chem. Eng. 12, 44–51 (2016). https://doi.org/10.1016/j.coche.2016.02.006
- J. Landesfeind, J. Hattendorff, A. Ehrl, W.A. Wall, H.A. Gasteiger, Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163(7), A1373–A1387 (2016). https://doi.org/10.1149/2.1141607jes
- M.B. Sassin, Y. Garsany, R.W. Atkinson, R.M.E. Hjelm, K.E. Swider-Lyons, Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. Int. J. Hydrog. Energy 44(31), 16944–16955 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.194
- J. Zhao, X. He, L. Wang, J. Tian, C. Wan et al., Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC. Int. J. Hydrog. Energy 32(3), 380–384 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.057
- A. Kusoglu, A.Z. Weber, New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117(3), 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
- S.C. DeCaluwe, A.M. Baker, P. Bhargava, J.E. Fischer, J.A. Dura, Structure-property relationships at Nafion thin-film interfaces: Thickness effects on hydration and anisotropic ion transport. Nano Energy 46, 91–100 (2018). https://doi.org/10.1016/j.nanoen.2018.01.008
- K.A. Page, A. Kusoglu, C.M. Stafford, S. Kim, R.J. Kline et al., Confinement-driven increase in ionomer thin-film modulus. Nano Lett. 14(5), 2299–2304 (2014). https://doi.org/10.1021/nl501233g
- Y. Ono, T. Mashio, S. Takaichi, A. Ohma, H. Kanesaka et al., The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 28(27), 69–78 (2010). https://doi.org/10.1149/1.3496614
- S.-Y. Lim, S.-I. Kim, M.S. Lee, S.-J. Bak, D.H. Lee et al., Effect of uniformity and surface morphology of Pt nanops to enhance oxygen reduction reaction in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 47(68), 29456–29466 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.264
- J.P. Owejan, J.E. Owejan, W. Gu, Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160(8), F824–F833 (2013). https://doi.org/10.1149/2.072308jes
- M.A. Modestino, D.K. Paul, S. Dishari, S.A. Petrina, F.I. Allen et al., Self-assembly and transport limitations in confined nafion films. Macromolecules 46(3), 867–873 (2013). https://doi.org/10.1021/ma301999a
- M.A. Modestino, A. Kusoglu, A. Hexemer, A.Z. Weber, R.A. Segalman, Controlling nafion structure and properties via wetting interactions. Macromolecules 45(11), 4681–4688 (2012). https://doi.org/10.1021/ma300212f
- S.A. Eastman, S. Kim, K.A. Page, B.W. Rowe, S. Kang et al., Effect of confinement on structure, water solubility, and water transport in nafion thin films. Macromolecules 45(19), 7920–7930 (2012). https://doi.org/10.1021/ma301289v
- S. Shen, X. Cheng, C. Wang, X. Yan, C. Ke et al., Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 19(38), 26221–26229 (2017). https://doi.org/10.1039/C7CP04837H
- C. Wang, X. Cheng, X. Yan, S. Shen, C. Ke et al., Respective influence of ionomer content on local and bulk oxygen transport resistance in the catalyst layer of PEMFCs with low Pt loading. J. Electrochem. Soc. 166(4), F239–F245 (2019). https://doi.org/10.1149/2.0401904jes
- H. Li, J. You, Y. Feng, X. Yan, J. Yin et al., Comprehensive understanding of oxygen transport at Gas/ionomer/electrocatalyst triple phase boundary in PEMFCs. Chem. Eng. J. 478, 147454 (2023). https://doi.org/10.1016/j.cej.2023.147454
- T. Suzuki, K. Kudo, Y. Morimoto, Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J. Power Sources 222, 379–389 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.068
- K. Kudo, R. Jinnouchi, Y. Morimoto, Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016). https://doi.org/10.1016/j.electacta.2016.04.023
- K. Kodama, K. Motobayashi, A. Shinohara, N. Hasegawa, K. Kudo et al., Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8(1), 694–700 (2018). https://doi.org/10.1021/acscatal.7b03571
- R. Jinnouchi, K. Kudo, N. Kitano, Y. Morimoto, Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031
- Y. Kurihara, T. Mabuchi, T. Tokumasu, Molecular dynamics study of oxygen transport resistance through ionomer thin film on Pt surface. J. Power. Sources 414, 263–271 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.011
- M.B. Dixit, B.A. Harkey, F. Shen, K.B. Hatzell, Catalyst layer ink interactions that affect coatability. J. Electrochem. Soc. 165(5), F264–F271 (2018). https://doi.org/10.1149/2.0191805jes
- H. Ren, X. Meng, Y. Lin, Z. Shao, Microstructure formation mechanism of catalyst layer and its effect on fuel cell performance: Effect of dispersion medium composition. J. Energy Chem. 73, 588–598 (2022). https://doi.org/10.1016/j.jechem.2022.06.034
- T.-H. Kim, J.-Y. Yi, C.-Y. Jung, E. Jeong, S.-C. Yi, Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42(1), 478–485 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.015
- S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation. J. Phys. Chem. B 122(31), 7790–7796 (2018). https://doi.org/10.1021/acs.jpcb.8b06493
- M. Wang, J.H. Park, S. Kabir, K.C. Neyerlin, N.N. Kariuki et al., Impact of catalyst ink dispersing methodology on fuel cell performance using in situ X-ray scattering. ACS Appl. Energy Mater. 2(9), 6417–6427 (2019). https://doi.org/10.1021/acsaem.9b01037
- B.H. Lim, E.H. Majlan, A. Tajuddin, T. Husaini, W.R. Wan Daud et al., Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: a review. Chin. J. Chem. Eng. 33, 1–16 (2021). https://doi.org/10.1016/j.cjche.2020.07.044
- S. Thanasilp, M. Hunsom, Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 89(12), 3847–3852 (2010). https://doi.org/10.1016/j.fuel.2010.07.008
- S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Understanding binary interactions in fuel-cell catalyst-layer inks. ECS Trans. 80(8), 309–319 (2017). https://doi.org/10.1149/08008.0309ecst
- M. Jorge, L. Lue, The dielectric constant: reconciling simulation and experiment. J. Chem. Phys. 150(8), 084108 (2019). https://doi.org/10.1063/1.5080927
- T.-H. Kim, J.H. Yoo, T. Maiyalagan, S.-C. Yi, Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Appl. Surf. Sci. 481, 777–784 (2019). https://doi.org/10.1016/j.apsusc.2019.03.113
- Y. Guo, F. Pan, W. Chen, Z. Ding, D. Yang et al., The controllable design of catalyst inks to enhance PEMFC performance: a review. Electrochem. Energy Rev. 4(1), 67–100 (2021). https://doi.org/10.1007/s41918-020-00083-2
- G. Doo, J.H. Lee, S. Yuk, S. Choi, D.H. Lee et al., Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Interfaces 10(21), 17835–17841 (2018). https://doi.org/10.1021/acsami.8b01751
- C.H. Cheng, K. Malek, P.C. Sui, N. Djilali, Effect of Pt nano-p size on the microstructure of PEM fuel cell catalyst layers: Insights from molecular dynamics simulations. Electrochim. Acta 55(5), 1588–1597 (2010). https://doi.org/10.1016/j.electacta.2009.10.030
- O. Antoine, Y. Bultel, R. Durand, P. Ozil, Electrocatalysis, diffusion and ohmic drop in PEMFC: p size and spatial discrete distribution effects. Electrochim. Acta 43(24), 3681–3691 (1998). https://doi.org/10.1016/S0013-4686(98)00126-1
- V.I. Pavlov, E.V. Gerasimova, E.V. Zolotukhina, G.M. Don, Y.A. Dobrovolsky et al., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells. Nanotechn. Russ. 11(11–12), 743–750 (2017). https://doi.org/10.1134/s199507801606015x
- M. Gummalla, S. Ball, D. Condit, S. Rasouli, K. Yu et al., Effect of p size and operating conditions on Pt3Co PEMFC cathode catalyst durability. Catalysts 5(2), 926–948 (2015). https://doi.org/10.3390/catal5020926
- Z. Yang, S. Ball, D. Condit, M. Gummalla, Systematic study on the impact of Pt p size and operating conditions on PEMFC cathode catalyst durability. J. Electrochem. Soc. 158(11), B1439 (2011). https://doi.org/10.1149/2.081111jes
- X. Sun, H. Yu, L. Zhou, X. Gao, Y. Zeng et al., Influence of platinum dispersity on oxygen transport resistance and performance in PEMFC. Electrochim. Acta 332, 135474 (2020). https://doi.org/10.1016/j.electacta.2019.135474
- H. Li, J. You, X. Cheng, X. Yan, S. Shen et al., New insight into the effect of Co2+ contamination on local oxygen transport in PEMFCs. Chem. Eng. J. 453, 139945 (2023). https://doi.org/10.1016/j.cej.2022.139945
- A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A.S. Arico et al., Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J. Power Sources 196(21), 8925–8930 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.084
- N. Ramaswamy, W. Gu, J.M. Ziegelbauer, S. Kumaraguru, Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 167(6), 064515 (2020). https://doi.org/10.1149/1945-7111/ab819c
- V. Yarlagadda, M.K. Carpenter, T.E. Moylan, R.S. Kukreja, R. Koestner et al., Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018). https://doi.org/10.1021/acsenergylett.8b00186
- X. Cheng, G. Wei, C. Wang, S. Shen, J. Zhang, Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 164, 120549 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120549
- S. Nagashima, T. Ikai, Y. Sasaki, T. Kawasaki, T. Hatanaka et al., Atomic-level observation of electrochemical platinum dissolution and redeposition. Nano Lett. 19(10), 7000–7005 (2019). https://doi.org/10.1021/acs.nanolett.9b02382
- P. Parthasarathy, A.V. Virkar, Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. J. Power Sources 234, 82–90 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.115
- A. Pavlišič, P. Jovanovič, V.S. Šelih, M. Šala, N. Hodnik et al., Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J. Electrochem. Soc. 165(6), F3161–F3165 (2018). https://doi.org/10.1149/2.0191806jes
- L. Fan, J. Zhao, X. Luo, Z. Tu, Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int. J. Hydrog. Energy 47(8), 5418–5428 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.135
- N. Ramaswamy, S. Kumaraguru, W. Gu, R.S. Kukreja, K. Yu et al., High-current density durability of Pt/C and PtCo/C catalysts at similar p sizes in PEMFCs. J. Electrochem. Soc. 168(2), 024519 (2021). https://doi.org/10.1149/1945-7111/abe5ea
- Y.V. Yakovlev, Y.V. Lobko, M. Vorokhta, J. Nováková, M. Mazur et al., Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. J. Power Sources 490, 229531 (2021). https://doi.org/10.1016/j.jpowsour.2021.229531
- S.M. Jayawickrama, D. Wu, R. Nakayama, S. Ishikawa, X. Liu et al., Effect of a polybenzimidazole coating on carbon supports for ionomer content optimization in polymer electrolyte membrane fuel cells. J. Power Sources 496, 229855 (2021). https://doi.org/10.1016/j.jpowsour.2021.229855
- N. Ramaswamy, S. Kumaraguru, R. Koestner, T. Fuller, W. Gu et al., Editors’ choice: ionomer side chain length and equivalent weight impact on high current density transport resistances in PEMFC cathodes. J. Electrochem. Soc. 168(2), 024518 (2021). https://doi.org/10.1149/1945-7111/abe5eb
- E. Moukheiber, G. De Moor, L. Flandin, C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC). J. Membr. Sci. 389, 294–304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
- Y.-C. Park, K. Kakinuma, H. Uchida, M. Watanabe, M. Uchida, Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J. Power Sources 275, 384–391 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.149
- N. Zhao, Z. Shi, F. Girard, Superior proton exchange membrane fuel cell (PEMFC) performance using short-side-chain perfluorosulfonic acid (PFSA) membrane and ionomer. Materials 15(1), 78 (2021). https://doi.org/10.3390/ma15010078
- S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich et al., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194(2), 588–600 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.073
- X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC Part I Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 172(1), 133–144 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.049
- P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5–42 (2014). https://doi.org/10.1016/j.carbon.2014.04.005
- S. Samad, K.S. Loh, W.Y. Wong, T.K. Lee, J. Sunarso et al., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 43(16), 7823–7854 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.154
- N. Ramaswamy, S. Kumaraguru, Materials and design selection to improve high current density performance in PEMFC. ECS Trans. 85(13), 835 (2018). https://doi.org/10.1149/08513.0835ecst
- N.N. Atak, B. Dogan, M.K. Yesilyurt, Investigation of the performance parameters for a PEMFC by thermodynamic analyses: effects of operating temperature and pressure. Energy 282, 128907 (2023). https://doi.org/10.1016/j.energy.2023.128907
- H. Askaripour, Effect of operating conditions on the performance of a PEM fuel cell. Int. J. Heat Mass Transf. 144, 118705 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705
- M.G. Santarelli, M.F. Torchio, Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Convers. Manag. 48(1), 40–51 (2007). https://doi.org/10.1016/j.enconman.2006.05.013
- Q. Zhang, R. Lin, L. Técher, X. Cui, Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy 115, 550–560 (2016). https://doi.org/10.1016/j.energy.2016.08.086
- T. Chu, M. Xie, Y. Yu, B. Wang, D. Yang et al., Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC. Energy 239, 122356 (2022). https://doi.org/10.1016/j.energy.2021.122356
- N. Zhao, Y. Chu, Z. Xie, K. Eggen, F. Girard et al., Effects of fuel cell operating conditions on proton exchange membrane durability at open-circuit voltage. Fuel Cells 20(2), 176–184 (2020). https://doi.org/10.1002/fuce.201900173
- D. Novitski, S. Holdcroft, Determination of O2 mass transport at the Pt | PFSA ionomer interface under reduced relative humidity. ACS Appl. Mater. Interfaces 7(49), 27314–27323 (2015). https://doi.org/10.1021/acsami.5b08720
- J. Catalano, T. Myezwa, M.G. De Angelis, M.G. Baschetti, G.C. Sarti, The effect of relative humidity on the gas permeability and swelling in PFSI membranes. Int. J. Hydrog. Energy 37(7), 6308–6316 (2012). https://doi.org/10.1016/j.ijhydene.2011.07.047
- X. Cheng, J. Zhou, L. Luo, S. Shen, J. Zhang, Boosting bulk oxygen transport with accessible electrode nanostructure in low Pt loading PEMFCs. Small 20(26), e2308563 (2024). https://doi.org/10.1002/smll.202308563
- K. Talukdar, S. Delgado, T. Lagarteira, P. Gazdzicki, K.A. Friedrich, Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers. J. Power Sources 427, 309–317 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.094
- S. Choi, J. Jeon, J. Chae, S. Yuk, D.-H. Lee et al., Single-step fabrication of a multiscale porous catalyst layer by the emulsion template method for low Pt-loaded proton exchange membrane fuel cells. ACS Appl. Energy Mater. 4(4), 4012–4020 (2021). https://doi.org/10.1021/acsaem.1c00379
- C.Y. Ahn, S. Jang, Y.H. Cho, J. Choi, S. Kim et al., Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells. Sci. Rep. 8(1), 1257 (2018). https://doi.org/10.1038/s41598-018-19861-6
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32(17), e1907176 (2020). https://doi.org/10.1002/adma.201907176
- S.M. Kim, C.Y. Ahn, Y.H. Cho, S. Kim, W. Hwang et al., High-performance fuel cell with stretched catalyst-coated membrane: one-step formation of cracked electrode. Sci. Rep. 6, 26503 (2016). https://doi.org/10.1038/srep26503
- Z. Xia, S. Wang, L. Jiang, H. Sun, S. Liu et al., Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix. Sci. Rep. 5, 16100 (2015). https://doi.org/10.1038/srep16100
- R. Sun, Z. Xia, L. Shang, X. Fu, H. Li et al., Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. J. Mater. Chem. A 5(29), 15260–15265 (2017). https://doi.org/10.1039/C7TA02500A
- M. Chen, M. Wang, Z. Yang, X. Wang, High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays. Appl. Surf. Sci. 406, 69–76 (2017). https://doi.org/10.1016/j.apsusc.2017.01.296
- C. Galeano, J.C. Meier, V. Peinecke, H. Bongard, I. Katsounaros et al., Toward highly stable electrocatalysts via nanop pore confinement. J. Am. Chem. Soc. 134(50), 20457–20465 (2012). https://doi.org/10.1021/ja308570c
- W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1(6), 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23
- S. Yuan, Q. Gao, C. Ke, T. Zuo, J. Hou et al., Mesoporous carbon materials for electrochemical energy storage and conversion. ChemElectroChem 9(6), e202101182 (2022). https://doi.org/10.1002/celc.202101182
- G. Liu, Z. Yang, X. Wang, B. Fang, Ordered porous TiO2@C layer as an electrocatalyst support for improved stability in PEMFCs. Nanomaterials 11(12), 3462 (2021). https://doi.org/10.3390/nano11123462
- Z. Wu, Y. Lv, Y. Xia, P.A. Webley, D. Zhao, Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 134(4), 2236–2245 (2012). https://doi.org/10.1021/ja209753w
- L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu et al., Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141(17), 7073–7080 (2019). https://doi.org/10.1021/jacs.9b02091
- X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang et al., Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364, 226–243 (2019). https://doi.org/10.1016/j.cej.2019.01.159
- R. Vinodh, C.V.V.M. Gopi, V.G.R. Kummara, R. Atchudan, T. Ahamad et al., A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J. Energy Storage 32, 101831 (2020). https://doi.org/10.1016/j.est.2020.101831
- M.S. Silverstein, The chemistry of porous polymers: the holey grail. Isr. J. Chem. 60(1–2), 140–150 (2020). https://doi.org/10.1002/ijch.202000003
- Y.-C. Park, H. Tokiwa, K. Kakinuma, M. Watanabe, M. Uchida, Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.091
- F. Jaouen, J.-P. Dodelet, Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? part I. model for carbon black gasification by NH3: parametric calibration and electrochemical validation. J. Phys. Chem. C 111(16), 5963–5970 (2007). https://doi.org/10.1021/jp068273p
- S. Zhang, F. Zhou, B. Luo, J. Tan, M. Pan, Regulating the mesoporous structure of carbon nanospheres by a local ablation method for high-performance PEMFC catalysts. Energy Fuels 38(10), 9046–9053 (2024). https://doi.org/10.1021/acs.energyfuels.4c00197
- Z. Zhao, M.D. Hossain, C. Xu, Z. Lu, Y.-S. Liu et al., Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 3(5), 1774–1790 (2020). https://doi.org/10.1016/j.matt.2020.09.025
- S.M. Jayawickrama, T. Fujigaya, Effect of polymer-coating on carbon blacks for Pt utilization efficiency of polymer electrolyte membrane fuel cells. J. Power Sources 482, 228932 (2021). https://doi.org/10.1016/j.jpowsour.2020.228932
- A. Katzenberg, A. Chowdhury, M. Fang, A.Z. Weber, Y. Okamoto et al., Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: insights into structure-property relationships. J. Am. Chem. Soc. 142(8), 3742–3752 (2020). https://doi.org/10.1021/jacs.9b09170
- Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 378(6616), 181–186 (2022). https://doi.org/10.1126/science.abm6304
- G.C. Torres, E.L. Jablonski, G.T. Baronetti, A.A. Castro, S.R. de Miguel et al., Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts. Appl. Catal. A Gen. 161(1–2), 213–226 (1997). https://doi.org/10.1016/S0926-860X(97)00071-9
- M.A. Fraga, E. Jordão, M.J. Mendes, M.M.A. Freitas, J.L. Faria et al., Properties of carbon-supported platinum catalysts: role of carbon surface sites. J. Catal. 209(2), 355–364 (2002). https://doi.org/10.1006/jcat.2002.3637
- J. Bai, S. Ke, J. Song, K. Wang, C. Sun et al., Surface engineering of carbon-supported platinum as a route to electrocatalysts with superior durability and activity for PEMFC cathodes. ACS Appl. Mater. Interfaces 14(4), 5287–5297 (2022). https://doi.org/10.1021/acsami.1c20823
- K. Miyazaki, N. Sugimura, K.-I. Kawakita, T. Abe, K. Nishio et al., Aminated perfluorosulfonic acid ionomers to improve the triple phase boundary region in anion-exchange membrane fuel cells. J. Electrochem. Soc. 157(11), A1153 (2010). https://doi.org/10.1149/1.3483105
- L.-X. Sun, T. Okada, Studies on interactions between Nafion and organic vapours by quartz crystal microbalance. J. Membr. Sci. 183(2), 213–221 (2001). https://doi.org/10.1016/S0376-7388(00)00585-8
- A. Orfanidi, P. Madkikar, H.A. El-Sayed, G.S. Harzer, T. Kratky et al., The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 164(4), F418–F426 (2017). https://doi.org/10.1149/2.1621704jes
- D. Morales-Acosta, J.D. Flores-Oyervides, J.A. Rodríguez-González, N.M. Sánchez-Padilla, R. Benavides et al., Comparative methods for reduction and sulfonation of graphene oxide for fuel cell electrode applications. Int. J. Hydrog. Energy 44(24), 12356–12364 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.091
- T.-F. Hung, B. Wang, C.-W. Tsai, M.-H. Tu, G.-X. Wang et al., Sulfonation of graphene nanosheet-supported platinum via a simple thermal-treatment toward its oxygen reduction activity in acid medium. Int. J. Hydrog. Energy 37(19), 14205–14210 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.027
- K. Kakaei, A. Rahimi, S. Husseindoost, M. Hamidi, H. Javan et al., Fabrication of Pt–CeO2 nanops supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. Int. J. Hydrog. Energy 41(6), 3861–3869 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.013
- M. Okamoto, T. Fujigaya, N. Nakashima, Individual dissolution of single-walled carbon nanotubes by using polybenzimidazole, and highly effective reinforcement of their composite films. Adv. Funct. Mater. 18(12), 1776–1782 (2008). https://doi.org/10.1002/adfm.200701257
- T. Fujigaya, M. Okamoto, N. Nakashima, Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanops for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47(14), 3227–3232 (2009). https://doi.org/10.1016/j.carbon.2009.07.038
- T. Fujigaya, N. Nakashima, Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 25(12), 1666–1681 (2013). https://doi.org/10.1002/adma.201204461
- M.R. Berber, I.H. Hafez, T. Fujigaya, N. Nakashima, A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci. Rep. 5, 16711 (2015). https://doi.org/10.1038/srep16711
- Y. Li, T. Van Cleve, R. Sun, R. Gawas, G. Wang et al., Modifying the electrocatalyst-ionomer interface via sulfonated poly(ionic liquid) block copolymers to enable high-performance polymer electrolyte fuel cells. ACS Energy Lett. 5(6), 1726–1731 (2020). https://doi.org/10.1021/acsenergylett.0c00532
- W. Liu, S. Di, F. Wang, H. Zhu, Ionic liquid modified fct-PtCo/C@ILs as high activity and durability electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 47(9), 6312–6322 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.003
- X. Cheng, G. Wei, L. Luo, J. Yin, S. Shen et al., Application of solid catalysts with an ionic liquid layer (SCILL) in PEMFCs: from half-cell to full-cell. Electrochem. Energy Rev. 6(1), 32 (2023). https://doi.org/10.1007/s41918-023-00195-5
- J.P. Braaten, N.N. Kariuki, D.J. Myers, S. Blackburn, G. Brown et al., Integration of a high oxygen permeability ionomer into polymer electrolyte membrane fuel cell cathodes for high efficiency and power density. J. Power Sources 522, 230821 (2022). https://doi.org/10.1016/j.jpowsour.2021.230821
- A. Rolfi, C. Oldani, L. Merlo, D. Facchi, R. Ruffo, New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. J. Power Sources 396, 95–101 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.093
- R. Jinnouchi, K. Kudo, K. Kodama, N. Kitano, T. Suzuki et al., The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 12, 4956 (2021). https://doi.org/10.1038/s41467-021-25301-3
- N. Macauley, R.D. Lousenberg, M. Spinetta, S. Zhong, F. Yang et al., Highly durable fluorinated high oxygen permeability ionomers for proton exchange membrane fuel cells. Adv. Energy Mater. 12(45), 2201063 (2022). https://doi.org/10.1002/aenm.202201063
- X. Yan, Z. Xu, S. Yuan, A. Han, Y. Shen et al., Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: a review. J. Power Sources 536, 231523 (2022). https://doi.org/10.1016/j.jpowsour.2022.231523
- T. Kaneko, J. Ooyama, M. Ohki, H. Kanesaka, Y. Yoshimoto et al., Effect of ionomer swelling and capillary condensation of water on porous characteristics in cathode catalyst layers of polymer electrolyte membrane fuel cells under humidified conditions. Int. J. Heat Mass Transf. 200, 123491 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123491
- J.H. Yeon, Y. Jang, M. Choi, S. Jang, Layer-by-layer polydimethylsiloxane modification using a two-nozzle spray process for high durability of the cathode catalyst in proton-exchange membrane fuel cells. ACS Appl. Mater. Interfaces 13(47), 56014–56024 (2021). https://doi.org/10.1021/acsami.1c12616
- F. Chen, L. Guo, D. Long, S. Luo, Y. Song et al., Overcoming the limitation of ionomers on mass transport and Pt activity to achieve high-performing membrane electrode assembly. J. Am. Chem. Soc. 146(44), 30388–30396 (2024). https://doi.org/10.1021/jacs.4c10742
- H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi et al., Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy 35(18), 9550–9560 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.103
- J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
- C. Wang, A. Schechter, L. Feng, Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2, e9120056 (2023). https://doi.org/10.26599/nre.2023.9120056
- W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan, et al., Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science. 387(6735), 791–796 (2025). https://doi.org/10.1126/science.adr3149
- J. He, X. Zhou, P. Xu, J. Sun, Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 11(48), 2102883 (2021). https://doi.org/10.1002/aenm.202102883
- D. Böhm, M. Beetz, C. Gebauer, M. Bernt, J. Schröter et al., Highly conductive titania supported iridium oxide nanops with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Appl. Mater. Today 24, 101134 (2021). https://doi.org/10.1016/j.apmt.2021.101134
- P. Gayen, S. Saha, V. Ramani, Pyrochlores for advanced oxygen electrocatalysis. Acc. Chem. Res. 55(16), 2191–2200 (2022). https://doi.org/10.1021/acs.accounts.2c00049
- H.J. Song, H. Yoon, B. Ju, D.W. Kim, Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: a mini review. Adv. Energy Mater. 11(27), 2002428 (2021). https://doi.org/10.1002/aenm.202002428
- C. Yuan, S. Zhang, J. Zhang, Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells. Front. Energy 18(2), 206–222 (2024). https://doi.org/10.1007/s11708-023-0907-3
- W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan et al., Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science 387(6735), 791–796 (2025). https://doi.org/10.1126/science.adr3149
- S. Zhao, S.-F. Hung, L. Deng, W.-J. Zeng, T. Xiao et al., Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanops for enhanced pH-universal water splitting. Nat. Commun. 15(1), 2728 (2024). https://doi.org/10.1038/s41467-024-46750-6
- H. Su, C. Yang, M. Liu, X. Zhang, W. Zhou et al., Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers. Nat. Commun. 15(1), 95 (2024). https://doi.org/10.1038/s41467-023-44483-6
- Y. Wang, M. Zhang, Z. Kang, L. Shi, Y. Shen et al., Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer. Nat. Commun. 14(1), 5119 (2023). https://doi.org/10.1038/s41467-023-40912-8
- D. Tl, L. He, S. Ssh, A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45(10), 14207–14220 (2021). https://doi.org/10.1002/er.6739
- J. Lopata, Z. Kang, J. Young, G. Bender, J.W. Weidner et al., Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices. J. Electrochem. Soc. 167(6), 064507 (2020). https://doi.org/10.1149/1945-7111/ab7f87
- Z. Taie, X. Peng, D. Kulkarni, I.V. Zenyuk, A.Z. Weber et al., Pathway to complete energy sector decarbonization with available iridium resources using ultralow loaded water electrolyzers. ACS Appl. Mater. Interfaces 12(47), 52701–52712 (2020). https://doi.org/10.1021/acsami.0c15687
- M. Fathi Tovini, A. Hartig-Weiß, H.A. Gasteiger, H.A. El-Sayed, The discrepancy in oxygen evolution reaction catalyst lifetime explained: RDE vs MEA - dynamicity within the catalyst layer matters. J. Electrochem. Soc. 168(1), 014512 (2021). https://doi.org/10.1149/1945-7111/abdcc9
- M. Moore, M. Mandal, A. Kosakian, M. Secanell, Numerical study of the impact of two-phase flow in the anode catalyst layer on the performance of proton exchange membrane water electrolysers. J. Electrochem. Soc. 170(4), 044503 (2023). https://doi.org/10.1149/1945-7111/acc898
- T.-C. Ma, A. Hutzler, B. Bensmann, R. Hanke-Rauschenbach, S. Thiele, Influence of the complex interface between transport and catalyst layer on water electrolysis performance. J. Electrochem. Soc. 171(4), 044504 (2024). https://doi.org/10.1149/1945-7111/ad3497
- C.C. Weber, J.A. Wrubel, L. Gubler, G. Bender, S. De Angelis et al., How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl. Mater. Interfaces 15(29), 34750–34763 (2023). https://doi.org/10.1021/acsami.3c04151
- X. Peng, P. Satjaritanun, Z. Taie, L. Wiles, A. Keane et al., Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci. 8(21), e2102950 (2021). https://doi.org/10.1002/advs.202102950
- T. Schuler, T.J. Schmidt, F.N. Büchi, Polymer electrolyte water electrolysis: correlating performance and porous transport layer structure: part II. electrochemical performance analysis. J. Electrochem. Soc. 166(10), F555–F565 (2019). https://doi.org/10.1149/2.1241908jes
- C. Lee, J. Hinebaugh, R. Banerjee, S. Chevalier, R. Abouatallah et al., Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers. Int. J. Hydrog. Energy 42(5), 2724–2735 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.114
- B. Zhao, C. Lee, J.K. Lee, K.F. Fahy, J.M. LaManna et al., Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers. Cell Rep. Phys. Sci. 2(10), 100580 (2021). https://doi.org/10.1016/j.xcrp.2021.100580
- J.O. Majasan, J.I.S. Cho, M. Maier, I. Dedigama, P.R. Shearing et al., Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser. ECS Trans. 85(13), 1593–1603 (2018). https://doi.org/10.1149/08513.1593ecst
- H. Li, H. Nakajima, A. Inada, K. Ito, Effect of flow-field pattern and flow configuration on the performance of a polymer-electrolyte-membrane water electrolyzer at high temperature. Int. J. Hydrog. Energy 43(18), 8600–8610 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.171
- J.O. Majasan, J.I.S. Cho, I. Dedigama, D. Tsaoulidis, P. Shearing et al., Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: Electrochemical and optical characterisation. Int. J. Hydrog. Energy 43(33), 15659–15672 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.003
- J.K. Lee, C. Lee, K.F. Fahy, P.J. Kim, K. Krause et al., Accelerating bubble detachment in porous transport layers with patterned through-pores. ACS Appl. Energy Mater. 3(10), 9676–9684 (2020). https://doi.org/10.1021/acsaem.0c01239
- H.A. El-Sayed, A. Weiß, L.F. Olbrich, G.P. Putro, H.A. Gasteiger, OER catalyst stability investigation using RDE technique: a stability measure or an artifact? J. Electrochem. Soc. 166(8), F458–F464 (2019). https://doi.org/10.1149/2.0301908jes
- S. Yu, K. Li, W. Wang, Z. Xie, L. Ding et al., Tuning catalyst activation and utilization via controlled electrode patterning for low-loading and high-efficiency water electrolyzers. Small 18(14), e2107745 (2022). https://doi.org/10.1002/smll.202107745
- B.-S. Lee, H.-Y. Park, I. Choi, M.K. Cho, H.-J. Kim et al., Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature. J. Power Sources 309, 127–134 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.139
- J.K. Lee, G. Anderson, A.W. Tricker, F. Babbe, A. Madan et al., Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis. Nat. Commun. 14(1), 4592 (2023). https://doi.org/10.1038/s41467-023-40375-x
- S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18(1), 1–21 (1989). https://doi.org/10.1063/1.555839
- E. Padgett, G. Bender, A. Haug, K. Lewinski, F. Sun et al., Catalyst layer resistance and utilization in PEM electrolysis. J. Electrochem. Soc. 170(8), 084512 (2023). https://doi.org/10.1149/1945-7111/acee25
- W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
- X.H. Zhang, Quartz crystal microbalance study of the interfacial nanobubbles. Phys. Chem. Chem. Phys. 10(45), 6842–6848 (2008). https://doi.org/10.1039/b810587a
- A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005
- X. Zhao, H. Ren, L. Luo, Gas bubbles in electrochemical gas evolution reactions. Langmuir 35(16), 5392–5408 (2019). https://doi.org/10.1021/acs.langmuir.9b00119
- O.R. Enríquez, C. Hummelink, G.W. Bruggert, D. Lohse, A. Prosperetti et al., Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instrum. 84(6), 065111 (2013). https://doi.org/10.1063/1.4810852
- A. Nouri-Khorasani, E. Tabu Ojong, T. Smolinka, D.P. Wilkinson, Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells. Int. J. Hydrog. Energy 42(48), 28665–28680 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.167
- S. Yuan, C. Zhao, X. Cai, L. An, S. Shen et al., Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 96, 101075 (2023). https://doi.org/10.1016/j.pecs.2023.101075
- K. Watanabe, K. Wakuda, K. Wani, T. Araki, K. Nagasawa et al., Existence of dissolved oxygen near anode catalyst in proton exchange membrane water electrolyzers. J. Electrochem. Soc. 169(4), 044515 (2022). https://doi.org/10.1149/1945-7111/ac6392
- H. Suwa, R. Kanemoto, K. Toyama, S. Kishi, T. Araki, Visualization of oxygen bubbles on a flat ionomer-coated platinum electrode. ECS Trans. 112(4), 463–469 (2023). https://doi.org/10.1149/11204.0463ecst
- D.F. Ruiz Diaz, Y. Wang, Performance loss due to gas coverage on catalyst surface in polymer electrolyte membrane electrolysis cell. eTransportation 18, 100263 (2023). https://doi.org/10.1016/j.etran.2023.100263
- M. Bernt, H.A. Gasteiger, Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 163(11), F3179–F3189 (2016). https://doi.org/10.1149/2.0231611jes
- C. Zhao, S. Yuan, X. Cheng, L. An, J. Li et al., Effect of perfluorosulfonic acid ionomer in anode catalyst layer on proton exchange membrane water electrolyzer performance. J. Power Sources 580, 233413 (2023). https://doi.org/10.1016/j.jpowsour.2023.233413
- W. Yoshimune, S. Kato, S. Yamaguchi, Multi-scale pore morphologies of a compressed gas diffusion layer for polymer electrolyte fuel cells. Int. J. Heat Mass Transf. 152, 119537 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119537
- T. Seip, N. Shaigan, M. Dinu, K. Fatih, A. Bazylak, Correlating nanostructure features to transport properties of polymer electrolyte membrane electrolyzer anode catalyst layers. J. Power Sources 559, 232654 (2023). https://doi.org/10.1016/j.jpowsour.2023.232654
- J.K. Lee, P. Kim, K. Krause, P. Shrestha, M. Balakrishnan et al., Designing catalyst layer morphology for high-performance water electrolysis using synchrotron X-ray nanotomography. Cell Rep. Phys. Sci. 4(1), 101232 (2023). https://doi.org/10.1016/j.xcrp.2022.101232
- H. Lv, S. Wang, Y. Sun, J. Chen, W. Zhou et al., Anode catalyst layer with hierarchical pore size distribution for highly efficient proton exchange membrane water electrolysis. J. Power Sources 564, 232878 (2023). https://doi.org/10.1016/j.jpowsour.2023.232878
- M. Mandal, M. Secanell, Improved polymer electrolyte membrane water electrolyzer performance by using carbon black as a pore former in the anode catalyst layer. J. Power Sources 541, 231629 (2022). https://doi.org/10.1016/j.jpowsour.2022.231629
- S. Yuan, C. Zhao, L. Luo, C. Fu, H. Li et al., Revealing the role of the ionomer at the triple-phase boundary in a proton-exchange membrane water electrolyzer. J. Phys. Chem. Lett. 15(19), 5223–5230 (2024). https://doi.org/10.1021/acs.jpclett.4c00851
- Y. Wang, J. Huang, B. Xu, D. Ye, L. Zhang et al., Design of highly wettable microstructure for enhancing the oxygen–water transport dynamics in anode catalyst layers of PEMWE, in 16th International Conference on Applied Energy (ICAE2024), Sep. 1–5, 2024, Niigata, Japan. https://doi.org/10.46855/energy-proceedings-11420
- C. Zhao, S. Yuan, X. Cheng, S. Shen, N. Zhan et al., Agglomerate engineering to boost PEM water electrolyzer performance. Adv. Energy Mater. 14(41), 2401588 (2024). https://doi.org/10.1002/aenm.202401588
References
V.L. Bondarenko, D.N. Ilyinskaya, A.A. Kazakova, P.S. Kozlovtsev, N.A. Lavrov et al., Introduction to hydrogen energy. Chem. Petrol. Eng. 57(11), 1008–1014 (2022). https://doi.org/10.1007/s10556-022-01038-8
R. Rath, P. Kumar, S. Mohanty, N. Sk, Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res. 43(15), 8931–8955 (2019). https://doi.org/10.1002/er.4795
A. Sajid, E. Pervaiz, H. Ali, T. Noor, B. Mm, A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 46(6), 6953–6988 (2022). https://doi.org/10.1002/er.7635
L. Fan, H. Deng, Y. Zhang, Q. Du, D.Y.C. Leung et al., Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ. Sci. 16(4), 1466–1479 (2023). https://doi.org/10.1039/D2EE03169H
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–a review. Energy Environ. Sci. 15(6), 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
H. Lee, Recent developments in fuel cells and water electrolyzers. JACS Au 4(5), 1673–1675 (2024). https://doi.org/10.1021/jacsau.4c00387
X. Peng, Z. Taie, J. Liu, Y. Zhang, X. Peng et al., Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy Environ. Sci. 13(12), 4872–4881 (2020). https://doi.org/10.1039/D0EE03244A
USDOE, Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan: 2025 FUEL CELLS SECTION [Online]. (2025), https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office
P. Rao, Y. Yu, S. Wang, Y. Zhou, X. Wu et al., Understanding the improvement mechanism of plasma etching treatment on oxygen reduction reaction catalysts. Exploration 4(1), 20230034 (2023). https://doi.org/10.1002/EXP.20230034
Z. Li, W. Niu, Z. Yang, N. Zaman, W. Samarakoon et al., Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy Environ. Sci. 13(3), 884–895 (2020). https://doi.org/10.1039/C9EE02657F
D. Wu, X. Shen, Y. Pan, L. Yao, Z. Peng, Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives. ChemNanoMat 6(1), 32–41 (2020). https://doi.org/10.1002/cnma.201900319
J.P. Masnica, S. Sibt-e-Hassan, S. Potgieter-Vermaak, Y.N. Regmi, L.A. King et al., ZIF-8-derived Fe-C catalysts: relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 1(2), 160–169 (2023). https://doi.org/10.1016/j.greenca.2023.11.001
J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow et al., Hard-magnet L10-CoPt nanops advance fuel cell catalysis. Joule 3(1), 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016
X. Zhao, H. Cheng, L. Song, L. Han, R. Zhang et al., Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 11(1), 184–192 (2021). https://doi.org/10.1021/acscatal.0c04021
E. Lee, K.A. Kuttiyiel, K.-H. Kim, J. Jang, H.J. Lee et al., High pressure nitrogen-infused ultrastable fuel cell catalyst for oxygen reduction reaction. ACS Catal. 11(9), 5525–5531 (2021). https://doi.org/10.1021/acscatal.1c00395
X. Zhao, K. Sasaki, Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Acc. Chem. Res. 55(9), 1226–1236 (2022). https://doi.org/10.1021/acs.accounts.2c00057
USDOE. Multi-Year Research, Development, and Demonstration Plan: 2016 FUEL CELLS SECTION [Online]. (2016), https://www.energy
J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye et al., Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6(5), 475–486 (2021). https://doi.org/10.1038/s41560-021-00824-7
S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
R. Kucernak, E. Toyoda, Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions. Electrochem. Commun. 10(11), 1728–1731 (2008). https://doi.org/10.1016/j.elecom.2008.09.001
A.Z. Weber, A. Kusoglu, Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2(41), 17207–17211 (2014). https://doi.org/10.1039/C4TA02952F
A. Kongkanand, M.F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7(7), 1127–1137 (2016). https://doi.org/10.1021/acs.jpclett.6b00216
J. Durst, C. Simon, F. Hasché, H.A. Gasteiger, Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162(1), F190–F203 (2015). https://doi.org/10.1149/2.0981501jes
K.E. Ayers, J.N. Renner, N. Danilovic, J.X. Wang, Y. Zhang et al., Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal. Today 262, 121–132 (2016). https://doi.org/10.1016/j.cattod.2015.10.019
L. Peng, Z. Wei, Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering 6(6), 653–679 (2020). https://doi.org/10.1016/j.eng.2019.07.028
M. Bernt, A. Hartig-Weiß, M.F. Tovini, H.A. El-Sayed, C. Schramm et al., Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 92(1–2), 31–39 (2020). https://doi.org/10.1002/cite.201900101
K. Ehelebe, J. Knöppel, M. Bierling, B. Mayerhöfer, T. Böhm et al., Platinum dissolution in realistic fuel cell catalyst layers. Angew. Chem. Int. Ed. 60(16), 8882–8888 (2021). https://doi.org/10.1002/anie.202014711
L. Qu, Z. Wang, X. Guo, W. Song, F. Xie et al., Effect of electrode Pt-loading and cathode flow-field plate type on the degradation of PEMFC. J. Energy Chem. 35, 95–103 (2019). https://doi.org/10.1016/j.jechem.2018.09.004
S. Shahgaldi, I. Alaefour, X. Li, The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability. Appl. Energy 217, 295–302 (2018). https://doi.org/10.1016/j.apenergy.2018.02.154
S.M. Alia, B. Rasimick, C. Ngo, K.C. Neyerlin, S.S. Kocha et al., Activity and durability of iridium nanops in the oxygen evolution reaction. J. Electrochem. Soc. 163(11), F3105–F3112 (2016). https://doi.org/10.1149/2.0151611jes
Y. Fukuyama, T. Shiomi, T. Kotaka, Y. Tabuchi, The impact of platinum reduction on oxygen transport in proton exchange membrane fuel cells. Electrochim. Acta 117, 367–378 (2014). https://doi.org/10.1016/j.electacta.2013.11.179
T.A. Greszler, D. Caulk, P. Sinha, The impact of platinum loading on oxygen transport resistance. J. Electrochem. Soc. 159(12), F831–F840 (2012). https://doi.org/10.1149/2.061212jes
C. Wang, X. Cheng, J. Lu, S. Shen, X. Yan et al., The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J. Phys. Chem. Lett. 8(23), 5848–5852 (2017). https://doi.org/10.1021/acs.jpclett.7b02580
Y. Ono, A. Ohma, K. Shinohara, K. Fushinobu, Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J. Electrochem. Soc. 160(8), F779–F787 (2013). https://doi.org/10.1149/2.040308jes
D.R. Baker, C. Wieser, K.C. Neyerlin, M.W. Murphy, The use of limiting current to determine transport resistance in PEM fuel cells. ECS Trans. 3(1), 989–999 (2006). https://doi.org/10.1149/1.2356218
D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 156(9), B991 (2009). https://doi.org/10.1149/1.3152226
T. Mashio, A. Ohma, S. Yamamoto, K. Shinohara, Analysis of reactant gas transport in a catalyst layer. ECS Trans. 11(1), 529–540 (2007). https://doi.org/10.1149/1.2780966
Z. Yu, R.N. Carter, J. Zhang, Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12(4), 557–565 (2012). https://doi.org/10.1002/fuce.201200017
N. Nonoyama, S. Okazaki, A.Z. Weber, Y. Ikogi, T. Yoshida, Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158(4), B416 (2011). https://doi.org/10.1149/1.3546038
S. Ott, A. Orfanidi, H. Schmies, B. Anke, H.N. Nong et al., Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19(1), 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0
C. Lee, W.J.M. Kort-Kamp, H. Yu, D.A. Cullen, B.M. Patterson et al., Grooved electrodes for high-power-density fuel cells. Nat. Energy 8(7), 685–694 (2023). https://doi.org/10.1038/s41560-023-01263-2
C. Li, K. Yu, A. Bird, F. Guo, J. Ilavsky et al., Unraveling the core of fuel cell performance: engineering the ionomer/catalyst interface. Energy Environ. Sci. 16(7), 2977–2990 (2023). https://doi.org/10.1039/D2EE03553G
T. Lazaridis, H.A. Gasteiger, Pt-catalyzed oxidation of PEMFC carbon supports: a path to highly accessible carbon morphologies and implications for start-up/shut-down degradation. J. Electrochem. Soc. 168(11), 114517 (2021). https://doi.org/10.1149/1945-7111/ac35ff
S. Salari, M. Tam, C. McCague, J. Stumper, M. Bahrami, The ex-situ and in situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance. J. Power Sources 449, 227479 (2020). https://doi.org/10.1016/j.jpowsour.2019.227479
C. Schlumberger, M. Thommes, Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry: a tutorial review. Adv. Mater. Interfaces 8(4), 2002181 (2021). https://doi.org/10.1002/admi.202002181
S. Ghosh, H. Ohashi, H. Tabata, Y. Hashimasa, T. Yamaguchi, In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles. J. Power Sources 362, 291–298 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.017
S. Ghosh, H. Ohashi, H. Tabata, Y. Hashimasa, T. Yamaguchi, Microstructural pore analysis of the catalyst layer in a polymer electrolyte membrane fuel cell: a combination of resin pore-filling and FIB/SEM. Int. J. Hydrog. Energy 40(45), 15663–15671 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.080
F.C. Cetinbas, R.K. Ahluwalia, N.N. Kariuki, V. De Andrade, D.J. Myers, Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J. Electrochem. Soc. 167(1), 013508 (2020). https://doi.org/10.1149/2.0082001jes
C.Y. Jung, S.K. Kim, S.J. Lee, S.C. Yi, Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells. Electrochim. Acta 211, 142–147 (2016). https://doi.org/10.1016/j.electacta.2016.06.040
M. Sabharwal, L.M. Pant, A. Putz, D. Susac, J. Jankovic et al., Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells 16(6), 734–753 (2016). https://doi.org/10.1002/fuce.201600008
M. Lopez-Haro, L. Guétaz, T. Printemps, A. Morin, S. Escribano et al., Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 5, 5229 (2014). https://doi.org/10.1038/ncomms6229
R. Sun, Z. Xia, X. Xu, R. Deng, S. Wang et al., Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells. Nano Energy 75, 104919 (2020). https://doi.org/10.1016/j.nanoen.2020.104919
R. Girod, T. Lazaridis, H.A. Gasteiger, V. Tileli, Three-dimensional nanoimaging of fuel cell catalyst layers. Nat. Catal. 6(5), 383–391 (2023). https://doi.org/10.1038/s41929-023-00947-y
M. Turk, W. Baumeister, The promise and the challenges of cryo-electron tomography. FEBS Lett. 594(20), 3243–3261 (2020). https://doi.org/10.1002/1873-3468.13948
E. Padgett, N. Andrejevic, Z. Liu, A. Kongkanand, W. Gu et al., Editors’ choice: connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165(3), F173–F180 (2018). https://doi.org/10.1149/2.0541803jes
S. Takahashi, J. Shimanuki, T. Mashio, A. Ohma, H. Tohma et al., Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy. Electrochim. Acta 224, 178–185 (2017). https://doi.org/10.1016/j.electacta.2016.12.068
T. Morawietz, M. Handl, C. Oldani, K. Andreas Friedrich, R. Hiesgen, Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Appl. Mater. Interfaces 8(40), 27044–27054 (2016). https://doi.org/10.1021/acsami.6b07188
X. Cheng, J. You, S. Shen, G. Wei, X. Yan et al., An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs. Chem. Eng. J. 439, 135387 (2022). https://doi.org/10.1016/j.cej.2022.135387
Y. Su, X. Cheng, Y. Feng, H. Li, C. Yan et al., Hierarchical catalyst layer structure for enhancing local oxygen transport in low Pt proton exchange membrane fuel cells. J. Power Sources 603, 234453 (2024). https://doi.org/10.1016/j.jpowsour.2024.234453
H. Li, J. You, X. Cheng, L. Luo, X. Yan et al., Unraveling the effects of carbon corrosion on oxygen transport resistance in low Pt loading proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 16(1), 540–554 (2024). https://doi.org/10.1021/acsami.3c13450
S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Probing ionomer interactions with electrocatalyst ps in solution. ACS Energy Lett. 6(6), 2275–2282 (2021). https://doi.org/10.1021/acsenergylett.1c00866
T. Masuda, F. Sonsudin, P.R. Singh, H. Naohara, K. Uosaki, Potential-dependent adsorption and desorption of perfluorosulfonated ionomer on a platinum electrode surface probed by electrochemical quartz crystal microbalance and atomic force microscopy. J. Phys. Chem. C 117(30), 15704–15709 (2013). https://doi.org/10.1021/jp404376t
M. Osawa, T. Nakane, K. Ito, W. Suëtaka, In situ characterization of platinum ps dispersed in nafion films on gold electrodes by infrared spectroscopy. J. Electroanal. Chem. Interfacial Electrochem. 270(1–2), 459–464 (1989). https://doi.org/10.1016/0022-0728(89)85060-0
H. Hanawa, K. Kunimatsu, M. Watanabe, H. Uchida, In situ ATR-FTIR analysis of the structure of Nafion–Pt/C and Nafion–Pt3Co/C interfaces in fuel cell. J. Phys. Chem. C 116(40), 21401–21406 (2012). https://doi.org/10.1021/jp306955q
Y. Ayato, K. Kunimatsu, M. Osawa, T. Okada, Study of Pt electrode/nafion ionomer interface in HClO4 by in situ surface-enhanced FTIR spectroscopy. J. Electrochem. Soc. 153(2), A203 (2006). https://doi.org/10.1149/1.2137648
A. Kusoglu, T.J. Dursch, A.Z. Weber, Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv. Funct. Mater. 26(27), 4961–4975 (2016). https://doi.org/10.1002/adfm.201600861
C. Welch, A. Labouriau, R. Hjelm, B. Orler, C. Johnston et al., Nafion in dilute solvent systems: dispersion or solution? ACS Macro Lett. 1(12), 1403–1407 (2012). https://doi.org/10.1021/mz3005204
A. Malekian, S. Salari, J. Stumper, N. Djilali, M. Bahrami, Effect of compression on pore size distribution and porosity of PEM fuel cell catalyst layers. Int. J. Hydrog. Energy 44(41), 23396–23405 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.036
S. Guan, F. Zhou, J. Tan, M. Pan, Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs. Prog. Nat. Sci. Mater. Int. 30(6), 839–845 (2020). https://doi.org/10.1016/j.pnsc.2020.08.017
X. Cheng, C. Wang, G. Wei, X. Yan, S. Shen et al., Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J. Electrochem. Soc. 166(14), F1055–F1061 (2019). https://doi.org/10.1149/2.0501914jes
A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells: With a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 74, 50–102 (2019). https://doi.org/10.1016/j.pecs.2019.05.002
X. Wang, H. Zhang, J. Zhang, H. Xu, X. Zhu et al., A bi-functional micro-porous layer with composite carbon black for PEM fuel cells. J. Power Sources 162(1), 474–479 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.064
B. Tjaden, S.J. Cooper, D.J. Brett, D. Kramer, P.R. Shearing, On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr. Opin. Chem. Eng. 12, 44–51 (2016). https://doi.org/10.1016/j.coche.2016.02.006
J. Landesfeind, J. Hattendorff, A. Ehrl, W.A. Wall, H.A. Gasteiger, Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163(7), A1373–A1387 (2016). https://doi.org/10.1149/2.1141607jes
M.B. Sassin, Y. Garsany, R.W. Atkinson, R.M.E. Hjelm, K.E. Swider-Lyons, Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. Int. J. Hydrog. Energy 44(31), 16944–16955 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.194
J. Zhao, X. He, L. Wang, J. Tian, C. Wan et al., Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC. Int. J. Hydrog. Energy 32(3), 380–384 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.057
A. Kusoglu, A.Z. Weber, New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117(3), 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
S.C. DeCaluwe, A.M. Baker, P. Bhargava, J.E. Fischer, J.A. Dura, Structure-property relationships at Nafion thin-film interfaces: Thickness effects on hydration and anisotropic ion transport. Nano Energy 46, 91–100 (2018). https://doi.org/10.1016/j.nanoen.2018.01.008
K.A. Page, A. Kusoglu, C.M. Stafford, S. Kim, R.J. Kline et al., Confinement-driven increase in ionomer thin-film modulus. Nano Lett. 14(5), 2299–2304 (2014). https://doi.org/10.1021/nl501233g
Y. Ono, T. Mashio, S. Takaichi, A. Ohma, H. Kanesaka et al., The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 28(27), 69–78 (2010). https://doi.org/10.1149/1.3496614
S.-Y. Lim, S.-I. Kim, M.S. Lee, S.-J. Bak, D.H. Lee et al., Effect of uniformity and surface morphology of Pt nanops to enhance oxygen reduction reaction in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 47(68), 29456–29466 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.264
J.P. Owejan, J.E. Owejan, W. Gu, Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160(8), F824–F833 (2013). https://doi.org/10.1149/2.072308jes
M.A. Modestino, D.K. Paul, S. Dishari, S.A. Petrina, F.I. Allen et al., Self-assembly and transport limitations in confined nafion films. Macromolecules 46(3), 867–873 (2013). https://doi.org/10.1021/ma301999a
M.A. Modestino, A. Kusoglu, A. Hexemer, A.Z. Weber, R.A. Segalman, Controlling nafion structure and properties via wetting interactions. Macromolecules 45(11), 4681–4688 (2012). https://doi.org/10.1021/ma300212f
S.A. Eastman, S. Kim, K.A. Page, B.W. Rowe, S. Kang et al., Effect of confinement on structure, water solubility, and water transport in nafion thin films. Macromolecules 45(19), 7920–7930 (2012). https://doi.org/10.1021/ma301289v
S. Shen, X. Cheng, C. Wang, X. Yan, C. Ke et al., Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 19(38), 26221–26229 (2017). https://doi.org/10.1039/C7CP04837H
C. Wang, X. Cheng, X. Yan, S. Shen, C. Ke et al., Respective influence of ionomer content on local and bulk oxygen transport resistance in the catalyst layer of PEMFCs with low Pt loading. J. Electrochem. Soc. 166(4), F239–F245 (2019). https://doi.org/10.1149/2.0401904jes
H. Li, J. You, Y. Feng, X. Yan, J. Yin et al., Comprehensive understanding of oxygen transport at Gas/ionomer/electrocatalyst triple phase boundary in PEMFCs. Chem. Eng. J. 478, 147454 (2023). https://doi.org/10.1016/j.cej.2023.147454
T. Suzuki, K. Kudo, Y. Morimoto, Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J. Power Sources 222, 379–389 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.068
K. Kudo, R. Jinnouchi, Y. Morimoto, Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016). https://doi.org/10.1016/j.electacta.2016.04.023
K. Kodama, K. Motobayashi, A. Shinohara, N. Hasegawa, K. Kudo et al., Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8(1), 694–700 (2018). https://doi.org/10.1021/acscatal.7b03571
R. Jinnouchi, K. Kudo, N. Kitano, Y. Morimoto, Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031
Y. Kurihara, T. Mabuchi, T. Tokumasu, Molecular dynamics study of oxygen transport resistance through ionomer thin film on Pt surface. J. Power. Sources 414, 263–271 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.011
M.B. Dixit, B.A. Harkey, F. Shen, K.B. Hatzell, Catalyst layer ink interactions that affect coatability. J. Electrochem. Soc. 165(5), F264–F271 (2018). https://doi.org/10.1149/2.0191805jes
H. Ren, X. Meng, Y. Lin, Z. Shao, Microstructure formation mechanism of catalyst layer and its effect on fuel cell performance: Effect of dispersion medium composition. J. Energy Chem. 73, 588–598 (2022). https://doi.org/10.1016/j.jechem.2022.06.034
T.-H. Kim, J.-Y. Yi, C.-Y. Jung, E. Jeong, S.-C. Yi, Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42(1), 478–485 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.015
S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation. J. Phys. Chem. B 122(31), 7790–7796 (2018). https://doi.org/10.1021/acs.jpcb.8b06493
M. Wang, J.H. Park, S. Kabir, K.C. Neyerlin, N.N. Kariuki et al., Impact of catalyst ink dispersing methodology on fuel cell performance using in situ X-ray scattering. ACS Appl. Energy Mater. 2(9), 6417–6427 (2019). https://doi.org/10.1021/acsaem.9b01037
B.H. Lim, E.H. Majlan, A. Tajuddin, T. Husaini, W.R. Wan Daud et al., Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: a review. Chin. J. Chem. Eng. 33, 1–16 (2021). https://doi.org/10.1016/j.cjche.2020.07.044
S. Thanasilp, M. Hunsom, Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 89(12), 3847–3852 (2010). https://doi.org/10.1016/j.fuel.2010.07.008
S.A. Berlinger, B.D. McCloskey, A.Z. Weber, Understanding binary interactions in fuel-cell catalyst-layer inks. ECS Trans. 80(8), 309–319 (2017). https://doi.org/10.1149/08008.0309ecst
M. Jorge, L. Lue, The dielectric constant: reconciling simulation and experiment. J. Chem. Phys. 150(8), 084108 (2019). https://doi.org/10.1063/1.5080927
T.-H. Kim, J.H. Yoo, T. Maiyalagan, S.-C. Yi, Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Appl. Surf. Sci. 481, 777–784 (2019). https://doi.org/10.1016/j.apsusc.2019.03.113
Y. Guo, F. Pan, W. Chen, Z. Ding, D. Yang et al., The controllable design of catalyst inks to enhance PEMFC performance: a review. Electrochem. Energy Rev. 4(1), 67–100 (2021). https://doi.org/10.1007/s41918-020-00083-2
G. Doo, J.H. Lee, S. Yuk, S. Choi, D.H. Lee et al., Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Interfaces 10(21), 17835–17841 (2018). https://doi.org/10.1021/acsami.8b01751
C.H. Cheng, K. Malek, P.C. Sui, N. Djilali, Effect of Pt nano-p size on the microstructure of PEM fuel cell catalyst layers: Insights from molecular dynamics simulations. Electrochim. Acta 55(5), 1588–1597 (2010). https://doi.org/10.1016/j.electacta.2009.10.030
O. Antoine, Y. Bultel, R. Durand, P. Ozil, Electrocatalysis, diffusion and ohmic drop in PEMFC: p size and spatial discrete distribution effects. Electrochim. Acta 43(24), 3681–3691 (1998). https://doi.org/10.1016/S0013-4686(98)00126-1
V.I. Pavlov, E.V. Gerasimova, E.V. Zolotukhina, G.M. Don, Y.A. Dobrovolsky et al., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells. Nanotechn. Russ. 11(11–12), 743–750 (2017). https://doi.org/10.1134/s199507801606015x
M. Gummalla, S. Ball, D. Condit, S. Rasouli, K. Yu et al., Effect of p size and operating conditions on Pt3Co PEMFC cathode catalyst durability. Catalysts 5(2), 926–948 (2015). https://doi.org/10.3390/catal5020926
Z. Yang, S. Ball, D. Condit, M. Gummalla, Systematic study on the impact of Pt p size and operating conditions on PEMFC cathode catalyst durability. J. Electrochem. Soc. 158(11), B1439 (2011). https://doi.org/10.1149/2.081111jes
X. Sun, H. Yu, L. Zhou, X. Gao, Y. Zeng et al., Influence of platinum dispersity on oxygen transport resistance and performance in PEMFC. Electrochim. Acta 332, 135474 (2020). https://doi.org/10.1016/j.electacta.2019.135474
H. Li, J. You, X. Cheng, X. Yan, S. Shen et al., New insight into the effect of Co2+ contamination on local oxygen transport in PEMFCs. Chem. Eng. J. 453, 139945 (2023). https://doi.org/10.1016/j.cej.2022.139945
A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A.S. Arico et al., Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J. Power Sources 196(21), 8925–8930 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.084
N. Ramaswamy, W. Gu, J.M. Ziegelbauer, S. Kumaraguru, Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 167(6), 064515 (2020). https://doi.org/10.1149/1945-7111/ab819c
V. Yarlagadda, M.K. Carpenter, T.E. Moylan, R.S. Kukreja, R. Koestner et al., Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018). https://doi.org/10.1021/acsenergylett.8b00186
X. Cheng, G. Wei, C. Wang, S. Shen, J. Zhang, Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 164, 120549 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120549
S. Nagashima, T. Ikai, Y. Sasaki, T. Kawasaki, T. Hatanaka et al., Atomic-level observation of electrochemical platinum dissolution and redeposition. Nano Lett. 19(10), 7000–7005 (2019). https://doi.org/10.1021/acs.nanolett.9b02382
P. Parthasarathy, A.V. Virkar, Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. J. Power Sources 234, 82–90 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.115
A. Pavlišič, P. Jovanovič, V.S. Šelih, M. Šala, N. Hodnik et al., Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J. Electrochem. Soc. 165(6), F3161–F3165 (2018). https://doi.org/10.1149/2.0191806jes
L. Fan, J. Zhao, X. Luo, Z. Tu, Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int. J. Hydrog. Energy 47(8), 5418–5428 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.135
N. Ramaswamy, S. Kumaraguru, W. Gu, R.S. Kukreja, K. Yu et al., High-current density durability of Pt/C and PtCo/C catalysts at similar p sizes in PEMFCs. J. Electrochem. Soc. 168(2), 024519 (2021). https://doi.org/10.1149/1945-7111/abe5ea
Y.V. Yakovlev, Y.V. Lobko, M. Vorokhta, J. Nováková, M. Mazur et al., Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. J. Power Sources 490, 229531 (2021). https://doi.org/10.1016/j.jpowsour.2021.229531
S.M. Jayawickrama, D. Wu, R. Nakayama, S. Ishikawa, X. Liu et al., Effect of a polybenzimidazole coating on carbon supports for ionomer content optimization in polymer electrolyte membrane fuel cells. J. Power Sources 496, 229855 (2021). https://doi.org/10.1016/j.jpowsour.2021.229855
N. Ramaswamy, S. Kumaraguru, R. Koestner, T. Fuller, W. Gu et al., Editors’ choice: ionomer side chain length and equivalent weight impact on high current density transport resistances in PEMFC cathodes. J. Electrochem. Soc. 168(2), 024518 (2021). https://doi.org/10.1149/1945-7111/abe5eb
E. Moukheiber, G. De Moor, L. Flandin, C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC). J. Membr. Sci. 389, 294–304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
Y.-C. Park, K. Kakinuma, H. Uchida, M. Watanabe, M. Uchida, Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J. Power Sources 275, 384–391 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.149
N. Zhao, Z. Shi, F. Girard, Superior proton exchange membrane fuel cell (PEMFC) performance using short-side-chain perfluorosulfonic acid (PFSA) membrane and ionomer. Materials 15(1), 78 (2021). https://doi.org/10.3390/ma15010078
S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich et al., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194(2), 588–600 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.073
X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC Part I Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 172(1), 133–144 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.049
P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5–42 (2014). https://doi.org/10.1016/j.carbon.2014.04.005
S. Samad, K.S. Loh, W.Y. Wong, T.K. Lee, J. Sunarso et al., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 43(16), 7823–7854 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.154
N. Ramaswamy, S. Kumaraguru, Materials and design selection to improve high current density performance in PEMFC. ECS Trans. 85(13), 835 (2018). https://doi.org/10.1149/08513.0835ecst
N.N. Atak, B. Dogan, M.K. Yesilyurt, Investigation of the performance parameters for a PEMFC by thermodynamic analyses: effects of operating temperature and pressure. Energy 282, 128907 (2023). https://doi.org/10.1016/j.energy.2023.128907
H. Askaripour, Effect of operating conditions on the performance of a PEM fuel cell. Int. J. Heat Mass Transf. 144, 118705 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705
M.G. Santarelli, M.F. Torchio, Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Convers. Manag. 48(1), 40–51 (2007). https://doi.org/10.1016/j.enconman.2006.05.013
Q. Zhang, R. Lin, L. Técher, X. Cui, Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy 115, 550–560 (2016). https://doi.org/10.1016/j.energy.2016.08.086
T. Chu, M. Xie, Y. Yu, B. Wang, D. Yang et al., Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC. Energy 239, 122356 (2022). https://doi.org/10.1016/j.energy.2021.122356
N. Zhao, Y. Chu, Z. Xie, K. Eggen, F. Girard et al., Effects of fuel cell operating conditions on proton exchange membrane durability at open-circuit voltage. Fuel Cells 20(2), 176–184 (2020). https://doi.org/10.1002/fuce.201900173
D. Novitski, S. Holdcroft, Determination of O2 mass transport at the Pt | PFSA ionomer interface under reduced relative humidity. ACS Appl. Mater. Interfaces 7(49), 27314–27323 (2015). https://doi.org/10.1021/acsami.5b08720
J. Catalano, T. Myezwa, M.G. De Angelis, M.G. Baschetti, G.C. Sarti, The effect of relative humidity on the gas permeability and swelling in PFSI membranes. Int. J. Hydrog. Energy 37(7), 6308–6316 (2012). https://doi.org/10.1016/j.ijhydene.2011.07.047
X. Cheng, J. Zhou, L. Luo, S. Shen, J. Zhang, Boosting bulk oxygen transport with accessible electrode nanostructure in low Pt loading PEMFCs. Small 20(26), e2308563 (2024). https://doi.org/10.1002/smll.202308563
K. Talukdar, S. Delgado, T. Lagarteira, P. Gazdzicki, K.A. Friedrich, Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers. J. Power Sources 427, 309–317 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.094
S. Choi, J. Jeon, J. Chae, S. Yuk, D.-H. Lee et al., Single-step fabrication of a multiscale porous catalyst layer by the emulsion template method for low Pt-loaded proton exchange membrane fuel cells. ACS Appl. Energy Mater. 4(4), 4012–4020 (2021). https://doi.org/10.1021/acsaem.1c00379
C.Y. Ahn, S. Jang, Y.H. Cho, J. Choi, S. Kim et al., Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells. Sci. Rep. 8(1), 1257 (2018). https://doi.org/10.1038/s41598-018-19861-6
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32(17), e1907176 (2020). https://doi.org/10.1002/adma.201907176
S.M. Kim, C.Y. Ahn, Y.H. Cho, S. Kim, W. Hwang et al., High-performance fuel cell with stretched catalyst-coated membrane: one-step formation of cracked electrode. Sci. Rep. 6, 26503 (2016). https://doi.org/10.1038/srep26503
Z. Xia, S. Wang, L. Jiang, H. Sun, S. Liu et al., Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix. Sci. Rep. 5, 16100 (2015). https://doi.org/10.1038/srep16100
R. Sun, Z. Xia, L. Shang, X. Fu, H. Li et al., Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. J. Mater. Chem. A 5(29), 15260–15265 (2017). https://doi.org/10.1039/C7TA02500A
M. Chen, M. Wang, Z. Yang, X. Wang, High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays. Appl. Surf. Sci. 406, 69–76 (2017). https://doi.org/10.1016/j.apsusc.2017.01.296
C. Galeano, J.C. Meier, V. Peinecke, H. Bongard, I. Katsounaros et al., Toward highly stable electrocatalysts via nanop pore confinement. J. Am. Chem. Soc. 134(50), 20457–20465 (2012). https://doi.org/10.1021/ja308570c
W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1(6), 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23
S. Yuan, Q. Gao, C. Ke, T. Zuo, J. Hou et al., Mesoporous carbon materials for electrochemical energy storage and conversion. ChemElectroChem 9(6), e202101182 (2022). https://doi.org/10.1002/celc.202101182
G. Liu, Z. Yang, X. Wang, B. Fang, Ordered porous TiO2@C layer as an electrocatalyst support for improved stability in PEMFCs. Nanomaterials 11(12), 3462 (2021). https://doi.org/10.3390/nano11123462
Z. Wu, Y. Lv, Y. Xia, P.A. Webley, D. Zhao, Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 134(4), 2236–2245 (2012). https://doi.org/10.1021/ja209753w
L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu et al., Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141(17), 7073–7080 (2019). https://doi.org/10.1021/jacs.9b02091
X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang et al., Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364, 226–243 (2019). https://doi.org/10.1016/j.cej.2019.01.159
R. Vinodh, C.V.V.M. Gopi, V.G.R. Kummara, R. Atchudan, T. Ahamad et al., A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J. Energy Storage 32, 101831 (2020). https://doi.org/10.1016/j.est.2020.101831
M.S. Silverstein, The chemistry of porous polymers: the holey grail. Isr. J. Chem. 60(1–2), 140–150 (2020). https://doi.org/10.1002/ijch.202000003
Y.-C. Park, H. Tokiwa, K. Kakinuma, M. Watanabe, M. Uchida, Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.091
F. Jaouen, J.-P. Dodelet, Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? part I. model for carbon black gasification by NH3: parametric calibration and electrochemical validation. J. Phys. Chem. C 111(16), 5963–5970 (2007). https://doi.org/10.1021/jp068273p
S. Zhang, F. Zhou, B. Luo, J. Tan, M. Pan, Regulating the mesoporous structure of carbon nanospheres by a local ablation method for high-performance PEMFC catalysts. Energy Fuels 38(10), 9046–9053 (2024). https://doi.org/10.1021/acs.energyfuels.4c00197
Z. Zhao, M.D. Hossain, C. Xu, Z. Lu, Y.-S. Liu et al., Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 3(5), 1774–1790 (2020). https://doi.org/10.1016/j.matt.2020.09.025
S.M. Jayawickrama, T. Fujigaya, Effect of polymer-coating on carbon blacks for Pt utilization efficiency of polymer electrolyte membrane fuel cells. J. Power Sources 482, 228932 (2021). https://doi.org/10.1016/j.jpowsour.2020.228932
A. Katzenberg, A. Chowdhury, M. Fang, A.Z. Weber, Y. Okamoto et al., Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: insights into structure-property relationships. J. Am. Chem. Soc. 142(8), 3742–3752 (2020). https://doi.org/10.1021/jacs.9b09170
Q. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu et al., Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 378(6616), 181–186 (2022). https://doi.org/10.1126/science.abm6304
G.C. Torres, E.L. Jablonski, G.T. Baronetti, A.A. Castro, S.R. de Miguel et al., Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts. Appl. Catal. A Gen. 161(1–2), 213–226 (1997). https://doi.org/10.1016/S0926-860X(97)00071-9
M.A. Fraga, E. Jordão, M.J. Mendes, M.M.A. Freitas, J.L. Faria et al., Properties of carbon-supported platinum catalysts: role of carbon surface sites. J. Catal. 209(2), 355–364 (2002). https://doi.org/10.1006/jcat.2002.3637
J. Bai, S. Ke, J. Song, K. Wang, C. Sun et al., Surface engineering of carbon-supported platinum as a route to electrocatalysts with superior durability and activity for PEMFC cathodes. ACS Appl. Mater. Interfaces 14(4), 5287–5297 (2022). https://doi.org/10.1021/acsami.1c20823
K. Miyazaki, N. Sugimura, K.-I. Kawakita, T. Abe, K. Nishio et al., Aminated perfluorosulfonic acid ionomers to improve the triple phase boundary region in anion-exchange membrane fuel cells. J. Electrochem. Soc. 157(11), A1153 (2010). https://doi.org/10.1149/1.3483105
L.-X. Sun, T. Okada, Studies on interactions between Nafion and organic vapours by quartz crystal microbalance. J. Membr. Sci. 183(2), 213–221 (2001). https://doi.org/10.1016/S0376-7388(00)00585-8
A. Orfanidi, P. Madkikar, H.A. El-Sayed, G.S. Harzer, T. Kratky et al., The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 164(4), F418–F426 (2017). https://doi.org/10.1149/2.1621704jes
D. Morales-Acosta, J.D. Flores-Oyervides, J.A. Rodríguez-González, N.M. Sánchez-Padilla, R. Benavides et al., Comparative methods for reduction and sulfonation of graphene oxide for fuel cell electrode applications. Int. J. Hydrog. Energy 44(24), 12356–12364 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.091
T.-F. Hung, B. Wang, C.-W. Tsai, M.-H. Tu, G.-X. Wang et al., Sulfonation of graphene nanosheet-supported platinum via a simple thermal-treatment toward its oxygen reduction activity in acid medium. Int. J. Hydrog. Energy 37(19), 14205–14210 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.027
K. Kakaei, A. Rahimi, S. Husseindoost, M. Hamidi, H. Javan et al., Fabrication of Pt–CeO2 nanops supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. Int. J. Hydrog. Energy 41(6), 3861–3869 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.013
M. Okamoto, T. Fujigaya, N. Nakashima, Individual dissolution of single-walled carbon nanotubes by using polybenzimidazole, and highly effective reinforcement of their composite films. Adv. Funct. Mater. 18(12), 1776–1782 (2008). https://doi.org/10.1002/adfm.200701257
T. Fujigaya, M. Okamoto, N. Nakashima, Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanops for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47(14), 3227–3232 (2009). https://doi.org/10.1016/j.carbon.2009.07.038
T. Fujigaya, N. Nakashima, Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv. Mater. 25(12), 1666–1681 (2013). https://doi.org/10.1002/adma.201204461
M.R. Berber, I.H. Hafez, T. Fujigaya, N. Nakashima, A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci. Rep. 5, 16711 (2015). https://doi.org/10.1038/srep16711
Y. Li, T. Van Cleve, R. Sun, R. Gawas, G. Wang et al., Modifying the electrocatalyst-ionomer interface via sulfonated poly(ionic liquid) block copolymers to enable high-performance polymer electrolyte fuel cells. ACS Energy Lett. 5(6), 1726–1731 (2020). https://doi.org/10.1021/acsenergylett.0c00532
W. Liu, S. Di, F. Wang, H. Zhu, Ionic liquid modified fct-PtCo/C@ILs as high activity and durability electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 47(9), 6312–6322 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.003
X. Cheng, G. Wei, L. Luo, J. Yin, S. Shen et al., Application of solid catalysts with an ionic liquid layer (SCILL) in PEMFCs: from half-cell to full-cell. Electrochem. Energy Rev. 6(1), 32 (2023). https://doi.org/10.1007/s41918-023-00195-5
J.P. Braaten, N.N. Kariuki, D.J. Myers, S. Blackburn, G. Brown et al., Integration of a high oxygen permeability ionomer into polymer electrolyte membrane fuel cell cathodes for high efficiency and power density. J. Power Sources 522, 230821 (2022). https://doi.org/10.1016/j.jpowsour.2021.230821
A. Rolfi, C. Oldani, L. Merlo, D. Facchi, R. Ruffo, New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. J. Power Sources 396, 95–101 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.093
R. Jinnouchi, K. Kudo, K. Kodama, N. Kitano, T. Suzuki et al., The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 12, 4956 (2021). https://doi.org/10.1038/s41467-021-25301-3
N. Macauley, R.D. Lousenberg, M. Spinetta, S. Zhong, F. Yang et al., Highly durable fluorinated high oxygen permeability ionomers for proton exchange membrane fuel cells. Adv. Energy Mater. 12(45), 2201063 (2022). https://doi.org/10.1002/aenm.202201063
X. Yan, Z. Xu, S. Yuan, A. Han, Y. Shen et al., Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: a review. J. Power Sources 536, 231523 (2022). https://doi.org/10.1016/j.jpowsour.2022.231523
T. Kaneko, J. Ooyama, M. Ohki, H. Kanesaka, Y. Yoshimoto et al., Effect of ionomer swelling and capillary condensation of water on porous characteristics in cathode catalyst layers of polymer electrolyte membrane fuel cells under humidified conditions. Int. J. Heat Mass Transf. 200, 123491 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123491
J.H. Yeon, Y. Jang, M. Choi, S. Jang, Layer-by-layer polydimethylsiloxane modification using a two-nozzle spray process for high durability of the cathode catalyst in proton-exchange membrane fuel cells. ACS Appl. Mater. Interfaces 13(47), 56014–56024 (2021). https://doi.org/10.1021/acsami.1c12616
F. Chen, L. Guo, D. Long, S. Luo, Y. Song et al., Overcoming the limitation of ionomers on mass transport and Pt activity to achieve high-performing membrane electrode assembly. J. Am. Chem. Soc. 146(44), 30388–30396 (2024). https://doi.org/10.1021/jacs.4c10742
H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi et al., Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int. J. Hydrog. Energy 35(18), 9550–9560 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.103
J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
C. Wang, A. Schechter, L. Feng, Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2, e9120056 (2023). https://doi.org/10.26599/nre.2023.9120056
W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan, et al., Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science. 387(6735), 791–796 (2025). https://doi.org/10.1126/science.adr3149
J. He, X. Zhou, P. Xu, J. Sun, Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 11(48), 2102883 (2021). https://doi.org/10.1002/aenm.202102883
D. Böhm, M. Beetz, C. Gebauer, M. Bernt, J. Schröter et al., Highly conductive titania supported iridium oxide nanops with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Appl. Mater. Today 24, 101134 (2021). https://doi.org/10.1016/j.apmt.2021.101134
P. Gayen, S. Saha, V. Ramani, Pyrochlores for advanced oxygen electrocatalysis. Acc. Chem. Res. 55(16), 2191–2200 (2022). https://doi.org/10.1021/acs.accounts.2c00049
H.J. Song, H. Yoon, B. Ju, D.W. Kim, Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: a mini review. Adv. Energy Mater. 11(27), 2002428 (2021). https://doi.org/10.1002/aenm.202002428
C. Yuan, S. Zhang, J. Zhang, Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells. Front. Energy 18(2), 206–222 (2024). https://doi.org/10.1007/s11708-023-0907-3
W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan et al., Ultrastable supported oxygen evolution electrocatalyst formed by ripening-induced embedding. Science 387(6735), 791–796 (2025). https://doi.org/10.1126/science.adr3149
S. Zhao, S.-F. Hung, L. Deng, W.-J. Zeng, T. Xiao et al., Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanops for enhanced pH-universal water splitting. Nat. Commun. 15(1), 2728 (2024). https://doi.org/10.1038/s41467-024-46750-6
H. Su, C. Yang, M. Liu, X. Zhang, W. Zhou et al., Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers. Nat. Commun. 15(1), 95 (2024). https://doi.org/10.1038/s41467-023-44483-6
Y. Wang, M. Zhang, Z. Kang, L. Shi, Y. Shen et al., Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer. Nat. Commun. 14(1), 5119 (2023). https://doi.org/10.1038/s41467-023-40912-8
D. Tl, L. He, S. Ssh, A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res. 45(10), 14207–14220 (2021). https://doi.org/10.1002/er.6739
J. Lopata, Z. Kang, J. Young, G. Bender, J.W. Weidner et al., Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices. J. Electrochem. Soc. 167(6), 064507 (2020). https://doi.org/10.1149/1945-7111/ab7f87
Z. Taie, X. Peng, D. Kulkarni, I.V. Zenyuk, A.Z. Weber et al., Pathway to complete energy sector decarbonization with available iridium resources using ultralow loaded water electrolyzers. ACS Appl. Mater. Interfaces 12(47), 52701–52712 (2020). https://doi.org/10.1021/acsami.0c15687
M. Fathi Tovini, A. Hartig-Weiß, H.A. Gasteiger, H.A. El-Sayed, The discrepancy in oxygen evolution reaction catalyst lifetime explained: RDE vs MEA - dynamicity within the catalyst layer matters. J. Electrochem. Soc. 168(1), 014512 (2021). https://doi.org/10.1149/1945-7111/abdcc9
M. Moore, M. Mandal, A. Kosakian, M. Secanell, Numerical study of the impact of two-phase flow in the anode catalyst layer on the performance of proton exchange membrane water electrolysers. J. Electrochem. Soc. 170(4), 044503 (2023). https://doi.org/10.1149/1945-7111/acc898
T.-C. Ma, A. Hutzler, B. Bensmann, R. Hanke-Rauschenbach, S. Thiele, Influence of the complex interface between transport and catalyst layer on water electrolysis performance. J. Electrochem. Soc. 171(4), 044504 (2024). https://doi.org/10.1149/1945-7111/ad3497
C.C. Weber, J.A. Wrubel, L. Gubler, G. Bender, S. De Angelis et al., How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl. Mater. Interfaces 15(29), 34750–34763 (2023). https://doi.org/10.1021/acsami.3c04151
X. Peng, P. Satjaritanun, Z. Taie, L. Wiles, A. Keane et al., Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci. 8(21), e2102950 (2021). https://doi.org/10.1002/advs.202102950
T. Schuler, T.J. Schmidt, F.N. Büchi, Polymer electrolyte water electrolysis: correlating performance and porous transport layer structure: part II. electrochemical performance analysis. J. Electrochem. Soc. 166(10), F555–F565 (2019). https://doi.org/10.1149/2.1241908jes
C. Lee, J. Hinebaugh, R. Banerjee, S. Chevalier, R. Abouatallah et al., Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers. Int. J. Hydrog. Energy 42(5), 2724–2735 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.114
B. Zhao, C. Lee, J.K. Lee, K.F. Fahy, J.M. LaManna et al., Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers. Cell Rep. Phys. Sci. 2(10), 100580 (2021). https://doi.org/10.1016/j.xcrp.2021.100580
J.O. Majasan, J.I.S. Cho, M. Maier, I. Dedigama, P.R. Shearing et al., Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser. ECS Trans. 85(13), 1593–1603 (2018). https://doi.org/10.1149/08513.1593ecst
H. Li, H. Nakajima, A. Inada, K. Ito, Effect of flow-field pattern and flow configuration on the performance of a polymer-electrolyte-membrane water electrolyzer at high temperature. Int. J. Hydrog. Energy 43(18), 8600–8610 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.171
J.O. Majasan, J.I.S. Cho, I. Dedigama, D. Tsaoulidis, P. Shearing et al., Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: Electrochemical and optical characterisation. Int. J. Hydrog. Energy 43(33), 15659–15672 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.003
J.K. Lee, C. Lee, K.F. Fahy, P.J. Kim, K. Krause et al., Accelerating bubble detachment in porous transport layers with patterned through-pores. ACS Appl. Energy Mater. 3(10), 9676–9684 (2020). https://doi.org/10.1021/acsaem.0c01239
H.A. El-Sayed, A. Weiß, L.F. Olbrich, G.P. Putro, H.A. Gasteiger, OER catalyst stability investigation using RDE technique: a stability measure or an artifact? J. Electrochem. Soc. 166(8), F458–F464 (2019). https://doi.org/10.1149/2.0301908jes
S. Yu, K. Li, W. Wang, Z. Xie, L. Ding et al., Tuning catalyst activation and utilization via controlled electrode patterning for low-loading and high-efficiency water electrolyzers. Small 18(14), e2107745 (2022). https://doi.org/10.1002/smll.202107745
B.-S. Lee, H.-Y. Park, I. Choi, M.K. Cho, H.-J. Kim et al., Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature. J. Power Sources 309, 127–134 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.139
J.K. Lee, G. Anderson, A.W. Tricker, F. Babbe, A. Madan et al., Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis. Nat. Commun. 14(1), 4592 (2023). https://doi.org/10.1038/s41467-023-40375-x
S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18(1), 1–21 (1989). https://doi.org/10.1063/1.555839
E. Padgett, G. Bender, A. Haug, K. Lewinski, F. Sun et al., Catalyst layer resistance and utilization in PEM electrolysis. J. Electrochem. Soc. 170(8), 084512 (2023). https://doi.org/10.1149/1945-7111/acee25
W. Wang, S. Yu, K. Li, L. Ding, Z. Xie et al., Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power Sources 516, 230641 (2021). https://doi.org/10.1016/j.jpowsour.2021.230641
X.H. Zhang, Quartz crystal microbalance study of the interfacial nanobubbles. Phys. Chem. Chem. Phys. 10(45), 6842–6848 (2008). https://doi.org/10.1039/b810587a
A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005
X. Zhao, H. Ren, L. Luo, Gas bubbles in electrochemical gas evolution reactions. Langmuir 35(16), 5392–5408 (2019). https://doi.org/10.1021/acs.langmuir.9b00119
O.R. Enríquez, C. Hummelink, G.W. Bruggert, D. Lohse, A. Prosperetti et al., Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instrum. 84(6), 065111 (2013). https://doi.org/10.1063/1.4810852
A. Nouri-Khorasani, E. Tabu Ojong, T. Smolinka, D.P. Wilkinson, Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells. Int. J. Hydrog. Energy 42(48), 28665–28680 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.167
S. Yuan, C. Zhao, X. Cai, L. An, S. Shen et al., Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Prog. Energy Combust. Sci. 96, 101075 (2023). https://doi.org/10.1016/j.pecs.2023.101075
K. Watanabe, K. Wakuda, K. Wani, T. Araki, K. Nagasawa et al., Existence of dissolved oxygen near anode catalyst in proton exchange membrane water electrolyzers. J. Electrochem. Soc. 169(4), 044515 (2022). https://doi.org/10.1149/1945-7111/ac6392
H. Suwa, R. Kanemoto, K. Toyama, S. Kishi, T. Araki, Visualization of oxygen bubbles on a flat ionomer-coated platinum electrode. ECS Trans. 112(4), 463–469 (2023). https://doi.org/10.1149/11204.0463ecst
D.F. Ruiz Diaz, Y. Wang, Performance loss due to gas coverage on catalyst surface in polymer electrolyte membrane electrolysis cell. eTransportation 18, 100263 (2023). https://doi.org/10.1016/j.etran.2023.100263
M. Bernt, H.A. Gasteiger, Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 163(11), F3179–F3189 (2016). https://doi.org/10.1149/2.0231611jes
C. Zhao, S. Yuan, X. Cheng, L. An, J. Li et al., Effect of perfluorosulfonic acid ionomer in anode catalyst layer on proton exchange membrane water electrolyzer performance. J. Power Sources 580, 233413 (2023). https://doi.org/10.1016/j.jpowsour.2023.233413
W. Yoshimune, S. Kato, S. Yamaguchi, Multi-scale pore morphologies of a compressed gas diffusion layer for polymer electrolyte fuel cells. Int. J. Heat Mass Transf. 152, 119537 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119537
T. Seip, N. Shaigan, M. Dinu, K. Fatih, A. Bazylak, Correlating nanostructure features to transport properties of polymer electrolyte membrane electrolyzer anode catalyst layers. J. Power Sources 559, 232654 (2023). https://doi.org/10.1016/j.jpowsour.2023.232654
J.K. Lee, P. Kim, K. Krause, P. Shrestha, M. Balakrishnan et al., Designing catalyst layer morphology for high-performance water electrolysis using synchrotron X-ray nanotomography. Cell Rep. Phys. Sci. 4(1), 101232 (2023). https://doi.org/10.1016/j.xcrp.2022.101232
H. Lv, S. Wang, Y. Sun, J. Chen, W. Zhou et al., Anode catalyst layer with hierarchical pore size distribution for highly efficient proton exchange membrane water electrolysis. J. Power Sources 564, 232878 (2023). https://doi.org/10.1016/j.jpowsour.2023.232878
M. Mandal, M. Secanell, Improved polymer electrolyte membrane water electrolyzer performance by using carbon black as a pore former in the anode catalyst layer. J. Power Sources 541, 231629 (2022). https://doi.org/10.1016/j.jpowsour.2022.231629
S. Yuan, C. Zhao, L. Luo, C. Fu, H. Li et al., Revealing the role of the ionomer at the triple-phase boundary in a proton-exchange membrane water electrolyzer. J. Phys. Chem. Lett. 15(19), 5223–5230 (2024). https://doi.org/10.1021/acs.jpclett.4c00851
Y. Wang, J. Huang, B. Xu, D. Ye, L. Zhang et al., Design of highly wettable microstructure for enhancing the oxygen–water transport dynamics in anode catalyst layers of PEMWE, in 16th International Conference on Applied Energy (ICAE2024), Sep. 1–5, 2024, Niigata, Japan. https://doi.org/10.46855/energy-proceedings-11420
C. Zhao, S. Yuan, X. Cheng, S. Shen, N. Zhan et al., Agglomerate engineering to boost PEM water electrolyzer performance. Adv. Energy Mater. 14(41), 2401588 (2024). https://doi.org/10.1002/aenm.202401588